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ABSTRACT
We consider the setting of lazy random graph walks over
directed graphs, where entities are represented as nodes and
typed edges represent the relations between them. This
framework has been used in a variety of problems to de-
rive an extended measure of entity similarity. In this pa-
per we contrast two different approaches for applying su-
pervised learning in this framework to improve graph walk
performance: a gradient descent algorithm that tunes the
transition probabilities of the graph, and a reranking ap-
proach that uses features describing global properties of the
traversed paths. An empirical evaluation on a set of tasks
from the domain of personal information management and
multiple corpora show that reranking performance is usu-
ally superior to the local gradient descent algorithm, and
that the methods often yield best results when combined.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data Mining ; H.3.3 []: Information Search and Retrieval—
Retrieval Models, Search Process

General Terms
Algorithms, Experimentation

Keywords
Entity relation graphs, learning, personal information man-
agement

1. INTRODUCTION
Relational structured data as well as semi-structured data

is naturally represented by an entity-relation (ER) graph
schema, where nodes represent entities and directed typed
edges represent the relations between them. Such graphs
are heterogenous, in the sense that they include different
types of nodes, and different types of links. Examples of
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entity-relation graphs include citation networks where the
nodes consist of authors, papers, institutions, journals, and
conferences (e.g., [3]); these networks can be viewed also
as rich social networks, where persons are interconnected
via their relation to other entities, explicitly represented in
the graph (e.g., persons may participate in the same con-
ferences, coauthor papers etc.). Other examples of heteroge-
nous social networks are the Internet Movie Database where
nodes representing persons (actors, directors, etc.) are in-
terconnected via a diverse set of relations to other entities
such as movies and studios (e.g., [21]); in the domain of
Homeland Security, affiliation networks that include diverse
sets of persons and events interlinked in a variety of rela-
tionships are used for predicting threat vulnerabilities (e.g.,
[28]). Recently, it has been suggested to represent personal
management information as entity-relation graphs, in which
email messages, meeting entries, persons, email addresses,
text and date nodes are interconnected via relations derived
from the textual and structural information residing in a
personal work station or a corporate database [19, 6].

Given an ER graph, a question of interest is how to deter-
mine the nature of relationship between two entities that are
not directly connected in the graph (e.g., how to recognize
the relationship advisor-of between person entities that are
connected only indirectly, e.g., via links to coauthored pa-
per entities). It has been suggested to construct a subgraph
consisting of the shortest paths between two nodes for rela-
tionship detection [15]. Researchers have pointed out that
the search for such extended semantic relations can be im-
proved given knowledge about which link types in the graph
are relevant for the relationship of interest [3].

In this paper we consider an extended similarity metric
in entity-relation graphs based on lazy random graph walks.
Given the networked data model and some initial distribu-
tion over graph nodes, a similarity (or relatedness) score of
a node is defined as the probability of reaching that node
in a random walk process [14, 22, 26, 27, 13, 20, 16]. This
paradigm is closely related to the PageRank algorithm [23]
and its “personalized” variants (e.g., [14]) that are based on
a graph walk of infinite length with random resets. (In a
“personalized” PageRank these resets are biased towards a
distribution of iterest.) In a lazy graph walk, there is a fixed
probability of halting the walk at each step. This halting
probability means that short walks will be more probable,
as it reduces the probability of reaching nodes distant from
the starting points of the walk. Rather than modeling “cen-
trality” of nodes (as in the PageRank algorithm), a lazy
graph walk can be viewed as propagating “similarity” from



a start node through edges in the graph—incidentally ac-
cumulating evidence of similarity over multiple connecting
paths. This similarity metric can be viewed as a tool for
performing search across the nodes in the graph. The result
of the graph walk is a list of graph nodes, ranked by their
probability mass cumulated in the graph walk process.

In a previous work [26] lazy random walks over graphs
have been used for estimating word dependency distribu-
tions: in this case, the constructed graph represented dif-
ferent flavors of word-to-word similarity. Other papers have
also used lazy walks over graphs for query expansion [27,
13]. Recently, this approach has been shown to be effective
for contextual search and disambiguation in email process-
ing tasks [20], as well as for protein name disambiguation
[8].

