
Improving Graph-Walk Based Similarity with

Reranking: Case Studies for Personal Information

Management

EINAT MINKOV

University of Haifa

and

WILLIAM W. COHEN

Carnegie Mellon University

Relational or semi-structured data is naturally represented by a graph, where nodes denote entities
and directed typed edges represent the relations between them. Such graphs are heterogeneous in
the sense that they describe different types of objects and links. We represent personal information

as a graph that includes messages, terms, persons, dates and other object types, and relations like
sent-to and has-term. Given the graph, we apply finite random graph walks to induce a measure
of entity similarity, which can be viewed as a tool for performing search in the graph. Experiments
conducted using personal email collections derived from the Enron corpus and other corpora show

how the different tasks of alias finding, threading and person name disambiguation can be all
addressed as search queries in this framework, where the graph-walk based similarity metric is
preferable to alternative approaches, and further improvements are achieved with learning. While
researchers have suggested to tune edge weight parameters to optimize the graph walk performance

per task, we apply reranking to improve the graph walk results, using features that describe high-
level information such as the paths traversed in the walk. High performance, together with
practical run times, suggest that the described framework is a useful search system in the PIM

domain, as well as in other semi-structured domains.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: retrieval
models, search process; I.2.6 [Learning]: Connectionism and neural nets

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Graph walk, learning, semi-structured data, PIM

1. INTRODUCTION

The canonical problem of ad hoc information retrieval (IR) is often formulated as
the task of finding documents “similar to” a text query. Traditionally, this task is
performed by clever application of textual similarity metrics. In modern settings,

Einat Minkov’s address: Dep. of Management Information Systems, Faculty of Social Sciences,

University of Haifa, Haifa, Israel, 31905.
William Cohen’s address: Machine Learning department, Carnegie Mellon University, Pittsburgh
PA, USA 15213.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2001 ACM 1529-3785/2001/0700-0111 $5.00

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001, Pages 111–160.

112 · Minkov and Cohen

however, documents are usually not isolated objects: instead, they are frequently
connected to other objects, via hyperlinks, meta-data or relational structure. Con-
sider a collection of email messages: while email messages are textual objects, the
email headers include structural data relating to the social network involved, tem-
poral information, etc. Other natural examples are XML documents [Guo et al.
2003] and the Semantic Web [Anyanwu et al. 2005].
Structured and semi-structured data can be naturally represented as a directed

labeled graph, where nodes denote entities and typed edges represent the relations
between them. While text documents may be represented by a bipartite graph
that includes documents and term objects, structured data corresponds to richer,
heterogeneous graphs that include multiple types of nodes and relations. For ex-
ample, in the personal information management (PIM) domain, the graph nodes
may represent messages and terms, as well as persons, email addresses, dates and
other entity types. The graph edges in this domain denote inter-entity relations like
has-term, between a message and the terms it contains; sent-to, between a message
and its recipient person entities, and so on.
Figure 1 shows a small fraction of the email corpus of an Enron employee, rep-

resented as a graph.1 The graph encodes the information that message “Msg.259”
was sent on date “April 4 ’01” from email address ginger.dernehl@enron.com
to the email addresses of fiona.stuart@enron.com, michael.brown@enron.com and
john.sherriff@enron.com; that this message includes the terms “memo”, “organize”
and “announce” in its subject line, and additional terms, including “review”, in
its content. This structured information was obtained directly from the corpus by
parsing the message’s header fields, as well as its textual body. In the graph, it
is easy to observe that messages “Msg.259” and “Msg.260” have been sent on the
same day, that they share the email address john.sherriff@enron.com as a recipient,
and that they both include the term “memo” in their subject line. In addition, the
graph includes person nodes, which are linked both to the relevant email address
nodes with an alias relation, and to terms that match the person name with a
relation of as-term.2

Similarly, one may add meeting objects to the graph. Assuming that a meeting
entry typically includes a textual description and a list of attendees, it can be linked
in the graph to the corresponding terms, and person or email address nodes.
While traditional IR considers the general task of finding documents relevant

to an information need (defined as a set of terms), there are a variety of other
specialized tasks possible in structured domains like PIM. Table I includes several
PIM tasks that are addressed in this paper. For instance, one may be interested
in finding email aliases, i.e., the set of email addresses used by a specific person;
in this case, the desired output is email addresses, and the person’s name may
be input as terms. Alternatively, one may wish to find email addresses that are
relevant to a given message or a meeting, so that they can be added to the recipient

1The Enron corpus has been made available to the research community [Klimt and Yang 2004].
2In general, an email address and its person name alias may be both specified in the email’s header;
in the Enron corpus, however, there is a direct mapping between the email address identifier and
the employee’s name. In addition, while this does not apply to the data represented in the figure,

it is possible that one person node is an alias of multiple email address nodes.

Adaptive Graph-Walk Based Similarity Measures · 113

Fig. 1. A fraction of the email corpus of Richard Shapiro, an Enron employee, represented as a
directed and typed graph. The graph includes entities of types message, term, date, person and
email address. Inter-entity relations are directed and typed: edges portrayed by thin black arrows

denote has-term relation, wide black arrows – has-subject-term relation, green – on-date relation,
light blue and dark blue arrows represent sent-to and sent-from relations, respectively; grey arrows
denote alias relation between an email address and the person it belongs to, and the red arrows

denote a as-term relation between a person node and the term nodes that constitute the person’s
name. (Some of the nodes, including those denoting Richard Shapiro, have been removed from
the figure for clarity.)

list of the message or meeting invitation, respectively. Another possible task is
person name disambiguation. Assume that an incoming email message includes a
common person name like “Mike”, where it is not obvious who the person that this
name mention refers to is; ideally, it would be possible to find the person in the
corpus that is the correct reference, given the name term and the relevant message.
Finally, one may be interested in searching for messages that are related to a given
message, or more specifically, try to recover a message thread.
In order to address the specialized and typed search PIM tasks described, we will

extend the standard IR model by letting a query be a set of nodes, and the answer
be a set of ”similar” nodes of a specified type. Traditional IR is therefore a special
case in this setting, where the query only consists of term nodes, and the answer
is always documents (messages). A major challenge is to generalize the similarity
measure used in IR to rich typed graph schemes, such as the one portrayed in
Figure 1.
We use a random-walk based similarity measure to perform search in typed

graphs. In particular, we apply finite graph walks following the Personalized PageR-
ank paradigm [Page et al. 1998; Haveliwala 2002]. This type of graph walk and
its variants can be viewed as propagating “similarity” from a start node through

114 · Minkov and Cohen

Task Input Output

Traditional IR terms message

Finding email aliases terms (person’s name) email address

Finding meeting attendees meeting email address

Person name disambiguation term (name mention) + message person

Threading message message

Table I. Example PIM tasks

edges in the graph—incidentally accumulating evidence of similarity over multiple
connecting paths. The resulting similarity metric is used as a tool for performing
search across the graph nodes.
Previously, random graph walks have been used for estimating word dependency

distributions [Toutanova et al. 2004]: in this case, the graph was constructed es-
pecially for this task, and the edges in the graph represented different flavors of
word-to-word similarity. Other researchers have used graph walks over graphs for
query expansion and other applications (e.g., [Xi et al. 2005; Collins-Thompson and
Callan 2005]). In contrast to these works, we consider a general-purpose framework:
rather than construct a special graph to solve a particular problem, we assume a
graph representation that naturally models a semi-structured dataset, so that var-
ious types of queries are performed using the same underlying graph.

Given the rich graph representation and task diversity, we do not expect a single
measure of similarity to be optimal for all query types. We therefore consider learn-
ing as a paradigm for improving the graph-walk based similarity metric for specific
types of information needs. Towards this goal, we assume a supervised setting,
where sample queries and relevance judgments are available for a task of interest.
Previously, researchers have suggested improving graph walk based similarity in
relational graphs by learning edge weights parameters in the graph [Diligenti et al.
2005; Nie et al. 2005; Agarwal et al. 2006]. The assumption underlying this ap-
proach is that for a particular task, some relation types should be favored by the
graph walk over others. We adapt an error backpropagation gradient descent algo-
rithm [Diligenti et al. 2005] for tuning the graph weights using finite graph walks.
In addition, we suggest reranking as an alternative and complementary approach
that learns to re-order the rankings produced by the graph walk process. While the
graph walk similarity measure reflects structural information in the graph, it only
considers local phenomena, being a memoryless process. Reranking, in contrast,
can capture high-level properties of the graph walk. We propose a set of generic
high-level features that describe a target node in terms of the paths traversed from
the query distribution in reaching that node. In addition, task-specific engineered
features can be accommodated in the reranking model.
Experimental results are given for three different PIM tasks— person name dis-

ambiguation, threading and alias finding—and eight corpora, including personal
email collections derived from the public Enron corpus as well as other real email
corpora. We show that the different tasks considered can be addressed as queries
in the graph-based framework, where the graph walk based similarity gives good
results and learning task-specific similarity measures lead to significant gains in
performance. It is demonstrated that incorporating high-level information using

Adaptive Graph-Walk Based Similarity Measures · 115

reranking is highly effective. Overall, weight tuning and reranking are comple-
mentary, where the combination of these learning approaches often yields the best
performance.3

The paper is organized as follows. In Section 2 we provide definitions of the graph
and the graph walk method, as well as the corresponding query language and a
user feedback mechanism. Section 3 formulates the learning settings, and outlines
the weight tuning and reranking learning algorithms. In addition, a generic set of
reranking features is presented, and methods for feature computation are discussed.
In Section 4 we provide a detailed schema for representing email as a graph, and
explain how email-related tasks can be cast as queries. The email corpora that
we experiment with in this research are described in Section 5. The experimental
setup and results on the set of three tasks evaluated are detailed in Section 6.
Additional empirical results that evaluate the sensitivity of the framework to the
parameter settings are included in Section 7. Section 8 discusses our observed
running times and scalability issues. The paper concludes with a review of related
work, conclusions and suggestions for future work.

2. THE FRAMEWORK

We begin with the formulation of the framework, presenting the underlying nota-
tions and definitions. We then follow with a detailed discussion of the framework’s
properties.

2.1 Definitions and Notation

The graph schema and user interface are specified below. The interface consists of
a query language that allows the user to search for similarity between any entities
represented in the graph, where the response provided is in the form of a ranked
list. Another optional component of the user-system interface is user feedback that
includes judgments about which nodes are relevant to a query, for a given task.

2.1.1 The Graph. A graph G =< V,E > consists of a set of nodes V , and a set
of labeled directed edges E. Nodes will be denoted by letters such as x, y, or z,

and we will denote an edge from x to y with label ` as x
`

−→ y. Every node x has
a type, denoted τ(x), and we will assume that there is a fixed set of possible types.
We will assume for convenience that there are no edges from a node to itself (this
assumption can be easily relaxed). We will assume that edge labels determine the

source and target node types: i.e., if x
`

−→ z and w
`

−→ y then τ(w) = τ(x) and
τ(y) = τ(z). However, multiple relations can hold between any particular pair of

node types: for instance, it could be that x
`

−→ y and x
`′

−→ y, where ` 6= `′. Note

3This article is an extension and unification of several conference and workshop publications

[Minkov et al. 2006; Minkov and Cohen 2006; 2007]. The main novel contributions made in
this article include: a detailed presentation of the framework, including illustrative examples and
discussions (Section 2), experimental corpora analysis (Section 5), evaluation of the threading task

against a TF-IDF baseline that considers meta-data (Section 6.2), evaluation of the alias finding
task on two corpora, compared with a single corpus previously (Section 6.3), evaluation of the
framework’s sensitivity to parameter values (Section 7), detailed query processing times, along
with a discussion of scalability (Section 8), and a comprehensive review of related work (Section

9).

116 · Minkov and Cohen

also that edges need not denote functional relations: for a given x and `, there may

be many distinct nodes y such that x
`

−→ y. Finally, for every edge in the graph
there is an edge going in the other direction, denoting an inverse relation. This
implies that the graph is cyclic and highly connected.

Fig. 2. A simple example of the considered graph schema

For example, consider the graph depicted in Figure 2. In the figure, node types
are denoted by the different shapes of a circle, square and hexagon. The edges
have different types as well, denoted by different line styles. Suppose that a circle
represents a node of type person, a square represents an email message, and an
hexagon stands for a term. The dotted edges (e.g., m1 → t1) may then represent a
relation of has-term, pointing from a message node to the terms it contains. (For
simplicity, the edges are marked as bi-directional in the figure; in practice, however,
the inverse relation – e.g., has-term-inverse – is represented by a separate edge in
the opposite direction). Similarly, the dashed edges may represent a relation of
sent-from, directed from an email message node to a person node that is the sender
of that message. As shown in the figure, there may be multiple types of relations
between the same types of nodes. For example, email-messages are connected to
person nodes also over a relation of sent-to. This relation is denoted by solid edges
in the figure.

2.1.2 Query Language. We are interested in inducing a general similarity mea-
sure between the graph nodes.4 We take an information retrieval approach, where
given a query, which is a combination of entities (nodes), a list of entities is returned
to the user, ranked by their similarity to the query. Formally, we define a query
language, as follows.

Definition 1. A query < Vq, τout > includes an initial distribution Vq over
nodes and a desired output type τout , where a response to the query < Vq, τout > is
a ranked list of nodes z of type τout .

Consider the example graph in Figure 2. In the described domain, one may
wish to find persons that are related to a particular term, such as “learning”. The

4We use the words similarity and relatedness interchangeably.

Adaptive Graph-Walk Based Similarity Measures · 117

relevant query in this case would be < Vq = {t2}, τout =‘person’> (where it is
assumed that the term “learning” is represented by the graph node t2).

2.1.3 Tasks and Feedback. Queries can be specified in an ad-hoc fashion by a
user. However, it is reasonable that particular query types, or tasks, will be executed
frequently in a given domain. In order to define a task, let us first define the notion
of a relation in the graph:

Definition 2. A relation denotes a distinct semantic meaning that exists be-
tween a subset of graph nodes V × V .

For example, a graph node of type message may be associated with several other
message nodes in the graph, by virtue of belonging to same thread.5 Alternatively,
a subset of message nodes may be associated to each other semantically due to
discussing the same topic, project, etc. Similarly, an association between term
nodes in the graph and person nodes may describe the semantic relation of “an
expert on”, or some other relation. Since such relations are latent in the email
corpus, they are not explicitly represented in the graph schema. In general, there is
a large range of semantic relations possible, where a query is assumed to correspond
to some relation of interest.
While each individual query seeks a single underlying relation, multiple queries,

specifying different query distribution Vq, may share the motivation of retrieving
nodes associated to the query with the same relation. This leads us to the following
definition of a task.