Typically, the individual transitions in the random walk
are determined by a set of parameters, assigning a fixed
weight for each edge type (relation) in the graph, designat-
ing its relevancy or importance. As mentioned above, it
is reasonable that a particular subset of link types be rele-
vant for extraction of semantic relations between nodes that
are not directly linked in the graph. Furthermore, differ-
ent edge types may have varying importance in the context
of different types of queries (e.g., recognizing different re-
lationships like advisor-of versus spouse-of). This suggests
the goal of learning the graph edge weights for a particu-
lar class of queries, such that probability propagated by the
graph walk is directed to those nodes that demonstrate the
relation of interest. Several schemes have been suggested for
adjusting the set of edge weights using hill-climbing meth-
ods, which proved successful in personalized PageRank set-
tings (see Section 2). A different approach suggested re-
cently learns to re-order an initial ranking, using features de-
scribing the edges in the traversed graph paths [20, 8]. This
method parameterizes the graph walk with a set of represen-
tative features, and thus loses some information; however,
such features allow one to capture certain“global”properties
of the graph walk. For example, they allow considering edge
sequences that are encountered in traveling from the source
nodes to a target node. The graph walks and the algorithms
which tune the graph edge weights, on the other hand, are
based on “local” information, where only information about
the next immediate step of the walk is accessible. Given this
qualitative difference, the focus of this paper is to conduct
an empirical evaluation of the two approaches for a shared
set of tasks, using authentic data. We will show that rerank-
ing is in many cases a preferable alternative to direct weight
learning. However, the two approaches are complementary,
usually yielding improvements in performance when com-
bined.

The paper proceeds as follows. In the next section we
review related research. We then describe the lazy ran-
dom walk framework and each of the learning approaches
in detail. In the empirical evaluation section, we describe a
set of tasks from the personal information management do-
main; we then give the results of applying a weight tuning
algorithm and reranking separately, and in combination, on
these tasks, for multiple real-world corpora. The paper con-
cludes with a discussion of the results and possible future
directions.

2. RELATED WORK
Performing search via finite graph walks is closely re-

lated to spreading activation over semantic or association
networks: there the underlying idea is to propagate “ac-
tivation” from source nodes via weighted links through
the network (e.g., [4, 24]). Spreading activation methods
are parameterized by user-provided threshold functions for
node activation, limits on node distance, preferences over
paths, and other constraints. The framework of lazy graph
walks discussed here is similar in character, but is less con-
strained; rather, it relies on learning to optimize how simi-
larity “spreads” through the graph.

The idea of representing structured data as a graph is
widespread in the data mining community, which is mostly
concerned with relational or semi-structured data. For ex-
ample, it has been suggested to model similarity between
objects in relational data in terms of structural-context sim-
ilarity [17], where the similarity measure corresponds to the
expected number of steps required for a random surfer to
cross the graph from one object to the other. Recently,
the idea of PageRank has been applied to keyword search in
structured databases, where edges correspond to inter-entity
relations [5, 2].

Several methods have been developed that automatically
tune edge weight parameters in extended PageRank mod-
els. These include exhaustive local search over each edge
type [22], a gradient descent algorithm [7], a hill-climbing
error backpropagation algorithm [14], and a hill-climbing ap-
proximation algorithm adapted for partial order preferences
[1]. A common property of these methods is that they de-
compose the graph walk into single steps, thus performing
optimization “locally”. As a case study of these methods,
we follow closely in this paper on the error backpropagation
gradient descent algorithm [14], applying it to lazy graph
walks.

An alternative approach for improving graph walk perfor-
mance is learning to re-order an initial ranking. A reranking
approach has been used in the past for meta-search [10] and
also several natural-language related tasks (e.g., [12, 11]).
Recently, it has been suggested to apply reranking to im-
prove on graph walks in entity-relation networks [20, 8].

While node reranking can be used as an alternative to
weight manipulation, it can readily be used as complemen-
tary approach, as the techniques can be naturally combined
by first tuning the model parameters, and then reranking
the result using a classifier which exploits non-local features.
This hybrid approach has been used successfully in the past
on tasks like parsing [12]. We follow this paradigm as well
in our experiments.

3. FRAMEWORK AND NOTATION
In this section we first provide detailed definitions of the

assumed entity-relation graph scheme, and then specify how
probability propagates in the graph given a set of edge weights
parameters, to derive a measure of similarity between the
graph nodes.

A graph G consists of a set of nodes, and a set of labeled
directed edges. We will denote graph nodes by letters such as

x, y, or z, and an edge from x to y with label ` as x
`

−→ y.
Every node x has a type, denoted τ(x), where the graph
scheme includes a fixed set of possible node types. For exam-
ple, consider the graph scheme for email data representation
described in Figure 1. This graph scheme includes five dif-
ferent node types, denoting person, email-address, file, term



and date entities.
We will assume that the graph edge labels determine the

source and target node types: i.e., if x
`

−→ z and w
`

−→ y

then τ(w) = τ(x) and τ(y) = τ(z). For example, according

to the scheme defined in Figure 1, an edge x
sent−from

−→ y

implies that node x is of type file and node y is of type
person. However, multiple relations can hold between any

particular pair of nodes: that is, it could be that x
`

−→

y and x
`′

−→ y, where ` 6= `′. For instance, in the email
domain, it could be that a particular file was sent-from and
also sent-to the same person. Note that edges need not
denote functional relations: for a given x and `, there may

be many distinct nodes y such that x
`

−→ y. For example, an
email file is typically linked to multiple recipients via a sent-
to relation, a particular file entity includes multiple terms
etc. Finally, for every edge in the graph there is an edge
going in the other direction, denoting an inverse relation.
(The inverse edges were omitted from Figure 1, for clarity
of presentation.) Thus, the graph is cyclic, and there are no
sink nodes in the graph.

3.1 Edge weights
Similarity between two nodes is defined by a lazy walk

process, and a walk on the graph is controlled by a set of
parameters Θ. An edge of type ` is assigned an edge weight
θ`. For example, the graph scheme shown in Figure 1 in-
cludes 18 types of graph edges (including the inverse edge
types that are not shown), for which distinct weights are
specified.

Let Lxy denote the set of edge types of the outgoing edges
from x to y. The probability of reaching node y from node
x over a single time step is defined as:

Pr(x −→ y) =

�
`∈Lxy

θ`�
y′∈ch(x)

�
`′∈Lxy′

θ`′

where ch(x) denotes the set of immediate children of x (the
set of nodes that are reachable from x in one time step).
That is, the probability of reaching node y from x is defined
as the proportion of total edge weights from x to y out of
the sum of weights of all the outgoing edges from x.

3.2 Lazy Graph Walks
Conceptually, the edge weights above define the probabil-

ity of moving from node x to some other node y. At each
step in a lazy graph walk, there is also some probability γ of
staying at x. Putting these together, and denoting by Mxy

the probability of being at node y at time t + 1 given that
one is at x at time t in the walk, we define

Mxy =

�
(1 − γ)Pr(x −→ y) if x 6= y

γ if x = y

If we associate nodes with integers, and make M a matrix
indexed by nodes, then a walk of k steps can be defined by
matrix multiplication: specifically, if V0 is some initial prob-
ability distribution over nodes, then the distribution after
a k-step walk is Vk = V0M

k. Larger values of γ increase
the weight given to shorter paths between x and a destina-
tion node z. In the experiments reported here, we consider
small values of k, and this computation is carried out di-
rectly using sparse-matrix multiplication methods.1 If V0

1We have also explored an alternative approach based on

Figure 1: Email ER graph scheme

gives probability 1 to some node x0 and probability 0 to all
other nodes, then the value given to z in Vk can be inter-
preted as a similarity measure between x and z.

In this framework, a query is an initial distribution Vq

over nodes, plus a desired output type τout , and the answer
is a list of nodes z of type τout , ranked by their score in the
distribution Vk.

For instance, for an ordinary ad hoc document retrieval
query (like “economic impact of recycling tires”) the cor-
responding graph query would be an appropriate distribu-
tion Vq over the query terms, with τout = file. Replacing
τout with person would find the person most related to the
query—e.g., an email contact heavily associated with the re-
tread economics. Replacing Vq with a point distribution over
a particular document would find the people most closely as-
sociated with the given document.