Definition 3. A task denotes a distinct relation r sought between a query and
the nodes in the graph. Queries Q1 and Q2 are instances of the same task if both
queries are to retrieve nodes of type τout1 = τout2 that are related to Vq1 and Vq2 ,
respectively, with the same relation r.

In other words, we use the term task to describe search in the graph
for a relation that is explicitly specified. Consider the queries < Vq =
{t2 =“learning”}, τout =‘person’> and < Vq = {t3 =“recruiting”}, τout =‘person’>.
These queries may be instances of the same task, where the relation sought r is “an
expert on”. However, queries that specify term nodes and retrieve person entities
may reflect a different flavor of similarity, r′; for example, a user who specifies the
query < Vq = {t1 =“Bill”}, τout =‘person’>, may be interested in retrieving persons
whose nickname is Bill. Additional tasks are detailed in Table I. In our framework,
it is possible to disambiguate the user’s intention by specifying the relevant task
along with a query < Vq, τout >.
We distinguish between different relations in the graph, considering them as

specialized cases of general inter-entity similarity. A key feature of the proposed
framework is that different tasks are performed using the same underlying graph.
If the underlying user intention (task) is not known, then it is expected that a
‘default’ similarity measure will result in useful performance for arbitrary queries.
Nevertheless, we are interested in enhancing the general measure to reflect a par-
ticular similarity flavor of interest, in cases where the underlying task is known. In

5We consider this same-thread relation to be semantic rather than structural, since it may not be

easily derived from the corpus; therefore, it is not represented explicitly in the graph (Figure 1).

118 · Minkov and Cohen

order to support learning of specialized similarity measures per task, we next define
the concept of user feedback.

Definition 4. User Feedback includes the specification of correct (relevant) and
incorrect (irrelevant) graph nodes per query.

Consider the query mentioned above, < Vq = {t =“Bill”}, τout =‘person’>, where
the underlying task is to find nodes in the graph that denote persons who are called
“Bill”. User feedback may specify “William Scherlis” as a correct answer, and
“William Cohen” (who does not use the nickname Bill), as well as other person
nodes, as incorrect responses.
We use user labels, denoting node relevancy for learning task-specific similarity

measures, as well as for evaluating the quality of the rankings produced in response
to a query; a good response includes the relevant nodes at the top of the ranked
list and the irrelevant nodes at lower ranks.
Finally, we notice that a “user” may not be a human being, but a machine

application, which conducts automatic information processing. As we shall see, in
some cases labels can be obtained automatically or semi-automatically.

2.2 Graph Walks

Several graph walk variants may be applied to derive entity similarity in graphs.
We conduct a finite graph walk, where we follow the Personalized PageRank ran-
dom graph walk model, applying it to entity-relation graphs.6 We next introduce
the Personalized PageRank graph walk algorithm. In addition, we define the un-
derlying graph’s edge probabilities, where edge weight parameters, together with
the graph’s topology, determine the probability of transitioning from a given node
to its neighbors at each step of the walk. Finally, we discuss the properties of the
induced graph-walk based similarity measure. Graph walk variants with similar
properties can also be applied in this framework.

2.2.1 Personalized PageRank. We first describe the general and well-known
PageRank model [Page et al. 1998], which derives a measure of entity “impor-
tance”, or “centrality” in a hyperlinked network. PageRank represents Web pages
as nodes in a graph. If there exists a physical hyperlink from page x to page y, then
a corresponding directed edge is added to the graph. This model can be viewed as
a simple associative network, where nodes are of uniform type, and there is a single
type of edges. A Web surfer’s behavior is modeled as follows: given that the surfer
is at node (page) i, then with probability γ ∈ (0, 1) the user will “jump” (reset)
randomly to some page in the network, and with probability (1− γ) the surfer will
move to node j, following an outgoing link from i. That is, a random walk process
is constructed as follows:

Vd+1 = γ[
1

N
]1×N + (1− γ)MVd (1)

where the total number of nodes (pages) is N , andM is a transition matrix, indexed
by nodes. M distributes a node’s probability uniformly among the pages it links

6Another graph walk variant that has been used in similar settings is Lazy graph walks [Minkov

et al. 2006].

Adaptive Graph-Walk Based Similarity Measures · 119

to, i.e.

Mij =

{ 1
|ch(i)| if there is an edge from i to j

0 otherwise
(2)

where ch(i) is the set of nodes that have an outgoing link from i (the children of
i).7 The damping factor γ prevents the chain from getting stuck in small loops
[Brin and Page 1998]. This means that Equation 1 is ergodic and has a unique
stationary distribution V∗ (i.e., Vd converges to V∗). The PageRank score of node
j, pj , is defined as its probability in the stationary state V∗, giving a measure of
document centrality in the network.
The idea of biasing the PageRank computation for the purpose of personalization

was first suggested in [Page et al. 1998]. Other researchers have explored ways to
bias the model to preserve an association between rankings and user preferences,
or a query. The Intelligent Surfer model [Richardson and Domingos 2002], for
example, suggests that the surfer only follows links to pages whose content has been
deemed relevant to a given query. In the ‘topic-sensitive’ search [Haveliwala 2002],
the surfer is biased to reset his or her search uniformly over pages pre-categorized
as relevant to a given topic.
The Personalized PageRank is defined as follows [Page et al. 1998]:

Vd+1 = γV0 + (1− γ)MVd (3)

where V0 denotes a distribution of interest over the graph nodes. The Personalized
PageRank scores are derived from the corresponding stationary state distribution.
This formula of graph walk generalizes PageRank (Equation 1), in which V0 is
uniform over all of the graph nodes. In our settings, V0 corresponds to the query
distribution Vq.
It has been shown that the Personalized PageRank score for a target node z and

a query node x equals a summation over all the paths between x and z (including
cyclic paths, and paths that cross z multiple times), where paths are weighted by
their probability [Jeh and Widom 2003; Fogaras et al. 2005; Cohen and Minkov
2006]. Specifically, the Personalized PageRank probability Q(z|x) of reaching z in
an infinitely-long walk from x is also defined as:

Q(z|x) = γ

∞
∑

d=1

(1− γ)dQ(x
=d
−→ z) (4)

where Q(x
=d
−→ z) is the probability of moving from x to z in exactly d steps, defined

recursively as:

Q(x
=d
−→ z) =

∑

y

Pr(x −→ y) ·Q(y
=d−1
−→ z) (5)

and

Q(x
=0
−→ z) = 1, ifx = z. (6)

7Pages with no outbound links are assumed to link out to all other pages in the collection.

120 · Minkov and Cohen

The graph walk distributes probability mass from a start distribution over nodes
through edges in the graph—incidentally accumulating evidence of similarity over
multiple connecting paths. As shown by Equation 4, due to the reset probability
γ, the paths between x and a destination node z are weighted exponentially lower
as their length increases. In practice, this means that the infinite graph walk
probabilities can be effectively approximated by limiting the graph walk to a finite
number of steps k [Toutanova et al. 2004; Fogaras et al. 2005; Cohen and Minkov
2006].

2.2.2 Edge Weight Parameters. The graph walk process (and accordingly, the
similarity measure generated) is determined by the graph’s topology.8 In addition,
the walk on the graph is controlled by a set of edge weight parameters Θ. This
means that throughout the graph, edges of type ` are assigned a typical edge weight
θ` ∈ Θ. Let Lxy denote the set of edge types of the outgoing edges from x to y. The
probability of reaching node y from node x over a single time step (corresponding
to the transition probability Mx,y) is defined as:

Pr(x −→ y) =

∑

`∈Lxy
θ`

∑

y′∈ch(x)

∑

`′∈Lxy′
θ`′

(7)

where ch(x) denotes the set of children of x (the nodes reachable from x in one
time step). That is, the probability of reaching node y from x is defined as the
proportion of total edge weights from x to y out of the total outgoing weight from
the parent x.9

Recalling the example graph in Figure 2, the set of edges correspond-
ing to this graph includes six types, namely L = { has-term, has-term-
inverse, sent-from, sent-from-inverse, sent-to, sent-to-inverse }. The set
of parameters Θ corresponding to this graph includes the weights of these
edges. For example, one arbitrary possible assignment of the parameter val-
ues Θ is the following: {θhas−term=2, θhas−term−inverse = 2, θsent−from =
4, θsent−from−inverse=3, θsent−to=5, θsent−to−inverse=4}.

Given this parameter set, the probability of reaching node t1 from node m1 in a
single step, for example, is computed as follows:

Pr(m1 −→ t1) =
θhas−term

3× θhas−term + θsent−from + 2× θsent−to

= 0.1

The graph edge weights Θ can be set uniformly; randomly; manually, according
to prior beliefs; or using a learning procedure, as discussed in Section 3.2.

2.3 The Framework’s Properties

The Personalized PageRank algorithm, as described above, has several inherent
preferences that determine how probability mass is distributed from a query to the
graph nodes.

8The reset probability γ has negligible effect on the generated rankings; see a related discussion
in Section 7.1.
9The PageRank scheme given in Formula 2 is a special case of Equation 7, where the graph

includes a single edge type, and weights are distributed uniformly.

Adaptive Graph-Walk Based Similarity Measures · 121

As illustrated by Equation 4, Personalized PageRank applies an exponential de-
cay over path length (due to the reset parameter γ). This implies that nodes in the
graph that are connected to a query node over shorter connecting paths are consid-
ered in general more relevant. For example, in the graph described in Figure 2, the
email-message m3 is likely to be considered less similar to the terms Vq = {t1, t2}
compared with m1 or m2, since it is connected to the query nodes via paths of
length 3, whereas the other two messages are associated to the terms with a direct
has-term relation.
According to Equation 4, evidence of similarity is accumulated at each node over

multiple connecting paths. That is, a node that is linked to the query distribution
over a large number of paths will be considered in general more similar to the query
than nodes connected over fewer paths. For example, assume that edge weights
are uniform, and a random graph walk is performed of two steps. In this case, the
person node p1 will be considered more similar to the (uniformly distributed) query
Vq = {t1, t2} compared with p2, since there are three paths connecting the query
nodes to p1:

t1
has−term−inverse−→ m1

sent−to−→ p1

t2
has−term−inverse−→ m1

sent−to−→ p1

t2
has−term−inverse−→ m2

sent−to−→ p1

whereas there are two paths leading to p2:

t1
has−term−inverse−→ m1

sent−from−→ p2

t2
has−term−inverse−→ m1

sent−from−→ p2

The edge weights Θ provide another mechanism for affecting the probability flow
in the graph. For instance, if θsent−from > θsent−to, than p2 may be considered
more similar than p1 to the query Vq = {t1, t2}; otherwise, p1 will be assigned a
higher similarity score.
It is interesting to compare the node weighting scheme in Equation 7 to Inverse

Document Frequency (IDF). Suppose that we restrict ourselves to a bi-partite graph
that includes terms and files and allow only has-term (and has-term-inverse) edges,
as is the case in traditional IR settings. Now consider an initial query distribution,
which is uniform over the two terms “the aardvark”. A one-step graph walk will
result in a distribution V1, which includes file nodes. The common term “the”
will spread its probability mass into small fractions over many file nodes, while the
unusual term “aardvark” will spread its weight over only a few files. Similarly, in our
toy example, the probability mass attributed to m1 over a single time step due to

path t1
has−term−inverse

−→ m1, starting from Vq = {t1, t2} will be doubled compared

with the probability mass transmitted by the path t2
has−term−inverse

−→ m1.

122 · Minkov and Cohen

3. LEARNING

While the graph walk similarity measure has many desired properties, we are inter-
ested in learning specialized measures to optimize performance per task. Next we
outline the learning settings and describe two learning approaches: an algorithm
that learns the edge weights Θ based on local information, which we adapt to finite
graph walks; and reranking, using features that capture global properties of the
graph walk. We propose a set of generic features and discuss their computation.

3.1 Learning Settings

We consider supervised learning settings. That is, it is assumed that labeled ex-
ample queries ei are provided (1 ≤ i ≤ N) for a task (relation) r of interest. Each
example query specifies a different distribution over nodes V i

q , and user feedback is
available that indicates the relevancy of the graph nodes to each example query.

Example labeling scheme. Several labeling schemes have been suggested for learn-
ing to rank graph nodes, including: absolute scores, where target node proba-
bilities are specified [Tsoi et al. 2003]; ordinal information, where ordinal values
are assigned to nodes that represent their relative relevancy to the example query
[Burges et al. 2005]; and pairwise node preferences, sampled from initially ranked
lists [Agarwal et al. 2006]. We consider a binary labeling scheme, where the com-
plete set of nodes that are considered as relevant answers to an example query ei,
denoted as Ri, is provided. (We will assume that graph nodes that are not explic-
itly included in Ri are irrelevant to ei.) This labeling scheme is adequate for well
defined problems, in which a query corresponds to a finite set of “correct answers”,
and other nodes are considered irrelevant.

For instance, consider the task of name alias finding, where given a first name
or a nickname, the goal is to retrieve the relevant person nodes. Example queries
of this task are V 1

q = {term=“Bill”}, V 2
q = {term=“Jason”} and so forth. For the

first example, the user may specify the person node person=“William Scherlis” as
a correct answer; unspecified person nodes will be considered as incorrect answers,
including the node person=”William W. Cohen”, implying that William Cohen is
not referred to by the name Bill.

Initial rankings. Given a graph G, the graph walk parameters (walk length k
and reset probability γ) and initial graph edge weight parameters Θ0, we apply
a graph walk to generate a ranked list of graph nodes for every example query.
The corresponding output ranked list generated per example ei is denoted as l0i .
Henceforth, zij will denote the output node at rank j in a ranked list li, and pzij
will denote the score assigned to zij by the graph walk.

Learning goal. Learning is aimed at improving the initial rankings l0i , such that
the nodes known to be relevant, zij ∈ Ri, are ranked higher than the irrelevant
nodes (jrel < jirrel) for every node pair in the final output rankings li; that is, we
are interested in producing modified lists li, in which the relevant nodes Ri occupy
the top ranks. As is the case with learning in general, it is expected that the learned
models generalize and improve the rankings of new (unlabeled) instances. These
instances may correspond to the same graph that the labeled examples refer to, or
other graphs that adhere to the same graph schema.