4. LEARNING
The described graph framework can be used for many

types of tasks (i.e., many flavors of extended semantic simi-
larity), and it is unlikely that a single set of parameter val-
ues Θ will be best for all of them. In this section we give
a detailed overview of two methods that represent different
approaches for the problem of learning to better rank graph
nodes: a hill-climbing method that tunes the graph weights
and the reranking method.

4.1 Problem Setting
By problem definition, we are given a graph G and an

initial set of graph parameters Θ. We are also given a set
of labeled example queries, for which the identity of at least
one graph node that is considered to be correct or relevant
is known. (A detailed description of queries per our case
study of personal information management and the defini-
tion of their respective correct answers is given in Section
5.1.) For every example query Vq, we are given a ranked
list of nodes that is output by a graph walk of pre-defined
length k. Learning is to be applied, such that the relevant

sampling; this method scales better but introduces some ad-
ditional variance into the procedure, which is undesirable for
experimentation.



output nodes be retrieved at the top of the final ranked list
returned, for the given class of queries.

4.2 Error Backpropagation
We follow closely on the algorithm proposed by [14], mak-

ing slight modifications to adapt it to finite lazy graph walks.
They derive a gradient descent algorithm using the paradigm
of error backpropagation in neural networks. The target cost
function is the following:

E =
1

N �
i∈N

ez =
1

N �
i∈N

1

2
(pz − p

Opt
z )2

where ez is the error for a target node z, defined as the
squared difference between the final score assigned to z by
the graph walk pz and some ideal score according to the
example’s labels, pOpt

z . Specifically, pOpt
z is set to 1 in case

that the node z is relevant or 0 otherwise. The error is
averaged over a set of example instantiations of size N . We
want to minimize this cost function by gradient descent with
respect to every edge weight θ`′ , as follows:

θ`′ = θ`′ − η
∂E

∂θ`′
= θ`′ − η

1

N �
i∈N

∂ei

∂θ`′

The derivative of the error is a summation over each of the
graph walk’s time steps, where the final error is propagated
backward, weighted by the relative contribution of every in-
termediate node to the final node score, as follows:

∂e

∂θ`′
= (pz − popt

z )

T−1�
t=0

�
y∈Uz(t+1)

P (y, t + 1 → z, T ) ·
∂py(t + 1)

∂θ`′

where Uz(t + 1) denotes the set of graph nodes that are in
the set of connecting paths leading to z, at time t + 1; and,
given that node y belongs to this set, P (y, t + 1 → z, t) is
the total probability of reaching z at time T starting from y

at time t + 1. The derivative of the node y with respect to
an edge weight θ`′ is:

∂py(t + 1)

∂θ`′
= �

x∈pa(y)

px(t)γ ·

∂
`∈Lxy

θ`

y′∈ch(x) `′∈L
xy′

θ`′

∂θ`′

where pa(y) is the set of nodes linked by an outgoing edge
to y (its parents). Specifically, denoting as C(`′, Lxy) the
count of edge type `′ in the set of connecting paths Lxy, the
explicit derivative is:

�
x∈pa(y)

px(t)γ ·
C(`′, Lxy)Ox − C(`′, Lxy′)θ`

O2
x

where we use the abbreviation Ox for the total outgoing
weight from node x, i.e. Ox =

�
y′∈ch(x)

�
`′∈Lxy′

θ`′ .

4.3 Node Reranking
Following is a short overview of the reranking approach,

described in more detail elsewhere [12]. For every example
i (1 ≤ i ≤ N), the reranking algorithm is provided with
the corresponding output ranked list of li nodes. Let zij

be the output node ranked at rank j in li, and let pzij be
the probability assigned to zij by the graph walk. Each
output node zij is represented through m features, which
are computed by pre-defined feature functions f1, . . . , fm.

The ranking function for node zij is defined as:

F (zij , ᾱ) = α0log(pzij ) +

m

�
k=1

αkfk(zij)

where ᾱ is a vector of real-valued parameters. Given a new
test example, the output of the model is the output node
list reranked by F (zij , ᾱ).

To learn the parameter weights ᾱ, we use a boosting
method [12], which minimizes the following loss function on
the training data:

ExpLoss(ᾱ) =�
i

li

�
j=2

e
−(F (zi1,ᾱ)−F (zij ,ᾱ))

where zi1 is, without loss of generality, the correct target
node.2 The weights for the function are learned with a
boosting-like method, where in each iteration the feature
fk that has the most impact on the loss function is chosen,
and αk is modified. Provided that the features are binary,
closed form formulas exist for calculating the optimal addi-
tive parameter updates [25].