Adaptive Graph-Walk Based Similarity Measures · 123

3.2 Edge Weight Tuning: Error BackPropagation

As discussed earlier, the graph edge weight parameters Θ, together with the graph
topology, determine the transition probabilities in the graph (Equation 7), thus
affecting the graph-walk generated similarity scores. The edge weight parameters
reflect the assumption that the types of relations between entities in the graph have
varying degrees of importance in evaluating inter-node relatedness. It is unlikely,
however, that a single set of parameter values Θ will be best for all tasks.
Several methods have been developed that automatically tune the edge weight

parameters in similar settings, where edge weights are parameterized by edge type;
we review these methods in Section 9.2.1. As an example of the weight tuning
methods, we adapt an error backpropagation algorithm [Diligenti et al. 2005] to
our framework of finite graph walks.
The algorithm operates via gradient descent, where the gradient of the weight

of each edge type, θ`, is derived using the paradigm of error backpropagation in
neural networks. The target cost function is a squared error function (typical to
backpropagation [Ripley 1996]), as follows:

E =
1

|S|

∑

z∈S

errz =
1

|S|

∑

z∈S

1

2
(pz − poptz)2 (8)

where errz is the error for a target node z, defined as the squared difference between
the final score assigned to z by the graph walk, pz, and some ideal score according
to the example’s labels, poptz . Specifically, poptz is arbitrarily set to 1 in case that
the node z is known to be a correct answer or 0 otherwise. The error is averaged
over a set of example target nodes S. (The target nodes S can be sampled from
the rankings of multiple queries, including relevant and possibly irrelevant nodes;
in general, about a dozen of example nodes allow efficient learning in this paradigm
for the tasks that we consider in this paper.)
The cost function is minimized by gradient descent with respect to every edge

weight θ`′ , using the update rule:

θt+1
`′ = θt`′ − η

∂Et

∂θt`′
= θt`′ − η

1

|S|

∑

z∈S

∂errtz
∂θt`′

(9)

where t is the iteration index. The derivative of the error with respect to θ`′ is
computed as the summation over each of the graph walk’s time steps, where the
final error is propagated backward, weighted by the relative contribution of every
intermediate node to the final node score. Specifically, for every target node z,
the full set of paths that are traversed in reaching z from the query distribution
Vq can be recovered by a path unfolding procedure, common in neural networks
(e.g., [Diligenti et al. 2005]). (We find the connecting paths up to length k using
a concurrent walk from the query nodes and z, up to a meeting point.) Given the
set of connecting paths, the derivative of the error ez is computed as follows:

∂errz

∂θ`′
= (pz − p

opt
z)

k−1∑

d=0

∑

y∈Uz(d+1)

P (y, d+ 1 → z, k) · ∂py(d+ 1)

∂θ`′
(10)

where k is the total number of walk steps, py(d+ 1) is the probability assigned to
node y by the graph walk after d+ 1 steps, and Uz(d+ 1) denotes the set of graph

124 · Minkov and Cohen

nodes for which this probability is positive (i.e., the set of nodes that have been
reached by step d + 1); P (y, d + 1 → z, k) is the total probability of reaching the
target node z at the end of the walk (after k steps) starting from y at step d+ 1.
The derivative of the probability score of each intermediate node y with respect

to θ`′ is computed based on the probability mass attributed to y by its parents,
pa(y), as specified in Equation 7. Explicitly, the derivative is as follows.

∂py(d+ 1)

∂θ`′
=

∑

x∈pa(y)

px(d) ·

∂

∑
`∈Lxy

θ`
∑

y′∈ch(x)

∑
`′∈L

xy′
θ`′

∂θ`′

=
∑

x∈pa(y)

px(d) ·
C(`′, Lxy)Ox − C(`′, Lxy′)θ`

O2
x

(11)

where we use the abbreviation Ox for the total outgoing weight from node x,
i.e. Ox =

∑

y′∈ch(x)

∑

`′∈Lxy′
θ`′ , C(`′, Lxy) denotes the count of edge type `′

in the set of connecting paths Lxy, and ch(x) denotes the set of nodes that have an
incoming edge from x.
The target function is not convex, and it is possible that the gradient descent

procedure result in local minima [McInerney et al. 1989]. Common techniques to
overcome this pitfall include executing multiple trials, using different initialization
parameters (Θ0, here), or simulated annealing. Given the cost function and the
gradient, it is also possible to apply an optimization package such as L-BFGS
[Nocedal and Wright 1999].
The gradient descent process involves re-computing the ranked list (by executing

the graph walk) in every iteration. The described weight tuning procedure may
therefore be time consuming. (The learning time varies across datasets; in practice,
the processing time per iteration shortens drastically with caching.) As we will
show, relatively few example nodes (S) give good performance [Diligenti et al. 2005].
Most importantly, however, once the set of weights is learned for a given task, it can
be readily applied to new queries that are instances of that task, simply by setting
the graph edge weight parameters to the learned weights Θ∗ and performing the
graph walk. That is, weight tuning involves no additional cost in responding to a
query, compared to the basic graph walks.

3.3 Reranking

An alternative approach for improving graph walk performance is learning to re-
order an initial ranking. Reranking has been used in the past for meta-search
[Cohen et al. 1999] and also for several natural-language related tasks (e.g., [Collins
and Koo 2005; Collins 2002]). Typically, the ranked list of candidates is generated
using local search methods, whereas reranking can incorporate features which rep-
resent global phenomena that was not captured by the local model. Such high-level
information is often useful in discriminating between the top ranked candidates.10

For example, discriminative reranking has improved the state-of-the-art results of

10Due to cost considerations, reranking is typically applied to the top K candidates of the initially

ranked list.

Adaptive Graph-Walk Based Similarity Measures · 125

syntactic parsing, using sentence-level features to describe the high-probability can-
didate parse trees [Collins and Koo 2005; Charniak and Johnson 2005].
We apply discriminative reranking to learn to better rank graph nodes. Unlike

weight tuning, reranking allows one to consider global properties of the graph-walk
based similarity measure. In particular, we will use generic features that describe
the paths traversed in the graph walk from the query distribution to a target node.
Next we give an overview of the reranking model. We then propose a generic

set of reranking features that describe a ranked node using properties of the paths
traversed to reach that node and discuss the computation of these features.

3.3.1 Reranking Overview. The reranking model represents each output node
zij (candidate) as features, using m pre-defined feature functions f1, . . . , fm. The
goal in learning a reranking function is to maximize the margin between the candi-
date that is known to be the best answer and the other candidates. The reranking
problem can thus be reduced to a classification problem by using pairwise samples
[Shen and Joshi 2005]. Several algorithms have been used for reranking, including
the Perceptron algorithm and its variants [Collins and Koo 2005; Shen and Joshi
2005] and Support Vector Machines [Shen and Joshi 2003]. We next describe a
boosting approach, due to Collins and Koo [2005].
In this approach, the ranking function for node zij is defined as:

F (zij , ᾱ) = α0log(pzij) +

U
∑

u=1

αufu(zij) (12)

where ᾱ is a vector of real-valued parameters. This linear function assigns node
scores, F (zij , ᾱ), which are a weighted summation of the node’s feature values.
As shown, this function considers also pzij , the probability assigned to zij by the
initial ranker. Given an initially ranked list of a new test example, it is re-ordered
by F (zij , ᾱ).
To learn the parameter weights ᾱ, the algorithm minimizes the following expo-

nential loss function on the training data:

ExpLoss(ᾱ) =
∑

i

li
∑

j=2

e−(F (zi1,ᾱ)−F (zij ,ᾱ)) (13)

where zi1 is, without loss of generality, a single correct target node.11 The weights
for the function are learned with a boosting-like method, where in each iteration
the feature fu that has the most impact on the loss function is chosen, and αu

is modified. Provided that the features are binary, closed form formulas exist for
calculating the optimal additive parameter updates [Schapire and Singer 1999].12

Other researchers have also applied the voted Perceptron algorithm [Freund and
Schapire 1999] and other Perceptron variants to learn the weights ᾱ of the linear
ranking function [Shen and Joshi 2005; Cohen and Minkov 2006].

11If there are m > 1 target nodes in a ranking, ranking can be split into m examples.
12Please refer to Collins and Koo [2005], Figure 4, for a detailed description of this boosting

algorithm adapted for ranking, which we apply in our experiments.

126 · Minkov and Cohen

Fig. 3. An example sub-graph, showing the connecting paths between the message nodes m1, m2

and m3. The nodes pi and ti in the graph represent persons and terms, respectively.

3.3.2 General Graph-based Reranking Features. Arbitrary features can be used
in the reranking procedure. We suggest several generic, task-independent, features
that describe the output nodes in terms of the paths traversed to reach these nodes.
The features proposed are derived from the set of paths leading to every candidate
node in the ranked list, and describe non-local properties of the graph walk. In
particular, we define the following three types of feature templates:

—Edge label unigrams - features indicating whether a particular edge label ` was
included in the set of paths leading to the output nodes.

—Edge label n-grams - features indicating whether a particular sequence of n edge
labels (n < k) occurred within the set of paths leading to the output nodes.

—Top edge label n-grams - these features are similar to the previous feature type.
However, here the subset of top N paths that had the largest contribution to the
final accumulated score of the output node is considered.

—Source count - In case that the initial distribution defined by the query includes
multiple nodes, this feature indicates the number of different source nodes in the
set of connecting paths leading to the candidate node. This feature models the
assumption that nodes that are reachable from multiple query source nodes are
expected to be relevant to the query.

As an example, consider the sub-graph depicted in Figure 3. Suppose that a
task of interest is threading, where given a message, the goal is to retrieve other
messages that are a response to this message, or otherwise, messages that the
specified message responds to. For the example query Vq = {msg=m1}, the ranked
list generated by a graph walk is likely to include the messages m2 and m3 among
the top ranks, as both nodes are linked to m1 over several short connecting paths.
In order to represent these nodes in terms of the feature templates, we first recover
the set of paths linking the query m1 and each of the target nodes. Overall, the

Adaptive Graph-Walk Based Similarity Measures · 127

feature type m2 m3

edge unigrams sent-from sent-from

sent-from-inv sent-from-inv

has-term has-term

has-term-inv has-term-inv

sent-to

sent-to-inv

edge bigrams has-term.has-term-inv has-term.has-term-inv

sent-from.sent-to-inv sent-from.sent-from-inv

sent-to.sent-from-inv

source-count source-count=1 source-count=1

Table II. Feature representation of nodes m2 and m3, given that the query node is m1, the graph
is as described in Figure 3 and walk length k = 2.

node m2 is reached over three paths according to Figure 3 (the sub-graph shown is
assumed to contain all of the relevant connecting paths, up to length 2), including:

m1
sent−to
−→ p1

sent−from−inv
−→ m2

m1
has−term

−→ t1
has−term−inv

−→ m2

m1
sent−from

−→ p2
sent−to−inv

−→ m2

The node m3 is connected to m1 over three other paths:

m1
sent−from

−→ p2
sent−from−inv

−→ m3

m1
has−term

−→ t2
has−term−inv

−→ m3

m1
has−term

−→ t3
has−term−inv

−→ m3

The representation of the target nodes m2 and m3 as features is shown in Table II.
The edge bigram features represent the types of edge sequences of length 2 traversed
in the paths to each node. In the example, the query distribution includes a single
node, and the source-count feature equals 1 in both cases. The features are given
in a binary form, where features that are not detailed for a given node in the
table are assumed to be false for that node. It is possible to encode quantitative
information by using discretized binary features (e.g., “source-count=1”,“source-
count=2”). In case that real-value features are preferred, feature weights can denote
the count of the edge n-gram sequence in the set of connecting paths; or, feature
weights can denote the probability mass that was transmitted through each edge
type (unigrams) from the query nodes to the target node (see Section 3.3.3).

Intuitively, given the features represented in Table II, message m2 is more likely
to belong to the same thread as m1, compared with m3. The reason for that is
that the edge sequences sent-from.sent-to-inv and sent-to.sent-from-inv are typ-
ical of a response to a message, where the sender becomes the recipient, and
vice-versa. Reranking is therefore expected to assign high weights to the func-
tion parameters αi that correspond to these features. Notice that manipulating
the edge weights cannot capture this long-range phenomena. For instance, the se-
quences sent-from.sent-from-inv or sent-to.sent-to-inv include the same individual
edge types as the sequences above, but are less indicative of a thread, or email

128 · Minkov and Cohen

response, at path level.
The proposed feature templates are general, in the sense that they are applicable

to any task phrased as a query in the graph. In addition to this generic feature set,
the design of additional task-specific features may improve performance further.
In particular, other properties of the set of connecting to the target node may be
represented as features; e.g., features that include information about the nodes
visited in the course of the graph walk may be useful for certain problems. In
addition, external information, which is not included in the graph but considered
relevant for a given task, can also be encoded as features.

3.3.3 Feature computation. In this work, we compute the feature vectors for the
top K nodes retrieved that are to be reranked. This means that feature extraction
takes place after the graph walk is completed. Given the set of connecting paths to
each of the top K nodes, extracted via the path unfolding procedure, it is straight-
forward to derive the feature values (see example in Section 3.3.2).
Alternatively, a number of features describing the set of paths from the query

distribution Vq can be computed in the process of executing the graph walk. An
algorithm for computing the graph walk and the node feature vector representation
concurrently is given elsewhere [Cohen and Minkov 2006]. The cost involved in
computing the feature function on-the-fly is constant per each node visited. This
approximately doubles the cost of the graph walk computation. Maintaining n-
gram edge sequence features, however, requires memory of size |Θ|nT , where T is
the number of nodes traversed in the walk.
Unlike the weighted tuning approach, reranking requires some overhead over the

graph walks–namely, the feature vectors for the top K nodes retrieved need to be
computed as part of query execution, before the reranking function can be applied.
Another concern is that while edge label bigrams correspond to a relatively small
space, higher order n-grams may translate to a large feature space. Given a limited
number of training examples, this may lead to over-fitting. In case that high-order
n-grams are incorporated, it is therefore recommended to apply techniques such as
feature selection or regularization.

4. PERSONAL INFORMATION MANAGEMENT (PIM)

There are several motivations for applying our framework to this domain. First,
personal information, such as email and meeting entries, implicitly represent social
network information, textual content and a timeline. Obviously, there is a close
relationship between these components of information. For example, persons on a
user’s contact list may be related by being part of one social “clique”, as derived by a
simple analysis of header information in an email corpus [Hsiung et al. 2005; Holzer
et al. 2005]. In addition, they can be related via common key words that appear
in the relevant correspondence in the email corpus [McCallum et al. 2005]. Such
inter-personal relatedness is also tied to a time dimension. It is therefore desired
to utilize the multi-facet information that is included in a personal information
resource for relevant applications. Using graph walks, the various aspects involved
in PIM are integrated.
Another motivation for applying our framework to the PIM domain is that the

underlying graph is modular and can be easily extended to include additional entity

Adaptive Graph-Walk Based Similarity Measures · 129

source type edge type target type

message sent-from person

sent-from-email email address

sent-to person

sent-to-email email address

on-date date

has-subject-term term

has-term term

meeting attendee person

attendee-email email address

mtg-on-date date

mtg-has-term term

person sent-from−1 message

sent-to−1 message

attendee−1 meeting

alias email address

as-term term

email address sent-to-email−1 message

sent-from-email−1 message

attendee-email−1 meeting

alias−1 person

is-email−1 term

term has-subject-term−1 message

has-term−1 message

mtg-has-term−1 meeting

is-email email address

as-term−1 person

date on-date−1 message

mtg-on-date−1 meeting

Table III. Email and meetings node and relation types. (Inverse edge types are denoted by a
superscript.)

types of interest. For example, the graph can represent email entities along with
nodes that denote meetings, user activities, folders, and so on.
Finally, personal information involves structured meta-data and text, which are

naturally cast as an entity-relation graph. A direct graph representation of the data
allows performing general queries using the same underlying graph. We will show
that graph walks give good performance for arbitrary queries, and that learning can
further enhance the graph-based similarity measure for a specific task of interest.
In the following, we suggest a schema for representing personal information as a

graph. We then present a set of PIM tasks, and illustrate how these tasks can be
all processed uniformly as queries in our framework.

4.1 PIM Graph Representation

An example graph that includes a small fraction of an authentic email collection is
shown in Figure 1. The corresponding graph schema is detailed in Table III. The
graph representation naturally models an email corpus in the sense that it forms
a direct layout of the information included within the corpus. In other words, the

130 · Minkov and Cohen

entities and relations represented are extracted (parsed) from the email documents,
according to document structure. The graph schema described in Table III was de-
signed manually, and other variations are possible. In our schema, the graph entities
correspond to objects of types messages and terms that are traditionally indexed
in information retrieval, as well as email addresses, persons and dates. Directed
graph edges represent relations like sent-from and sent-to between a message and
the relevant sender or recipient person entities, respectively; similarly, an on-date
edge is added between a message and its issue date. As shown, we distinguish be-
tween has-term and has-subject-term relations in linking between messages and the
terms they contain. In addition, in the suggested schema, a person node is linked
to a relevant email address with an alias relation, and to its constituent token val-
ues with an as-term edge.13 Similarly, terms that are identified as email addresses
are linked by an is-email edge type to the corresponding email address node. In
some of the experiments described in this paper, we have added a string-similarity
edge type, linking email addresses for which the evaluated string similarity score
is higher than a threshold. It is straightforward to add other information types
available; e.g., an inter-person organizational hierarchy, etc.
Given a graph that includes email information, meeting objects can be easily

incorporated to create a graph representing both email and meeting information. In
particular, we assume that a given meeting includes attendees’ information (names,
or email addresses), text describing the meeting (e.g.,“Webmaster mtg, 3305 NS”)
and a date. One can imagine a richer setting where meetings are also linked to
longer texts, files, web URLs, etc. Evidently, related email and meeting corpora
have many entities in common: namely, persons and email addresses, terms and
dates. It is therefore straightforward to join the two information sources. In the
combined graph, meetings are linked via term and date nodes to messages. Many
tasks can benefit from the combined representation of messages and meetings. For
instance, relevant messages (or other potentially included entities, like papers and
presentations), can be retrieved as related background material for a meeting in
this framework. Similarly, the social network information embedded in email can
be enhanced with meeting information.

4.2 PIM Tasks as Queries

The suggested framework can be used as an ad-hoc search platform in the PIM
domain. The data included in the graph may describe personal information, where
the framework can be used to serve one’s personal data search and consolidation
needs; or, the graph may relate to organizational-level data, if available.

Next we present a set of PIM-related tasks. While some of these tasks have been
treated in the past using different approaches, we show that all of the tasks can be
addressed uniformly as queries in our framework. The query representations of the
reviewed tasks are shown in Table I.

13For example, the header line “From: John Smith <jsmith@fake.net>” corresponds to a person
node named “John Smith” and an email address node named “jsmith@fake.net”; the two nodes
are linked in our schema with an alias relation, the person node “John Smith” is linked to the
terms “john” and “smith” with an as term relation, etc. In the general case, however, it is possible

that the sender’s name is not specified.

Adaptive Graph-Walk Based Similarity Measures · 131

4.2.1 Person Name Disambiguation. Consider an email message containing a
common name like “Andrew”. Ideally an intelligent automated mailer would, like a
human user, understand which person “Andrew” refers to, and would rapidly per-
form tasks like retrieving Andrew’s preferred email address or home page. Resolving
the referent of a person name is also an important complement to the ability to
perform named entity recognition for tasks like social network analysis or studies of
social interaction in email. However, while the referent of a name mention is usually
unambiguous to the recipient of the email, it can be non-trivial for an automated
system to find out which “Andrew” is indicated. Automatically determining that
“Andrew” refers to “Andrew Y. Ng” and not “Andrew McCallum” is especially
difficult when an informal nickname is used, or when the mentioned person does
not appear in the email header. This problem can be modeled as the following
search query: given a term that is identified as a name-mention in an email mes-
sage m, retrieve a ranked list of person nodes. Assuming that the identity of the
message m is available, a contextual query can be constructed, which includes both
the name mention and the message node, adding valuable information for name
disambiguation.

4.2.2 Threading. Threading is the problem of retrieving messages that belong
to an email thread given a single message from the thread. As has been pointed out,
users make inconsistent use of the “reply” mechanism, and there are frequent irregu-
larities in the structural information that indicates threads; thus, thread discourse
arguably should be captured using an intelligent approach [Lewis and Knowles
1997]. It has also been suggested that once obtained, thread information can im-
prove message categorization into topical folders [Klimt and Yang 2004].

As threads (and more generally, similar messages) are indicated by multiple types
of relations including text, social network and time information, we expect this task
to benefit from the graph framework. We formulate threading as follows: given an
email file as a query, produce a ranked list of related email files.

4.2.3 Finding Email Aliases. Consider the task of automatic assistance in find-
ing a person’s email address. A typical email user often needs to retrieve email
addresses from his or her address book. In some cases, this requires searching for
a message with the desired information in its header. In the graph walk paradigm,
this information can be retrieved by querying a person’s name, searching for rele-
vant email addresses. The user may provide either a person’s full name, as a set of
terms, or the person’s first or last name only. The latter setting may be faster and
more convenient for an end user, and can be used also when a user is not certain
about the full name.

5. PIM CORPORA

Following is a description of the corpora that we experiment with in this paper.
Management game. This corpus contains email messages collected from a man-

agement course conducted at Carnegie Mellon University in 1997 [Minkov et al.
2005]. In this course, MBA students, organized in teams of four to six members,
ran simulated companies in different market scenarios. The corpus we used in our
experiments includes the emails of all teams over a period of four days.

132 · Minkov and Cohen

Corpus Files Nodes Edges

M.Game 821 6,248 60,316
Sager 1,632 9,753 112,192
Shapiro 978 13,174 169,016
Farmer 2,642 14,082 203,086
Germany 2,651 12,730 158,484
Meetings 346 3,239 27,366
Personal 810 11,136 113,224

Table IV. Corpora statistics, including the number of email files processed, and the total number
of nodes and edges in the corresponding graphs

 0

 1

M.Game

Sager
Shapiro

Farmer
Germany

Meetings

Personal

Message
Person

Term
Date

Email address

 0

 1

M.Game

Sager
Shapiro

Farmer
Germany

Meetings

Personal

has-term
sent-from

alias
has-subj-term
sent-to-email
sent-on-date

as-term
sent-from-email

sent-to

Fig. 4. Distribution of node types (left) and edge type (right) for every corpus

Enron. The Enron corpus is a collection of email messages sent and received
by Enron’s employees, which has been made available to the research community
[Klimt and Yang 2004]. This corpus can be easily segmented by user: in the
experiments, we used the saved email of several different Enron users. Overall, we
consider four such corpora, of the users E. Sager, R. Shapiro, D. Farmer and C.
Germany. To eliminate spam and news postings we removed email files sent from
email addresses with suffix “.com” that are not Enron’s; widely distributed email
files sent from addresses such as “enron.announcement@enron.com”; emails sent
to “all.employees@enron.com” etc. We also removed reply lines (quotes) from all
messages, for the same reason. Finally, duplicate (identical) messages have been
removed from the corpus.
Meetings. This corpus contains a subset of the second author’s email and meeting

files. The email files were all drawn from a “meetings” folder, over a time span of
about six months. In addition, we use all meeting entries (as maintained in a “Palm”
calendar) for the same period. The information available for the meeting files is
their accompanying descriptive notes as well as the meeting date. The meeting
notes typically include one phrase or sentence – usually mentioning relevant person
names, project name, meeting locations etc. The list of attendees per meeting was
not included in the constructed graph.
Personal. This is a collection of email messages sent and received by the first

author.
The statistics of corpora size and their graph representations are detailed in Table

5. For all corpora, terms were Porter-stemmed and stop words were removed. The

Adaptive Graph-Walk Based Similarity Measures · 133

Enron corpora, the Management game and the Personal corpora are of moderate
size—representative, we hope, of an ordinary user’s collection of saved mail. The
Meetings corpus is modest in size. In general, this framework should benefit from
larger corpora that may have a richer link structure.
Figure 5 further shows the distribution of the various node types, as well as the

edge types, for all corpora. (While the inverse edges, e.g. has-term-inverse are not
displayed in the figure, they give the same distribution, by edge symmetry.) As
may be expected, the term nodes and has-term edges are dominant across corpora.

The processed Enron-derived corpora used in the experiments are available from
the first author’s home page. Unfortunately, due to privacy issues, the Management
game, Meetings and Personal corpora can not be distributed.

6. EXPERIMENTS AND RESULTS

In this section we present experimental results for the tasks of person name disam-
biguation, threading and alias finding. For each task we evaluate performance of an
“out of the box” graph walk based similarity measure; in addition, we evaluate the
performance of the specialized similarity metrics, learned using weight tuning and
reranking. The graph-based results are compared against relevant baselines. A key
property of the evaluation is that a non-subjective correct answer set is constructed
per query.
Experimental Datasets. For every corpus and task evaluated, we created a pool

of example queries, specifying the nodes which form the set of correct answers
per query. In all experiments, the labeled examples available per corpus and task
have been split into training, development and test sets. The examples included
in the training set were used for learning. In contrast, the separate test examples
were used for evaluating the rankings generated by the various methods, based on
the annotated example labels. The development set was used for tuning purposes,
allowing to optimize model parameters based on held-out data, where applicable.
The generation process of the labeled examples and dataset statistics are described
in detail later in this section.
Experiments. for every task, we evaluate performance using graph walks with

uniform edge weights Θ, i.e., θ` = θ`′ , ∀` (denoted as Gw:Uniform), and using
graph walks where the edge weights have been tuned (Gw:Learned). In all of the
experiments reported we applied a reset probability γ = 0.5.

In order to avoid local minima in learning the graph edge weights using the
error backpropagation gradient procedure, we initiated the learning process from
five randomly selected set of edge weights, and picked the weights which yielded
the final best results on the training sets.14 Further, in all experiments we applied
reranking on top of the uniformly-weighted graph walk results. That is, we evaluate
reranking as alternative learning method to weight learning. For every example,
the top 50 nodes have been reranked (denoted as ‘Rerank’), where both train and
development set examples have been utilized in training the reranking model.
Evaluation. The graph walk search framework, as well as the baseline methods

that we compare it to, all generate a ranked list of entities. As in traditional
document retrieval settings, every query is mapped to a set of relevant “correct”

14We found that the error function and MAP are well-correlated.

134 · Minkov and Cohen

answers. We evaluate the performance of the various methods in terms of Mean
Average Precision (MAP). To define MAP, we first define the precision at rank k,
prec(k), to be the number of correct entries up to rank k, divided by k—i.e., the
precision of the list up to rank k.15 The non-interpolated average precision of the
ranking is the average of prec(k) for each position ki that holds a correct entry:

AveragePrecision =
1

n

n
∑

i=1

prec(ki)

For example, consider a ranked list of items, where the items at ranks 1,2,5 are
correct and those at ranks 3,4 are not; the non-interpolated average precision of
this ranked list is (1+1+0.6)/3 = 0.87. The Mean Average Precision (MAP) is the
average of the non-interpolated precision scores, over multiple rankings (queries).
Another evaluation measure used is precision at rank 1. This measure denotes the
ratio of queries for which the top ranked entity is a correct answer.16 Conceptu-
ally, this metric gauges the success of the underlying method in specifying a single
answer. Finally, in tasks where a single correct answer is defined per query (aka,
person name disambiguation), we also evaluate performance in terms of mean recall
at rank k. The non-interpolated recall at rank k of a given ranked list is defined to
be 0 for each rank k = 0, ..., ki−1, where ki is the rank that holds the single correct
entry, and 1 for ranks k ≥ ki. The (mean) recall at rank k averages the recall
scores at each rank k across the rankings of multiple queries. Thus, mean recall is
in the range [0,1] at each rank k. Intuitively, this metric estimates the probability
of retrieving the correct answer within the top k ranks. For example, recall at rank
3= 0.7, means that in 70% of the queries, the correct answer appears among the
top 3 ranks of the retrieved lists.
In comparing the performance of different methods for a given dataset, we apply

statistical significance tests, using a two-sided Wilcoxon test [Lehmann 1959], at
significance level of 95%.
We next describe the experimental settings and datasets used for every task.

The results are presented and interpreted in terms of the properties of the various
approaches used.

6.1 Person Name Disambiguation

As described in Section 4.2.1, in the person name disambiguation task we are given
a term, known to refer to a person’s first name. The goal is to retrieve a ranked
list of entities of type τ =person, where the relevant person appears at the top.

6.1.1 Datasets. Unfortunately, building a dataset of labeled queries for the per-
son name disambiguation task is non-trivial, because (if trivial cases are eliminated)
determining a name’s referent is often hard for a human other than the intended
recipient. We evaluate this task using three labeled datasets (Table V).
The Management game corpus has been manually annotated with personal names

[Minkov et al. 2005]. Along with the corpus, which contains correspondence between

15In case that the ranking results include blocks of items with the same score, a node’s rank is
counted as the average rank of the “block”.
16It is possible that there be multiple correct answers per query.

Adaptive Graph-Walk Based Similarity Measures · 135

Train Dev. Test

M.Game 20 25 61
Sager 15 12 35
Shapiro 15 10 35

Table V. Person disambiguation dataset details.

initials nicknames other

M.Game 11.3% 54.7% 34.0%
Sager - 10.2% 89.8%
Shapiro - 15.0% 85.0%

Table VI. Example person name type distribution per dataset.

teams of students participating in a management game, there is a great deal of
information available about the composition of the individual teams, the way the
teams interact, and the full names of the team members. Based on this information,
we manually labeled 106 cases in which single-token names were mentioned in the
body of a message that did not match any person name included in the header.
Overall, the types of name mentions identified include:

—initials – this is common in a message sign-off;

—nicknames – common nicknames (e.g., ”Dave” for ”David”); uncommon nick-
names (e.g., ”Kai” for ”Keiko”); and names that bear no similarity to the formal
full name, such as American names that were adopted by persons with foreign-
language names (e.g., ”Jenny” for ”Qing”).”