4.3.1 Features
While typically the ranked list of candidates was gener-

ated using local search methods, reranking features can rep-
resent global phenomena that was not captured in the local
model, using this information to discriminate between the
top ranked candidates. For example, previous work [11] ap-
plied a MaxEnt learner to perform named entity tagging;
then, reranked high-probability annotations using features
describing the entity boundaries predicted.

In general, the scope of features possible is unlimited, al-
lowing one to incorporate many types of relevant informa-
tion. In this paper, however, we compare reranking with
graph parameter tuning as alternative learning methods that
improve on graph walk performance. The features we use
for reranking will therefore be derived from the set of paths
leading to every candidate node (that is, the same infor-
mation available to the error backpropagation algorithm),
describing non-local properties of these paths. In partic-
ular, we will evaluate the following three types of feature
templates:

• Edge label n-grams - features indicating whether a par-
ticular sequence of n edge labels (n < k) occurred
within the set of paths leading to the node.

• Top edge label n-grams - these features are similar to
the previous feature type. However, here we consider
the subset of top t paths that had the largest contri-
bution to the final node probability score.

• Source count - In case that the query included multi-
ple nodes, this feature indicates the number of different
source nodes in the set of connecting paths leading to
the candidate node. This feature models the assump-
tion that nodes reachable from multiple query source
nodes are more relevant to the query.

2If there are K > 1 target nodes in a ranking, we split the
ranking into K examples.



5. EMPIRICAL EVALUATION
We evaluate the algorithms on a set of common tasks from

the domain of personal information management, where the
underlying graph describes an email corpus (jointly with
meeting entries if applicable [19]). Figure 1 illustrates the
relational schema used; using this schema, a whole email
corpus can be represented as a linked network of entities
such as email files, person, email-addresses etc. Below is a
short description of the tasks and corpora included in the
evaluation (see also [20, 19]).

5.1 Tasks
We define a task as a query class, where independently of

the query parameter values, a particular type of similarity
or association between objects is sought. For example, in
the task of threading, a user (human, or an automatic email
processing agent) looks for messages that are adjacent to a
given message in a thread. Following is a description of the
tasks considered in our experiments, and their correspond-
ing representation as queries in the graph walk framework.
Table 1 gives a summary of the mappings between task and
query representation for each of these tasks.

5.1.1 Person Name Disambiguation
Consider an email message containing a term that is iden-

tified to be a person’s name. It can be non-trivial for an
automated system to find out which person node maps to
the given term. The task is especially difficult when the men-
tioned person does not appear in the email header, or when
the name mention is ambiguous. For example, common
names like “Andrew” may map to multiple persons names
in the corpus. Graph walks address this problem, as they
encode entity cooccurences. In addition, starting the walk
from a distribution that gives equal weight to the term node
and the relevant email message node provides natural con-
text and allows to resolve ambiguous instances. Formally,
this problem is defined as the following search task: given a
term node that corresponds to a name-mention and the rel-
evant email file node, we formulate a uniform query distri-
bution Vq, and retrieve a ranked list of nodes of type person.

5.1.2 Threading
This is the problem of retrieving messages in an email

thread, given a message from that thread. As threads are
indicated by multiple linkage types, including similar text,
common social network and time proximity, this task bene-
fits from the graph framework. More precisely, we formulate
threading as follows: given an email file as a query, produce
a ranked list of related email-file nodes, where the immedi-
ate parent and child of the given file are considered to be
“correct” answers.

5.1.3 Email Alias Finder
The task considered is automatic assistance in finding a

person’s set of email-addresses. We consider the following
setting: given a person’s first name, retrieve a ranked list
of email-address nodes. For this particular task, we added
“similarity” edges to the graph schema, where email-address
node pairs for which a Jaro string similarity score [9] ex-
ceeded a certain threashold have been connected with this
edge type.