—other – other name mentions labeled are regular first names, mentioned in the
body of the email message, while not being included in the sender or recipient
list.

For Enron, two datasets were generated automatically. The datasets correspond
to corpora drawn for two Enron employees: Sager and Shapiro. For these corpora,
we collected name mentions which correspond uniquely to names that are in the
email “Cc” header line; then, to simulate a non-trivial matching task, we eliminated
the collected person name from the email header. We also used a small dictionary
of 16 common American nicknames to identify nicknames that mapped uniquely to
full person names on the “Cc” header line.
Table VI gives the distribution of name mention types for all datasets. For

each dataset, some examples were picked randomly and set aside for training and
development purposes (see Table V).

6.1.2 Baseline: string similarity. As a baseline, we applied a reasonably sophis-
ticated string matching method [Cohen et al. 2003]. Each name mention in question
was matched against all of the person names in the corpus. The similarity score
between the name term and a person name was calculated as the maximal Jaro
similarity score [Cohen et al. 2003] between the term and any single token of the
personal name (ranging between 0 to 1). In addition, we incorporated a nickname
dictionary,17 such that if the name term is a known nickname of the person name,

17We used the same dictionary that was used for dataset generation.

136 · Minkov and Cohen

MAP Prec@1

T T+F T T+F

M.Game

String sim. 0.49 - 0.33 -

Gw: Uniform weights 0.68∗ 0.65∗ 0.53∗ 0.44∗

Gw: Learned weights 0.61∗ 0.67∗ 0.46∗ 0.48∗

Gw: Reranked 0.75∗+ 0.85∗+ 0.66∗+ 0.77∗+

Sager

String sim. 0.68 - 0.39 -

Gw: Uniform weights 0.83∗ 0.67 0.74∗ 0.49

Gw: Learned weights 0.82∗ 0.81+ 0.74∗ 0.71∗+

Gw: Reranked 0.87∗ 0.82+ 0.80∗ 0.71∗+

Shapiro

String sim. 0.61 - 0.39 -

Gw: Uniform weights 0.78∗ 0.61 0.71∗ 0.40

Gw: Learned weights 0.78∗ 0.80∗+ 0.71∗ 0.71∗+

Gw: Reranked 0.76∗ 0.78∗+ 0.69∗ 0.69∗+

Table VII. Person name disambiguation results: MAP and precision at rank 1. The columns
denoted as “T” give results for queries including the relevant term node, and the “T+F” columns
refer to queries that include both term and file information; the ∗ sign denotes results that are
statistically significantly better (in MAP) than the baseline (String sim.), and the + sign marks

results that are significantly better than graph walk using uniform weights (Gw: Uniform).

the similarity score of that pair is set to 1.
The results are given in Table VII, listing mean average precision and precision at

the top rank. In addition, Figure 5 shows the average recall at every rank down to
rank 10. As shown, the string similarity method is effective overall. Its performance
is lower on the Management game dataset. Recall that the Management game cor-
pus includes nicknames that have no literal resemblance to the person’s name –
these cases are not handled well by the string similarity approach. The Enron
datasets, on the other hand, were generated automatically using lexical similarity
information, and can therefore be more easily resolved using lexical similarity mea-
sures. The reason for the imperfect performance of the string similarity approach
across all corpora, however, is the presence of ambiguous instances, e.g., common
names like “Dave” or “Andy”. In these cases string similarity matches the name
mentions with multiple people with equal strength. This results in lower recall at
the top ranks.

6.1.3 Graph walks. We performed two variants of graph walk, corresponding to
different methods of forming the query distribution Vq. In the first variant, Vq is
concentrated on the term representing the name mention. In the other graph walk
variant, Vq is a uniform distribution including the name term and the node denoting
the message in which the name mention appeared. In both cases, the length of the
graph walks has been set to 2.
In the first graph walk variant, where the query includes the name term only,

the name term propagates its weight to the messages in which it appears; then,
probability mass is further propagated to person nodes which co-occur with these

Adaptive Graph-Walk Based Similarity Measures · 137

Management game

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

Rank
Sager

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

Rank
Shapiro

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

Rank

String match
Gw:Uniform(T)

Gw:Uniform(FT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

Rank

String match
Gw:Uniform
Gw:Learned

Rerank

Fig. 5. Person name disambiguation test results: Recall at the top 10 ranks,
for baseline and plain graph walk, where the query includes a term only
(Gw:Uniform(T)), or term and file (denoted as Gw:Uniform(T+F)) (left); and for
all methods using contextual queries (T+F) (right).

138 · Minkov and Cohen

files. Note that in our graph schema there is a direct edge between terms to person
names that include these terms (via the as-term-inverse relation), so that person
nodes may receive weight via this path as well. The columns labeled “T” in Table
VII give the results of the graph walk from the term probability vector in terms of
mean average precision and precision at the top rank, and Figure 5 (left column,
Gw:Uniform(T)) shows recall at each rank, down to rank 10. As shown by the
results, the graph walk performance is preferable to string matching. For example,
precision at the top rank is 52.5% and 32.5% on the management game dataset
using the graph walk and string matching, respectively. More drastic improvements
in accuracy are observed for the Enron corpora. The graph walks results are signif-
icantly better than string matching in terms of mean average precision. However, a
graph walk originating from the term node only does not handle ambiguous terms
as well as one would like, as the query does not include any information of the
context in which the name occurred: this means that the top-ranked answer for
ambiguous name terms (e.g., “Tom”) will always be the same person node, where
well-connected nodes are assigned higher weight by the graph walk. (For instance,
“Tom Mitchell” may be ranked as the top person node per all of the mentions of
the name “Tom” in the corpus, due to high connectivity of this node in the graph.)
We found that adding the message node representing the message in which the

name mention appeared to Vq provides context useful for resolving ambiguous in-
stances – this means that the correct person whose name is “Tom” is in general
ranked higher than other persons with the same name in response to these con-
textual queries. Indeed, as shown in Figure 5 (left part, Gw:Uniform(T+F)), this
search yields recall improvements compared to queries that include the name term
only, leading to nearly perfect recall at rank 10. On the other hand, adding the
message node results in attribution of probability score to nodes that link to the
message node but not to the term node. Adding the file node to the query therefore
adds noise to the output ranking. This is reflected in the lower MAP and precision
at top rank evaluation scores. This shortcoming will be addressed with learning.

6.1.4 Learning. We learn task-specific graph edge weights Θ∗ using the error
backpropagation method (denoted as Gw:Learned). Edge weight learning results in
comparable performance to the graph walks using uniform weights for the queries
including the term node only (T), across datasets. However, learning the graph
edge weights significantly improves performance for the contextual search (T+F)
for the two Enron corpora. As described earlier, the Enron datasets were created
using an automatic procedure. We conjecture that the difference in weight learn-
ing performance between the management game and Enron corpora is due to the
difference in name mention distributions (and consequently, due to lower variance
in the observed connectivity patterns in the Enron datasets).
In reranking, we apply the edge bigram and source count features, as described

in Section 3.3.2. In addition, we form string similarity features, which indicate
whether the query term is a nickname of the candidate person name retrieved
(using the available small nicknames dictionary); and whether the Jaro similarity
score between the term and the person name is above 0.8. This feature contains
similar information to that used by the baseline ranking system.

As shown in Table VII, reranking substantially improves performance, especially

Adaptive Graph-Walk Based Similarity Measures · 139

Train Dev. Test

M.Game 20 25 80
Farmer 22 23 93
Germany 24 21 42

Table VIII. Threading dataset details.

for the contextual graph walk (see Figure 5). Indeed, the “noisy” nodes that were
ranked at the top of the list retrieved due to their association to the message node
but not to the term node included in the query, are demoted in the reranking
process. In particular, high weights were assigned in the experiments to the string
similarity feature and to the source count feature. The string similarity feature
scores higher person nodes that resemble the name mention, and the source count
feature favors person nodes that are linked both to the term and message nodes
that comprise the query.
Overall, reranking gives the best results for two of the three datasets, includ-

ing the challenging management game dataset. In the contextual search setting,
reranking results are significantly better than the base graph walks with uniform
weights for all datasets.

6.1.5 Other Results. Recently, specialized learning models have been suggested
for the task of person name disambiguation in email collections that yield good
performance. Specifically, a generative model [Elsayed et al. 2008] was reported
to produce MAP of 0.91 and 0.91, and precision at the top rank of 0.86 and 0.88
on the Sager and Shapiro datasets, respectively. While these results are superior
to ours, the graph walk based approach is more general. A detailed discussion of
this and other work related to the person name disambiguation task is included in
Section 9.3.1.

6.2 Threading

In the thread recovery task, as introduced in Section 4.2, we are interested in
retrieving messages that are adjacent to a given message in a thread (i.e., both a
direct ’parent’ and direct ’child’ messages are considered to be correct responses).
We consider this task as a proxy to the task of finding generally related messages,
as it is reasonable to assume that adjacent messages in a thread are most related
to each other in a corpus.

6.2.1 Datasets. We created three datasets for the evaluation of the threading
task, using the management game corpus and two Enron corpora. (Here we use the
available corpora of two other Enron employees, Farmer and Germany.) Statistics
about the constructed datasets are given in Table VIII. For each message including
the reply prefix “Re:”, its parent was identified using the quoted subject line and
the time stamp.18 We consider the immediate parent and child of the given file to
be “correct” answers. About 10-20% of the query messages have both parent and
child messages included in the corpus, otherwise only one message in the corpus is

18We manually checked about 25% of the identified message pairs, and found that in very few
cases the reply mechanism was used for forwarding a message, or for changing the thread’s topic

to a distantly related matter; overall, less than 5% of the sampled pairs were such exceptions.

140 · Minkov and Cohen

header
√ √ √ √ √ √ √ √

body
√ √ √

-
√ √ √

-
subject

√ √
- -

√ √
- -

reply lines
√

- - -
√

- - -

MAP Prec@1

M.Game

TF-IDF 0.63 0.58 0.40 0.42 0.52 0.42 0.26 0.18

Gw: Uniform weights 0.59 0.53 0.36 0.36 0.46 0.35 0.20 0.22

Gw: Learned weights 0.68+ 0.59 0.44+ 0.43+ 0.59+ 0.47 0.31+ 0.37∗+

Gw: Reranked 0.77∗+ 0.73∗+ 0.59∗+ 0.51∗+ 0.68+ 0.62+ 0.44+ 0.34∗

Germany

TF-IDF - 0.56 0.40 0.42 - 0.34 0.22 0.24

Gw: Uniform weights - 0.55 0.49 0.44 - 0.39 0.34 0.27

Gw: Learned weights - 0.55 0.51 0.44 - 0.39 0.37 0.27

Gw: Reranked - 0.72+ 0.65∗+ 0.64∗+ - 0.56+ 0.51∗ 0.51∗+

Farmer

TF-IDF - 0.77 0.46 0.55 - 0.65 0.33 0.39

Gw: Uniform weights - 0.65 0.53 0.50 - 0.48 0.40 0.41

Gw: Learned weights - 0.72+ 0.57∗+ 0.50 - 0.61+ 0.46 0.41

Gw: Reranked - 0.83+ 0.65∗+ 0.61+ - 0.70+ 0.56∗+ 0.52

Table IX. Threading Results: MAP and precision at rank 1. The ∗ sign denotes results that are
significantly better (in MAP) than the TF-IDF baseline; and the + sign denotes results that are
significantly better than graph walks using uniform weights (Gw:Uniform). Four configurations
are included, where email components are gradually removed (as detailed in the header by the

checkmarks), and the best result for each configuration is marked in boldface.

defined as a correct answer.
We created several versions of the data, where we varied the amount of message

details that are available. More specifically, we distinguish between the following
information types: the email header, including sender, recipients and date; the body,
i.e., the textual content of an email, excluding any quoted reply lines or attachments
from previous messages; reply lines, i.e., quoted lines from previous messages; and
the subject, i.e., the content of the subject line. We compared several combina-
tions of these components, in which information is gradually eliminated. First,
we included all of the information available in the graph representation. We then
removed reply lines if applicable, and eliminated further subject line information;
finally, we removed the content of the messages. Of particular interest is the task
which considers header and body information alone (without reply lines and sub-
ject lines), since it excludes thread-specific clues, and can therefore be viewed as a
proxy for the more general task of finding related messages.

6.2.2 Baseline: TF-IDF. As a baseline approach we apply a vector space model,
in which a message is represented as a TF-IDF weighted vector of terms, and an
inter-message similarity score is defined as the cosine similarity of their vectors.
Our TF-IDF vector representation includes both message content and header. In
order to represent message structure in the vector space, we represent words that
appear in the header both as general and field-specific terms; for example, if the

Adaptive Graph-Walk Based Similarity Measures · 141

word “meet” appears in the subject line, the general term “meet” and a field-
specific term “subject.meet” are added to the underlying message vector. Overall,
in addition to general terms, the specialized term types represented include subject,
person (corresponding to all tokens that appear in either the sender of recipient
fields), and date.19

The TF-IDF weighting scheme used is the following:

wi,j = tfij · idfi = tfij · log2(
N

dfi
) (14)

where N is the total number of files, dfi is the count of messages in which the term
i appears, and tfij is the count of term i mentions in message j.
The results, detailed in terms of MAP and precision at the top rank (Table IX),

show that this approach performs reasonably well. As one might expect, remov-
ing information, in particular the subject and reply lines, degrades performance
substantially.

6.2.3 Graph walks. To formulate this problem in the graph model, we let Vq

assign probability 1 to the message node that corresponds to the focus message file,
and let τout = “message”. Graph walks of length 2 were applied.
The results show that the graph walk using uniform weights and the TF-IDF

method give comparable performance. TF-IDF performance is slightly better when
identical chunks of text, such as subject lines, are present in the query message and
the adjacent messages in a thread (although, the difference in performance is not
statistically significant). The results given header and body text information only
are mixed. According to these results, processing email message similarity as semi-
structured data using the graph-walk approach is comparable to using TF-IDF,
where message structure is represented in the vector space.

6.2.4 Learning. Learning the graph edge weights results in (often significantly)
improved performance across corpora, as shown in Table IX. High weights were
assigned to the has-subject-term edge type (and its inverse), where applicable; and
to the edges sent-from and sent-to, in all of the experiment’s configurations.
Reranking the graph walk output yields the best results out of the considered

methods. In all of the experiments, the results of the graph walk with reranking are
significantly better than the TF-IDF baseline, as well as better than the graph walks
with uniform weights. The MAP result of the setting in which the least information
is available, namely header information only, is impressive: with reranking, MAP
is larger than 0.5 on all datasets.
Features that were assigned high weight by the learner included edge type bigrams

such as:

message
sent−from−→ person

sent−to−1

−→ message

message
has−term/has−subj−term−→ term

has−term/has−subj−term−1

−→ message

message
on−date−→ date

on−date−1

−→ message

19In earlier work, we used TF-IDF representation that ignored data structure [Minkov et al. 2006];

adding meta-data representation improves the TF-IDF similarity measure.

142 · Minkov and Cohen

Train Dev. Test

Personal 9 8 26
Meetings 8 - 6

Table X. Alias finding dataset details.

These paths are indeed characteristic of a thread: e.g., the sender of a message
is likely to become a recipient of a reply message, there is high temporal proximity,
and there is some textual overlap between messages in a thread.

Note that while such sequences of relations can be readily identified as impor-
tant in the graph framework, they cannot be readily modeled in the vector space
representation. Sequential processes exist also for other email-related phenomena,
e.g., workflows and social interaction [Carvalho and Cohen 2005]. We believe that
learning using high-level features that model relation sequences will be beneficial
in those settings as well.

6.3 Alias Finding

The task of alias finding is defined as the retrieval of the full set of email addresses
pertaining to an individual (or a mailing-group). The query in this case may corre-
spond to a person node; or, in our experiments it consists of a person’s first name,
represented as a term.20 While a given first name may be ambiguous, we assume
that the query is targeted at a specific person, and only consider the email addresses
that belong to that person as correct. We assume that given a ranked list, the user
can apply additional knowledge (about the person’s affiliations, email domain etc.)
to further select the relevant addresses. That is, we examine a setting that helps
the user recall the set of relevant email addresses.

6.3.1 Datasets. We evaluate the task of alias finding using the Meetings and
Personal corpora. The details of the datasets of labeled examples used are given
in Table X. For each corpus a dataset has been created using manually labeled
lists of email address aliases per person. All of the examples considered refer to
individual users (as opposed to mailing lists) that have two to five email addresses.
In the experiments, we require the full set of email addresses to be retrieved given
the person’s first name.

6.3.2 Baseline: String matching. As a baseline, we use the string matching
approach described earlier (Section 6.1.2), where similarity is computed between
the query term and all of the email addresses known in the corpus. The results of
applying string matching are given in Table XI in terms of MAP and precision at
rank 1. String matching is successful in identifying email addresses that are similar
to the person’s first name. There are, however, email addresses that are similar to
a last name only, or that are not similar to neither the person’s first or last name.
Such instances bound the recall of this approach.

6.3.3 Graph walks. In addition to the previously described edge types (Table
III), we add here to the graph schema links that denote string similarity between

20Elsewhere, the settings in which the query included the person’s full name represented as terms

proved to be an easier problem [Minkov and Cohen 2006].

Adaptive Graph-Walk Based Similarity Measures · 143

MAP Prec@1

Meetings

String similarity 0.55 0.67

Gw: Uniform weights 0.61 0.83

Gw: Learned weights 0.55 0.67

Gw: Reranked 0.59 0.83

Personal

String similarity 0.54 0.69

Gw: Uniform weights 0.72 0.77

Gw: Learned weights 0.73 0.77

Gw: Reranked 0.63 0.85

Table XI. Alias Finding Results

email address nodes. Specifically, email address pairs for which the Jaro similarity
score is higher than a threshold of 0.8 are linked by two string similarity sym-
metrical directed edges. In general, graph walks are expected to be effective in
realizing co-occurrence information and retrieving frequently used email address
nodes. However, rarely used email addresses may be harder to find using graph
walks, due to lack of co-occurrence information. Incorporating string matching
links into the graph should therefore increase the graph walk recall.

We applied graph walks of k = 3 steps. As shown in Table XI, the performance
of the graph walk is preferable to string matching on both corpora. It results
in MAP of 0.61 and 0.72 for the Meetings and the Personal corpora respectively,
compared with 0.55 and 0.54 using string matching. The graph walk gives better
top rank precision as well. Unlike direct string matching, the graph walk associates
the query terms with email addresses via multiple co-occurrence patterns. Some
relevant paths in a 3-step walk are as follows:

term
as−term−1

−→ person
alias−→ email address

term
has−term−1/has−subj−term−1

−→ message
sent−to/from−email−→ email address

term
has−term−1/has−subj−term−1

−→ message
sent−to/from−→ person

alias−→ email address

In addition, any email address reached via these paths may pass some probability
mass to other email address nodes due to the added string similarity links (a string
similarity link can be added as a suffix to the paths above), thus leading to increased
recall.

6.3.4 Learning. Learning the graph edge weights resulted in comparable perfor-
mance to the results of applying a graph walk using uniform weights on this task.
While particular edge sequences (as detailed above) are expected to be meaningful
for the alias finding task, weight tuning only uses local information. We conjecture
that this limits weight tuning performance on this task.
For reranking, we used edge bigram features in the reported experiments. Rerank-

ing gave the best results on the two datasets in terms of top rank precision but lower
MAP scores, compared with the base graph walks with uniform weights. We notice
that the number of training examples available for both corpora is small, where the

144 · Minkov and Cohen

performance of discriminative learning usually improves with the number of train-
ing examples. Should a sufficient number of examples become available, then using
edge-trigram features may be useful. (Adding feature selection to avoid overfitting
is recommended in this larger feature space.)
The reported differences between the methods were not found to be statistically

significant, possibly due to the limited size of the evaluation datasets.

7. SENSITIVITY TO PARAMETER AND DESIGN CHOICES

We have shown that multiple tasks can be successfully processed as queries in the
general-purpose graph-based framework, and that learning often leads to significant
gains in performance. In this section we further study the effect of the framework’s
parameters and design choices on performance. An empirical evaluation conducted
shows that the length of the walk k affects performance, and that short graph
walks are often preferable to longer walks. In terms of learning, it is shown that
reranking gives better results than weight tuning on some tasks due to the modeling
of graph-based high-level features and domain-specific features. Applying both
weight learning and reranking gives the best results overall.

7.1 Graph walk parameters

The graph walk framework includes two parameters: the reset probability γ; and,
as we perform finite graph walks, we limit the maximal length of the walk to a
constant k.

7.1.1 Reset probability. In all of the experiments reported, the reset probability
γ ∈ (0, 1) was set to a default value of 0.5. The reset operation plays a crucial
role in sharply (exponentially) suppressing probability distribution in the graph
walk process as the distance from the query nodes grows (Equation 4); however,
the magnitude of γ has negligible effect on the output relative node rankings [Page
et al. 1998].21 We have verified this empirically on all of our corpora and tasks.

7.1.2 Walk length. We evaluated the performance of the person name disam-
biguation, threading and alias finding tasks, using eight datasets in total, varying
the walk length k. The results, in terms of mean average precision, are given in
Table XII. The best result for every dataset is marked in boldface. As shown, the
performance on the person name disambiguation task is similar for the manage-
ment game corpus for varying values of k. In the case of the two Enron datasets,
however, the performance on the person name disambiguation task is substantially
better for a short walk length (k = 2), where it converges to a lower MAP value for
longer walks. In the threading task, performance is better for short walks of length
k = 2 or k = 3 across all corpora. In all of the experiments, performance converged
within k = 8 steps.
These results support our approach of conducting finite graph walks in two ways.

First, as Personalized PageRank graph walks converge within a small number of
iterations, finite graph walks over a small number of steps are shown to provide a
good approximation for the infinite walks. Moreover, the results show that short

21The reset parameter γ must not equal 0 or 1, as both values violate the pattern of random walk

with restarts defined by Equation 3.

Adaptive Graph-Walk Based Similarity Measures · 145

Corpus k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Person name disambiguation

M.Game 0.65 0.67 0.66 0.66 0.67 0.67 0.67

Sager 0.67 0.56 0.56 0.56 0.56 0.56 0.56
Shapiro 0.61 0.46 0.44 0.43 0.43 0.43 0.43

Threading

M.Game 0.53 0.52 0.50 0.50 0.50 0.49 0.49
Germany 0.55 0.56 0.49 0.49 0.49 0.48 0.47
Farmer 0.65 0.64 0.58 0.58 0.57 0.56 0.56

Alias finding

Meetings 0.60 0.72 0.73 0.73 0.73 0.72 0.72
Personal 0.58 0.61 0.62 0.63 0.63 0.63 0.63

Table XII. Results (MAP) of applying graph walks using uniform edge weights, varying the graph

walk length parameter k (γ = 0.5).

graph walks give a more accurate similarity measure in some cases. This suggests
that given a strong local evidence of inter-entity similarity in the graph (as reflected
by the set of their connecting paths), propagating similarity over longer walks may
introduce noise to the generated similarity metric. On the other hand, increasing
the walk length can lead to higher recall; this is the reason that in the alias finding
tasks, a three step walk gives better results than a graph walk of two steps.
How should one set the walk length k? in general, the walk length should allow

the graph walk to reach graph nodes over a variety of meaningful paths. As a rule
of the thumb, it is recommended that the walk length allows traversal of the full
set of (acyclic) connecting paths to a target node; due to the exponential decay
over walk length, once the relevant nodes have been reached, the contribution of
additional walk steps to their score would be marginal. In general, since only a
few values of k need to be evaluated, it is straightforward to tune the walk length
parameter empirically, using a set of tuning examples.

7.2 Impact of Learning

We have shown that both weight tuning and reranking are effective in adjusting
the graph-walk based similarity measure for a given task (Section 6). However,
as described earlier, these learning approaches differ in several respects. In terms
of the phenomena that they model, weight tuning adjusts the graph parameters
based on local information; in contrast, reranking can accommodate high-level in-
formation, such as the sequences of edge types that are traversed in the walk. On
the other hand, reranking parameterizes the graph walk with a set of features, and
this representation discards some quantitative information, compared with weight
tuning. In addition, reranking is applied to the top K nodes in the ranked list
generated by the graph walk. This means that reranking performance is bound by
the quality of the initial graph walk, whereas weight tuning affects the graph walk
process directly.
This section includes additional experiments that evaluate weight tuning and

reranking as alternative learning methods, where we examine reranking perfor-
mance using features derived from the graph walk only, comparing it directly to

146 · Minkov and Cohen

Corpus Gw:R Gw:L Rrk−

Gw:R RrkGw:R Rrk+
Gw:R Rrk−

Gw:L RrkGw:L Rrk+
Gw:L

Person Name disambiguation

M.Game 0.61 0.67 0.63 0.63 0.83∗ 0.63 0.65 0.85∗†
Sager 0.65 0.81∗ 0.48 0.72 0.89∗ 0.48 0.72 0.83∗

Shapiro 0.70 0.80∗ 0.39 0.52 0.75 0.39 0.52 0.79∗

Threading

M.Game 0.52 0.59∗ 0.69∗† 0.75∗† - 0.76∗† 0.74∗† -
Germany 0.51 0.55∗ 0.61 0.66∗† - 0.70∗† 0.68∗† -
Farmer 0.68 0.72 0.75 0.83∗† - 0.75 0.87∗† -

Table XIII. Performance comparison (MAP) of graph walks using random weights (Gw:R) and
learned weights (Gw:L), reranking of the graph walks with random weights using graph-based
features (RrkGw:R), excluding the graph walk scores as a feature (Rrk−Gw:R) and with additional

string similarity features (Rrk+Gw:R). The combination of weight tuning and reranking is denoted

as RrkGw:L, Rrk−Gw:L and Rrk+Gw:L for the graph-based, excluding the graph walk scores as a
feature and full feature sets, respectively. Results that are significantly different from Gw:R are

marked with an asterisks, and results significantly different from Gw:L are marked with a dagger.

weight tuning. The contribution of the various types of information used in rerank-
ing is further reported and discussed. We also evaluate the utility of a combined
approach: weight tuning and reranking can be applied in a pipeline fashion, where
the results of the graph walk using the learned weights are input to the reranker.
Our results indicate that the combined approach performs best in most cases.

7.2.1 Reranking vs. weight tuning. We compared weight tuning and reranking
as follows. The Weight tuning algorithm was applied to each task and corpus using
5 randomly generated initial graph edge weight parameter sets. For every corpus,
the parameter set for which the best end result was reached, Θ0, was selected.
Graph walks using the learned set of weights, ΘG, were applied to evaluate the
performance of weight tuning on the test set queries.
Reranking was trained separately, using both the train and development sets.

For comparison reasons, the same set of initial random graph edge weights, Θ0,
was used to generate the graph walk results that are input to reranking. Thus,
both methods are compared against the same baseline. (In contrast, in Section 6,
reranking was applied to the output of graph walk using uniform weights.) For
every example, the top K = 50 nodes were reranked.

Table XIII gives MAP results for the person name disambiguation task (ap-
plying the contextual version, where queries consist of file and term nodes) and
threading.22 The table includes the evaluation of graph walk using the selected
initial weights Θ0 (Gw:R) and with the tuned edge weights (Gw:L). In addition,
it presents results of reranking the output of the initial graph walk (Gw:R), using
features that describe the graph walk (RrkGw:R). Specifically, the features applied
in this reranking variant include edge label bigrams and the source count feature.
Another variant of reranking evaluated is similar, except that the feature denoting
the original scores of the graph walk is ommitted (Rrk−Gw:R) (Equation 12). Finally,

22The alias finding task is omitted, as the relevant datasets are smaller and do not allow signifi-

cance testing.

Adaptive Graph-Walk Based Similarity Measures · 147

we evaluate reranking using the full set of features available (Rrk+Gw:R), including
string similarity between the target and query nodes. As described earlier, the
string similarity feature is task-specific and does not apply to threading. Results
that were found significantly different from the graph walk with random weights
are marked with an asterisk. Significance testing was conducted using a two-sided
Wilcoxon test at 95% confidence level.
The results show different trends on the two tasks considered. Weight tuning

is more effective than reranking using graph-based features on the person name
disambiguation task. In fact, if the graph walk scores are excluded as a feature in
reranking, then reranking performance is inferior to the graph walk. This result
shows that some structural information that is modeled by the graph walk and
weight tuning is not reflected in the path sequence features. However, applying
reranking to this problem using the full feature set, including the string similarity
feature, gives superior results. In this case, using relevant task-specific features
allows reranking to eliminate noisy nodes from the ranked lists.
In the threading task, on the other hand, reranking gives significantly better

results using path information only, compared with weight tuning. These results
are consistent across corpora. Indeed, high-level information about the paths that
connect the query to a target node is very useful in thread recovery. Specifically, an
adjacent message in a thread is often a reply-to message, where a recipient becomes
the sender and vice versa. This composite relation is captured by edge bigrams
such as sent-to→ sent-from-inverse. The weight tuning approach cannot model
such multi-step dependencies, yielding smaller improvements on this task.

We conclude that reranking, while losing some structural and quantitative infor-
mation that is considered by the weight tuning algorithm, can lead to preferable
results to weight tuning on some tasks due to its modeling of global properties of
the walk. Reranking’s capacity of representing additional relevant features for a
given task, leads to further gains. Importantly, the information conveyed by the
graph walk is complementary to the edge sequence features, and its representation
as a feature in the reranking model contributes to its performance.