5.2 Corpora

task Vq τout

Name disambig. term (name mention) +file person
Threading file file
Email aliases term (person’s name) email-address

Table 1: Query realizations of the considered tasks

We evaluated each of the tasks above using multiple cor-
pora, where we used the following corpora:

The Cspace corpus, containing email messages collected
from a management course conducted at Carnegie Mellon
University in 1997 . In this course, MBA students, organized
in teams of four to six members, ran simulated companies
in different market scenarios. The corpus used includes the
emails of all teams over a period of four days.

The Enron corpus, including emails of Enron Corp. em-
ployees, which has been made available to the research com-
munity [18]. Here, we use the saved email of these users:
Sager, Shapiro, Farmer and Germany.3

Finally, the Meetings corpus includes messages from this
paper’s second author’s email Meetings folder, over a period
of several months. This corpus includes also meeting entries,
as maintained in a PalmPilot handset, over the same period.

Table 2 details the set of experiments conducted by cor-
pus, corpus size (number of nodes in the corresponding graph
representation) and dataset size. The datasets, including la-
belled queries, were split into training, development and test
sets, as specified in the table.

5.3 Experiments
In all experiments, we assign stay probability γ = 0.5,

leading to fast convergence of node probabilities. In ad-
dition, the graph scheme used (Figure 1) gives high node
connectivity (i.e., small graph diameter), such that a small
number of graph walk steps give good performance. In the
experiments we used k = 2 for most tasks and k = 3 steps
for the Alias task.

We compare the gradient descent and reranking as follows.
The gradient algorithm is given the train data, where we also
compute the resulting error (cost function value) for the de-
velopment set after every iteration. The gradient learning
is terminated when either the train set error converges or
when the development set error starts rising. (This proce-
dure is intended to prevent over-fitting, a potential problem
with small datasets). Since the gradient descent algorithm
is prone to converge to a local minima (unfortunately, the
target function is not smooth), we ran the algorithm for
every task and corpus (train set) combination for 10 ran-
domly generated initial graph parameter sets, out of which
we consider the parameters for which the best end result is
reached4 by the gradient algorithm, Θ0. The output of this
procedure is a modified set of weights ΘG; we then applied
graph walks using ΘG to evaluate performance on the test
set queries.

Reranking was trained separately, using both the train and
development sets, where for comparison reasons, the same
set of selected initial graph weights was used to generate
the graph walk output (thus, both methods are compared

3The Enron corpus is available from the first author’s home-
page.
4Results will be presented in terms of Mean Average Pre-
cision (MAP). We found that the error function and MAP
are well-correlated.



Task Corpus Size Train Dev. Test

Disambig. D1 M.Game 6248 20 25 60
D2 Sager 9753 15 12 35
D3 Shapiro 13174 15 10 35

Threading T1 M.Game 6248 20 25 80
T2 Farmer 14082 22 23 93
T3 Germany 12730 24 21 42

Alias A1 Meetings 3239 20 - 15

Table 2: Datasets’ statistics

against the same baseline ranking, generated by the graph
walk with parameters Θ0). For every query, the top 50 nodes
(or less, using the maximum available) were reranked; for the
Alias task we rerank the top 100 nodes.

In addition, we considered a combination of the two learn-
ers in a pipeline fashion, as follows: graph rankings were
generated using the set of weights as modified by the gra-
dient learner, ΘG; then, reranking was applied given the
generated node lists.

5.4 Results
The results are presented in Table 3 in terms of Mean Av-

erage Precision (MAP), which is a common measure for an-
swer set relevance in Information Retrieval. Results marked
with an asterisk are significantly different from the baseline
(using a two-sided Wilcoxon test at 95% confidence level).
Results marked with a plus sign are significantly different
from the gradient method’s performance. Figure 2 provides
a different view of these results for some of the evaluated
datasets, showing the curve of recall ratio at rank K up to
rank 10 for the set of evaluated examples. For example, re-
call level of 0.3 at rank 1 would mean that for 30% of the
evaluated queries, the top rank in the returned list contained
a relevant answer. Obviously, a higher curve is preferable,
where one is interested in maximizing performance primarily
at the top ranks.