7.2.2 Combining Learning Methods. Reranking is affected by the quality of the
input ranked lists in two ways. First, as reranking is applied to the top K nodes,
its recall is limited by the number of correct answers retrieved by the initial ranker
in the top K positions. Secondly, the original node scores assigned by the initial
ranker are used as a feature by the reranker. We therefore consider the setting
where the graph walk rankings are first improved using learning, and reranking is
applied to the modified ranked lists.
Table XIII shows the results of reranking the lists generated by the graph walks

using the learned weights ΘG. The results of reranking using graph walk describing
features only is denoted by ‘RrkGw:L’ and by ‘Rrk−Gw:L, if the graph walk scores are
excluded from the reranking model. Results of reranking using the full feature set
are denoted by ‘Rrk+Gw:L. Results that are significantly better than weight tuning
are marked with a dagger.
Overall, the combined approach gives the best performance for four out of the six

datasets. Improving the graph walk’s initial parameters with weight tuning prior
to reranking is therefore recommended.

148 · Minkov and Cohen

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

S
ec

on
ds

/Q
ue

ry

Walk length k

M.game
Sager

Shapiro

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

S
ec

on
ds

/Q
ue

ry

Walk length k

M.game
Germany

Farmer

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

S
ec

on
ds

/Q
ue

ry

Walk length k

Meetings
Personal

Fig. 6. Average graph walk completion time per query and one standard deviation
(in error bars) for the different datasets, varying walk length k.

8. SCALABILITY

This section includes our observed query processing and discusses scalability issues.

8.1 Empirical running times

In our implementation of the graph walk, it is performed online in response to each
query. Figure 6 shows the average graph walk processing time per query for the
tasks of person name disambiguation, threading and alias finding, where the walk
length varies from k = 2 to k = 8. The size of the experimental corpora ranges from
6K to 14K nodes, and from 60K to about 200K edges (see Table 5). The results
were obtained using a commodity PC with 4GB of RAM, where graph information
has been loaded to memory. In the experiments, we observed the processing time
per query, ti, averaged over the queries in the test set of each dataset. We obtained
five such observations in repeated runs, for which we report the average:

∑5
i=1 ti/5.

The corresponding standard deviation is reported as well (shown in the error bars).
As shown in the figure, the average processing times increase with the number of

walk steps k and with the number of graph edges. (For example, longer processing
times are required for the Shapiro corpus compared with the smaller management
game corpus, for the same walk length k).

Adaptive Graph-Walk Based Similarity Measures · 149

The times given in Figure 6 are satisfying for real-time applications. Earlier,
we have shown (Section 7.1.2) that short graph walks yield performance that is
preferable or comparable to longer walks in this domain. In addition, short walks
of 2 or 3 steps are advantageous in terms of execution time, as they require an
average processing time of a small fraction of a second.
On top of the graph walk, if reranking is applied, then encoding the top K nodes

retrieved with graph walk describing features and scoring each node by the rerank-
ing model require additional overhead to the query response time. We sampled
reranking processing times for the threading task, using the Germany corpus, over
5 runs. While executing the graph walk for k = 2 steps requires 90 milliseconds on
average for this dataset, path unfolding and feature encoding require 2 milliseconds
on average per node, and 0.6 milliseconds on average are required to score a node
by the reranking model. Since K = 50 nodes are reranked per query, additional
130 milliseconds are required to complete query processing (i.e., 220 milliseconds
in total). In general, node scoring time is linear with respect to the number of
features included in the reranking model (Eq. 12), whereas the complexity of the
feature encoding operation is proportional to the graph walk complexity (see Sec-
tion 3.3.3). Overall, the reranking overhead observed in our study is adequate for
online settings. This overhead can be further controlled by altering K, the number
of nodes to be reranked.

8.2 Larger Graphs

The corpora and tasks that we experiment with in this paper are reflective of
personal information management, where we are given a personal corpus of email
messages and meeting entries, and the user of the system is assumed to be the
corpus owner or an automated personal assistant. However, one may be interested
in applying the methods and tasks described to larger corpora, at company or
corporate level. In general, we expect a graph that includes the email repositories
of a few dozens of individuals to exceed a million nodes.23 In addition, large graphs
are expected to be generally denser compared with smaller graphs, i.e., have a higher
branching factor. Thus, given a large graph, it may not be possible to accommodate
it in memory and efficient processing of the graph walk is non trivial. A common
solution is to store the graph in secondary memory, and cache information used
frequently by the graph walk to improve response time.
Further, the scalability of applying the Personalized PageRank paradigm to very

large graphs has received much attention in recent years, with the goal of providing
a fast response to a query at run time. Most of that research is orthogonal to our
work and can be readily incorporated into the framework’s implementation.

In brief, there are two distinct approaches for applying the Personalized PageR-
ank paradigm. The first approach is to compute the personalized views at query
time. This requires an iterative computation over the graph, where response time is

23Interestingly, the vocabulary used in email correspondence is relatively limited, and we expect
it to grow slowly with graph size; specifically, the union of the four Enron corpora used in the
experiments includes roughly 24,000 unique terms. The number of message nodes, on the other

hand, increases linearly with the size of the corpus.

150 · Minkov and Cohen

linear with respect to the number of iterations and the number of edges traversed.24

Another approach for implementing Personalized PageRank is an ‘offline’ compu-
tation, where personalized views are pre-processed and stored. Pre-processing of
all personal views (queries) possible is infeasible due to time and space constraints,
as there are O(2n) different queries possible for graphs with n vertices and the
necessary index database size of a fully Personalized PageRank algorithm is Ω(n2)
[Fogaras et al. 2005]. A variety of approximation techniques have been proposed in
the literature that are efficient [Jeh and Widom 2003; Balmin et al. 2004; Fogaras
et al. 2005; Chakrabarti 2007].

9. RELATED WORK

There are many research areas related to the framework that we describe in this
paper. In this section we discuss some of the relevant efforts, focusing on three gen-
eral areas. Section 9.1 describes models for inducing a similarity measure between
graph entities. In addition to graph-based methods, statistical relational learn-
ing is discussed as an alternative paradigm for evaluating inter-entity relations in
structured data. Section 9.2 reviews related approaches for learning to rank graph
nodes. A discussion of previous research in the PIM domain in general, and of the
PIM tasks evaluated in this paper in particular, is given in Section 9.3.

9.1 Entity similarity in structured and semi-structured data

9.1.1 Spreading activation. A related paradigm to our framework is spreading
activation (SA) over semantic or association networks: there, the underlying idea is
to propagate activation from source nodes via weighted links through the network
[Crestani 1997]. In order to prevent the activation signal from spreading over
the whole network in a short number of steps, several heuristic constraints are
used, including: distance constraints, which cease SA after a pre-defined number
of links have been traversed; fan-out constraints, ceasing SA at nodes with high
downstream connectivity; and path constraints, that divert the activation flow to
particular paths in the network while stopping it from following other paths. In our
framework, the graph walk scheme applies an exponential decay over path length,
incorporating a soft distance constraint, and normalizing the graph edge weights
to node probability distributions incorporates a probabilistic version of the fan-
out constraint. We apply learning to adjust path preferences and the importance
(weights) of different link types in the network, rather than set them manually.

9.1.2 Graph walk based measures. The idea of representing structured data as a
graph is widespread in the data mining community, which is mostly concerned with
relational or semi-structured data. Proximity search in databases represented as
graphs has been suggested by Goldman et al [1998], where similarity was evaluated
according to the shortest path between objects. Later models include BANKS
[Bhalotia et al. 2002], XRank [Guo et al. 2003] and SimRank [Jeh and Widom
2002]. SimRank is a similarity measure adapted for graphs describing relational
data. In this model, objects are recursively defined to be similar if they are related

24The complexity of online iterative graph walk is O(Ek), where E is the number of graph edges

[Pan et al. 2004]; we take this approach in our implementation, as mentioned above.

Adaptive Graph-Walk Based Similarity Measures · 151

to similar objects. An iterative calculation propagates scores one step forward along
the direction of the edges, until scores converge. SimRank was shown to equal the
expected value of γ`, where ` is a random variable giving the time at which two
random surfers are expected to meet at the same node if they started at nodes x
and y simultaneously and randomly walked the graph backwards. The SimRank
measure does not consider edge weights. In addition, it is symmetric and fixed,
whereas the graph walk similarity measure is query-dependent.
The ObjectRank model [Balmin et al. 2004] was the first to apply random walks –

specifically, Personalized PageRank – to keyword search in relational data modeled
as typed graphs. In ObjectRank, the graph edges are directed and typed; nodes
are typed and associated with a set of keywords, derived from the attribute values
of the represented tuple. The authors use an ‘authority transfer’ scheme that is
set manually, to determine the weight per edge type. (Their scheme is equivalent
to the edge weight parameters Θ in our notation.) The authority transfer rate per
each type is distributed uniformly among the outgoing edges of that type from each
node. Given a query, Personalized PageRank graph walks are applied, where the
reset operation is limited to graph nodes that include the query terms as keywords.
The final node similarity scores are a combination of the latter keyword-specific
scores, and global node scores, obtained using the PageRank approach. The au-
thors evaluate ObjectRank using citation records. Our framework is very similar
to ObjectRank. However, we allow querying the graph regardless of object types,
whereas queries in ObjectRank (as well as XRank) are limited to terms only. Ac-
cordingly, we represent text as regular nodes within the graph, rather than process
it separately. Importantly, we optimize the similarity measure induced by the graph
walk for multiple different tasks.
Recently, several researchers have constructed special graphs, with typed edges

and typed nodes, engineered to induce an improved similarity measure for a par-
ticular task, using graph walks. Pan et al [2004], for example, study the problem
of automatic image captioning. They have applied Personalized PageRank graph
walks to graphs that are undirected and unweighted, but include multiple types
of nodes and several edge types. In particular, the graph constructed includes
nodes representing images, graphical regions and terms. Nodes are linked due to
structural links (image to its graphical regions of images, and image to its cap-
tion terms), or due to high graphical similarity. Others have constructed networks
of word-to-word semantic relations to improve on the task of prepositional phrase
attachment in natural language processing [Toutanova et al. 2004] and query ex-
pansion in information retrieval [Collins-Thompson and Callan 2005]. In contrast
to these works, we assume a more general setting, where data is represented as a
graph with no target task pre-specified, and different types of queries are performed
using the same underlying graph.

9.1.3 Statistical Relational Learning. Statistical relational learning (SRL) con-
cerns the induction of probabilistic knowledge for multi-relational structured data.
Various SRL paradigms have been proposed in recent years, including Probabilistic
Relational Models [Friedman et al. 1999], Relational Dependency Networks [Neville
and Jensen 2004], Markov Logic Networks [Richardson and Domingos 2006] and
others. A general review of SRL is available elsewhere [Getoor and Taskar 2007].

152 · Minkov and Cohen

We consider the Markov Logic Networks (MLNs) paradigm, an SRL model that
generalizes finite first-order logic and Markov networks, as an alternative to the
graph walk framework.
Markov logic combines Markov networks and weighted first-order logic formulae;

in this paradigm, situations in which not all formulae are satisfied are considered
less likely but not impossible. The information encoded in the graph can be repre-
sented as an MLN. Specifically, the inter-entity relations represented by the graph
edges correspond to evidence predicates in MLNs (e.g., sent-from(x,y)). Long range
relation between entities can be modeled in MLNs as rules. (For example, consider
the rule: ∀x∀y∀z sent-from(x,y)∧ sent-to-inv(y, z) ⇒ thread(x, z).) The weights
of the rules can be learned from examples. There are, however, several crucial
differences between the graph walk paradigm and MLNs.
The expressive power of MLNs is larger compared with the graph framework,

since it can also model any n-ary relations, whereas the graph representation only
represents binary relations. However, Markov network grounding requires memory
exponential in the arity of the clauses. Even with binary clauses, having a large
number of constants can result in several million clauses. Another difference be-
tween the approaches is that MLNs require specifying (or learning) task-specific
structures (rules) as a pre-requisite to network grounding. The graph framework,
on the other hand, does not encode task-specific information in the graph, so that
the same graph is used for different tasks.
We performed an empirical evaluation of our framework and MLNs for the task

of threading and the management game corpus.25 The yielded test set result for
this corpus using MLN was 0.69 in MAP. Since MLNs incorporate rules, this result
should be compared against reranking, which gave MAP of 0.73 (Table IX). While
performance is comparable between the two paradigms for this task and corpus,
we were not able to apply MLNs to the larger Enron corpora because of large
memory requirements due to network grounding. We therefore conclude that a
main advantage of the graph walk framework over statistical relational learning
methods such as MLN is better scalability.

9.2 Learning to rank graph nodes

We have applied an error backpropagation algorithm to learn the graph edge weights
[Diligenti et al. 2005]. This section describes alternative weight tuning algorithms.
In addition, we review previous research related to reranking in our framework.

9.2.1 Edge Weight Tuning. Several methods have been developed that auto-
matically tune the edge weight parameters in extended PageRank models, where
edge weights are determined by the underlying relation type. Nie et al [2005] have
applied a simulated annealing algorithm to explore the search space of all possible
edge weight assignments, with the goal of reducing the difference between partial
rankings given by domain experts and the ranking produced by the learned model.
In order to make learning time manageable, they use a subgraph in the learning
process, trading optimality for efficiency. Toutanova et-al [2004] have constructed

25We used the open source Alchemy system [Kok et al. 2005], where we applied the lazy MC-SAT

algorithm for inference.

Adaptive Graph-Walk Based Similarity Measures · 153

a special graph including diverse word-to-word relationships; they applied finite
Personalized PageRank graph walks to induce smoothing probabilities for the task
of predicting prepositional word attachment. In their work, the edge weight pa-
rameters of the model were fitted to optimize the conditional log-likelihood of the
correct attachment sites.
In this work, we adapted an error backpropagation gradient ascent algorithm to

learn the edge weights given labeled examples [Diligenti et al. 2005]. This method
assumes labeled data in the form of correct and incorrect target nodes. Another
gradient descent approximation algorithm has been presented that assumes feed-
back in the form of partial order preferences [Agarwal et al. 2006]. In this latter
approach, the given pairwise constraints are added as a violation penalty to the cost
function; the derivative with respect to the weight of each edge type is then com-
puted by applying the chain rule, accompanying the regular PageRank iterations
with gradient finding steps. The authors have shown that the time per iteration
scales approximately linearly with the number of graph vertices and edges, and that
the number of learning iterations grows slowly with the size of the graph. Overall,
the training time is mildly superlinear to the graph scale factor.
Several authors have found that learning edge weight parameters leads to better

generalization as opposed to learning general transition probabilities, where edge
weights are unbounded. Agarwal et al [2006] experimented with maximum-entropy
flow setting, with the goal of learning individual edge weights. They found that
estimating a small number of global edge weights generalizes from training to test
instances that involve completely different nodes, far away in the graph, using a
much smaller number of examples. Toutanova et al [2004] experimented with tuning
specialized edge weight parameters for different contexts; however, they report that
assigning a fixed weight per edge type across all graph edges performs as well as
more complex models.