Overall, the results show consistent trends over tasks and
corpora. Both the gradient descent learner and rerank-
ing improve results in most of the experiments; in most
cases, the reranking method is superior to the weight-tuning
learner, yielding higher improvment rates. Reranking failed
to improve results for the alias task. The gradient learner
slightly degraded performance on one of the tasks, and im-
proved performance on the remaining tasks. The right-most
column in the table (“Combined”) shows the results of ap-
plying reranking using the weights modified by the gradient
as the start point. Usually, this hybrid method gives the
best performance.

There are several reasons for the observed trends. A
main reason for the superiority of reranking for some of
the datasets is that reranking features capture global infor-
mation, describing sequences of relations. In the threading
task, for example, an adjacent message in a thread is often a
reply-to message, where a recipient becomes the sender and
vice versa, etc. This composite relation is captured by edge
bigrams such as sent-to→ sent-from-inverse. The gradient
descent, however, does not model multi-steps dependencies,
and therefore yields smaller improvements for this task over
all the evaluated corpora. In addition, reranking can re-
ward nodes for which the set of connecting edge sequences
is diverse. Thus, it may prefer a node that is connected to
the source distribution through multiple different connecting
paths to a node that got a higher probability score by the

Baseline Gradient Reranking Combined

D1 0.54 0.63∗ 0.64 0.67
D2 0.66 0.68 0.67 0.68
D3 0.47 0.46 0.63∗+ 0.70∗+

T1 0.51 0.62∗ 0.72∗+ 0.77∗+

T2 0.65 0.76∗ 0.83∗ 0.84∗+

T3 0.65 0.67∗ 0.75∗ 0.74∗

A1 0.62 0.79 0.58 0.73

Table 3: Results (MAP)

graph walk due to a single or fewer connecting paths. This
property appears to be beneficial in the explored datasets.
The source count feature makes a similar contribution in the
person-disambiguation task, where the initial query includes
multiple nodes, and the relevant nodes are often those that
are reachable from all of the source nodes.

There are several possible reasons why reranking degraded
performance for the alias finding task. First, the set of n-
gram features derived for this task, for which we applied a
3-step walk, is larger than the set of the features derived for a
walk of 2 steps (that is, here trigrams of edges are considered
as well). A possible solution for a disproportion between a
large feature set size and a relatively small number of train-
ing examples is feature selection. The data we had available
for the Alias task was not sufficient for effectively apply-
ing such a procedure. Another possible explanation is that
the Meetings corpus is small and not sufficiently dense to
demonstrate consistent trends over sets of connecting paths.
We conjecture that a larger corpus and as well as a larger
training set would be beneficial in this case for reranking.

Finally, it is observed from the results that the combina-
tion of local tuning and reranking gives the best performance
in the majority of benchmarks, probably due to the reduced
noise level of the initial ranking. (Although, the combined
approach was not found to be significantly different from
reranking.)

6. CONCLUSION
We discussed two approaches for improving graph walks

performance, for the general task of searching for entities
that demonstrate a particular extended semantic similarity
to a given distribution in an entity-relation graph. In par-
ticular, we considered a hill-climbing error backpropagation
method, which considers local information; and discrimina-
tive reranking that uses global graph walk features, includ-
ing sequences of the traversed edge types. Empirical evalua-
tion using real-world data and multiple corpora showed that
while the relations explicitly represented in the graph are
of first order, considering global features using the rerank-
ing approach is often advantageous, as global features can
capture high-level properties of the set of connecting paths
between entities, which are informative for various tasks.
We believe that the graph scheme and tasks considered in
this paper are representative of many real-world problems.
The empirical evaluation conducted in this work thus sug-
gests that the reranking approach may be preferable to a
weight tuning approach in optimizing ranking performance
in similar settings. Furthermore, we have shown that the
combination of the two learning approaches usually leads to
further improvements.

In the future we would like to address scalability issues of
the reranking method. In particular, the suggested feature
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Figure 2: Results: Recall at Rank K

sets that capture n-gram sequences of edge types within the
set of connecting paths grow exponentially with the length of
the paths. We believe that feature selection may resolve this
issue. Otherwise, there may be other feature templates that
capture relevant global information in such settings more
efficiently. The space of possible features that can describe
the semantic relevancy of a graph node in terms of the graph
walk has yet to be explored. Features can be suggested
that capture pehnomena relevant for a particular type of
semnatic similarity sought (for example, path symmetry),
or that add information relevant for a particular domain.
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