9.2.2 Graph Walks using Global Information. The reranking approach has been
applied in the past to a variety of structure prediction tasks, including parsing
[Collins and Koo 2005; Collins 2002; Charniak and Johnson 2005], machine trans-
lation [Shen et al. 2005], semantic role labeling [Toutanova et al. 2005] and more.
Structure prediction problems are usually decomposed into a chain of local decisions
in order to apply efficient inference algorithms, such as dynamic programming. The
resultant models, however, can only consider local features, and the maximum like-
lihood structure predicted is often sub-optimal. In the reranking approach, rather
than predict the most likely candidate, the top K most likely candidates are gen-
erated in the search process. These candidates are then evaluated based on global
features; i.e., properties pertaining to the long range dependencies in the predicted
structure. These features allow the reranking classifier to improve on the initially
ranked list, by demoting candidates that violate various constraints or preferences
in the subject domain. In the problem of semantic role labeling, for example, a
hard constraint is that arguments cannot overlap with each other or the predicate,
and a soft constraint is that a predicate have no more than one AGENT argument
[Toutanova et al. 2005].
Researchers have considered path information in classifying relations between

pairs of objects connected over individual structures, such as entities that co-appear

154 · Minkov and Cohen

in a sentence dependency tree [Snow et al. 2005]. In particular, rich features sets
were proposed that describe these paths [Culotta and Sorensen 2004; Bunescu and
Mooney 2005]. To the best of our knowledge, we are the first to consider global
features in graph-walk induced similarity measures in general. In particular, we are
the first to suggest reranking to improve rankings of graph nodes, using features
that describe global properties of the paths traversed. In contrast to related works,
we propose generic features that can be applied across domains.

9.3 Automated personal information management

In the last years, a variety of email-related tasks have been studied with the goal of
facilitating email management and utilizing the information that resides in email
corpora. Example tasks include email foldering [Bekkerman et al. 2004], automatic
finding of experts at the enterprise using email resources [Balog et al. 2006; Petkova
and Croft 2006], recommendation of recipients for a given message [Carvalho and
Cohen 2008; Pal and McCallum 2006], identifying possible email leakage to wrong
recipients [Carvalho and Cohen 2007], and more.
Unlike most previous works, the graph walk framework processes personal infor-

mation as semi-structured data, where meta-data and text are all represented in a
single graph. There are only a few previous works in the literature that integrate
meta-data and text in email. For instance, a clustering approach has been pro-
posed using multiple types of interactions in co-occurrence data [Bekkerman et al.
2005]. Another work [Aery and Chakravarthy 2005] proposes a graph-based ap-
proach for email classification. The authors represent an individual email message
as a structured graph, including both content and header, and find a graph profile
for each folder; incoming messages are classified into folders using graph matching
techniques.
A major advantage of the graph walk paradigm compared with other approaches,

is that it addresses various tasks similarly. That is, the same underlying graph,
interface and query language are used for multiple tasks, including ad-hoc searches.
Previous works treated each task separately, optimizing the data representation
and the techniques applied per task.
We next describe related works for each of the tasks considered in this paper.

9.3.1 Person name disambiguation. The task of person name disambiguation
has been studied in the field of social networks and applied also to email data
[Malin et al. 2005; Diehl et al. 2006]. Diehl et al [2006] have suggested to perform
name disambiguation in email using traffic information, as derived from the email
headers. In their approach, a candidate set is first generated, including network
references with identical names to the ambiguous name mentions in a message,
for which at least one email communication has been observed with the sender.
They suggest a scoring formula based on the counts of message exchanges between
each candidate and the sender, or between each candidate and all of the message
recipients, summarizing over different ranges of history. Their approach uses social
information only, as derived from email headers, while our approach integrates this
information with email content and a timeline in a unified framework. In addition,
we do not pre-filter a set of relevant candidates (thus bounding recall); instead,
we rely on the graph walk to retrieve the relevant graph nodes based on network

Adaptive Graph-Walk Based Similarity Measures · 155

topology.
Recently, a generative model has been proposed for resolving name mentions in

email [Elsayed et al. 2008]. The model can be thought of as a language model
over a set of personal contextual references. More specifically, the model records
mappings between person names, email addresses and nicknames, as deduced from
email salutations and signatures. Given a new name mention, it is resolved by
matching the contextual information associated with each known person and the
name mention. Overall, the described approach is highly specific to the subject task.
In addition, the model is feature specific; incorporating other types of evidence such
as lexical similarity or information about meetings requires manual adaptation of
the model. In contrast, our graph-based approach is general and modular.

9.3.2 Threading. Lewis and Knowles [1997] considered email threading as a re-
trieval problem; they suggested a strategy of using the quotation of a message as
a query and matching it against the unquoted part of a target message. Yeh and
Harnly [2006] extend this approach. They suggest using string similarity metrics
and a heuristic algorithm to reassemble threads in the absence of header infor-
mation. In addition to message content similarity they consider heuristics, such
as subject, timestamp, and sender/recipient relationships between two messages.
They also introduce a time window constraint to reduce the search scope in the
corpus. The graph walk framework is more general, where it does not rely on task-
specific features, as opposed to these previous works. Moreover, the approach of
graph walk with reranking that has been proved successful for thread recovery can
be applied in learning other tasks that model sequential phenomena; for example,
the chaining of sequential speech acts [Carvalho and Cohen 2005].

9.3.3 Alias finding. The task of finding a person’s set of email addresses in an
email corpus given the person’s name, as presented in this paper, is novel. This task
is related, however, to the task of identifying email aliases (given an email address)
in a corpus. Previously, researchers explored the information residing in social
network co-occurrences on this task; this effort resulted in performance better than
random [Holzer et al. 2005]. Others have attempted to combine social network
information and string similarity measures [Hsiung et al. 2005]. Our approach
allows integration of header information and string similarity measures, as well as
email content and time information in a unified framework.

10. CONCLUSION

We described a general framework for inducing adaptive similarity measures in het-
erogeneous data represented as an entity-relation graph. The framework builds on
existing graph-walk based paradigms that generate measures of structural similar-
ity between entities in the graph. Previously, researchers have applied graph walks
using carefully designed graphs with the goal of solving pre-defined problems. We
showed that given a general representation of the data that is not engineered for a
specific task, multiple tasks can be defined and performed as queries in this frame-
work, using the same underlying graph.
The graph walk based similarity measure gives good performance in response to

various queries. However, if labeled instances are available, then learning can be

156 · Minkov and Cohen

applied to generate a specialized similarity measure adapted to a specific relation
sought. We suggested reranking as a method for learning to rank graph nodes
that can use high-level information about the graph walk process; in particular,
we proposed generic features that describe the set of paths traversed in reaching
a target node from the query distribution. Reranking was shown to give better
results in some cases than weight tuning, a learning approach that only considers
local information about the graph walk. In addition, combining local and global
learning was shown to be advantageous.

Interestingly, the empirical results that we observed in our experiments show that
conducting short finite graph walks is both computationally efficient and also yields
better top rank precision in some cases, compared with longer walks.

The paper presented a detailed case study where we applied the framework to
the domain of personal information management. It was shown that multiple tasks
in this domain can be processed uniformly as queries, as opposed to using different
specialized techniques. An evaluation of the graph-walk similarity measure, aug-
mented with learning, on the tasks of person name disambiguation, threading and
alias finding was shown to give high levels of performance.

We believe that this framework is natural and adequate for performing search-
related tasks in the personal information domain. A main advantage of the graph
walk paradigm in this domain is that it naturally integrates the textual and the
structured elements of the data, including social network and time information.
In addition, the graph representation is modular, and it is straightforward to ex-
tend the graph schema to include other information sources available, such as en-
tities that represent activities, relations that correspond to an organization chart,
etc. While the graph walk and weight tuning effectively model entity associations,
reranking allows further flexibility in adapting the generated similarity measure
to different tasks using high-level and task-specific information. Finally, personal
information corresponds to small to medium sized graphs. An average query is pro-
cessed in a fraction of a second when short graph walks are applied, and applying
reranking to a small subset of nodes requires another fraction of a second. Apply-
ing the framework in general, and Personalized PageRank in particular, to large
corpora is possible though challenging. Improving the scalability of Personalized
PageRank is an area of an active research, and ideas suggested by other researchers
can be readily incorporated in an operative system.

There are many directions in which the framework presented can be extended.
For example, the suggested graph schema supports binary relations, where one
may wish to incorporate probabilistic relations, i.e., edges with varying levels of
uncertainty. Another shortcoming of the framework is that it does not support fine
text processing compared with language models. In addition, in this work we have
set the graph schema manually; an interesting research direction is to construct the
graph schema automatically from data. In particular, it is possible that including
irrelevant or noisy information in the graph can degrade performance. If this occurs,
then it is desired to eliminate such information from the graph.

In terms of learning, the learning settings that are assumed in this work can be
relaxed and allow additional types of user feedback; that is, rather than consider
binary signals about a node relevancy, partial node preferences or other forms of

Adaptive Graph-Walk Based Similarity Measures · 157

feedback may be provided. The learning procedures that are described in this work
will need to be adjusted accordingly.
Another interesting venue for future work is learning to adapt the structure of the

graph over time. Suppose that ongoing user feedback indicates that a subset of the
edge types in the graph is consistently uninformative. These edges can be pruned
from the graph, resulting potentially in savings in query processing times as well
as reduced noise levels in the graph walk process. Similarly, one may be interested
in “hard-coding” relationships between entities in the graph that are known to be
closely related. Adding links to the graph may improve the quality of the responses
to future queries.
A related question is whether predictive models that are learned for one task can

be used to leverage performance for other tasks in a given domain. Suppose that
a sufficiently large set of labeled examples is available for one task, but only a few
or no examples are available for another type of relation sought. An open question
is to what extent the similarities in the graph are general and can be shared (or,
transferred) across different tasks; for example, the edge weight parameters that
are learned in one task may be helpful for other tasks. Mechanisms for leveraging
learning across tasks, perhaps based on recent work in transfer learning [Mihalkova
and Mooney 2009; Wang et al. 2009], may be effective in these settings.

ACKNOWLEDGMENTS

The authors wish to thank Andrew Y. Ng, Christos Faloutsos, Tom Mitchell, Ray-
mond Mooney, Hanghang Tong and Elchanan Mossel for useful discussions, and to
the anonymous reviewers for their comments. This material is based upon work
supported by Yahoo! Research and by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Defense Advanced Research Projects
Agency (DARPA), or the Department of Interior-National Business Center (DOI-
NBC).

REFERENCES

Aery, M. and Chakravarthy, S. 2005. emailsift: Email classification based on structure and
content. In ICDM.

Agarwal, A., Chakrabarti, S., and Aggarwal, S. 2006. Learning to rank networked entities.
In KDD.

Anyanwu, K., Maduko, A., and Sheth, A. 2005. Semrank: Ranking complex relationship search
results on the semantic web. In WWW.

Balmin, A., Hristidis, V., and Papakonstantinou, Y. 2004. ObjectRank: Authority-based
keyword search in databases. In VLDB.

Balog, K., Azzopardi, L., and de Rijke, M. 2006. Formal models for expert finding in enterprise
corpora. In SIGIR.

Bekkerman, R., El-Yaniv, R., and McCallum, A. 2005. Multi-way distributional clustering
via pairwise interactions. In ICML.

Bekkerman, R., McCallum, A., and Huang, G. 2004. Automatic categorization of email into
folders: Benchmark experiments on enron and sri corpora. In Technical Report, Computer

Science department, IR-418.

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S. 2002. Keyword

searching and browsing in databases using banks. In ICDE.

158 · Minkov and Cohen

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual web search engine.

Computer Networks and ISDN Systems 30.

Bunescu, R. C. and Mooney, R. J. 2005. A shortest path dependency kernel for relation
extraction. In HLT-EMNLP.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullende,

G. 2005. Learning to rank using gradient descent. In ICML.

Carvalho, V. R. and Cohen, W. W. 2005. On the collective classification of email ”speech

acts”. In SIGIR.

Carvalho, V. R. and Cohen, W. W. 2007. Preventing information leaks in email. In SDM.

Carvalho, V. R. and Cohen, W. W. 2008. Ranking users for intelligent message addressing. In
ECIR.

Chakrabarti, S. 2007. Dynamic personalized pagerank in entityrelation graphs. In WWW.

Charniak, E. and Johnson, M. 2005. Coarse-to-fine n-best parsing and maxent discriminative
reranking. In ACL.

Cohen, W. W. and Minkov, E. 2006. A graph-search framework for associating gene identifiers

with documents. BMC Bioinformatics 7, 440.

Cohen, W. W., Ravikumar, P., and Fienberg, S. 2003. A comparison of string distance metrics
for name-matching tasks. In IIWEB.

Cohen, W. W., Schapire, R. E., and Singer, Y. 1999. Learning to order things. Journal of
Artificial Intelligence Research (JAIR) 10, 243–270.

Collins, M. 2002. Ranking algorithms for named-entity extraction: Boosting and the voted

perceptron. In ACL.

Collins, M. and Koo, T. 2005. Discriminative reranking for natural language parsing. Compu-
tational Linguistics 31, 1, 25–69.

Collins-Thompson, K. and Callan, J. 2005. Query expansion using random walk models. In
CIKM.

Crestani, F. 1997. Application of spreading activation techniques in information retrieval. Ar-
tificial Intelligence Review 11, 6.

Culotta, A. and Sorensen, J. 2004. Dependency tree kernels for relation extraction. In ACL.

Diehl, C. P., Getoor, L., and Namata, G. 2006. Name reference resolution in organizational
email archives. In SIAM.

Diligenti, M., Gori, M., and Maggini, M. 2005. Learning web page scores by error back-

propagation. In IJCAI.

Elsayed, T., Oard, D. W., , and Namata, G. 2008. Resolving personal names in email using
context expansion. In HLT-ACL.

Fogaras, D., Rácz, B., Csalogány, K., , and Sarlós, T. 2005. Towards scaling fully person-
alized pagerank: Algorithms, lower bounds, and experiments. Internet Mathematics 2, 3.

Freund, Y. and Schapire, R. E. 1999. Large margin classification using the perceptron algo-

rithm. Machine Learning 37, 3.

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. 1999. Learning probabilistic relational
models. In IJCAI.

Getoor, L. and Taskar, B. 2007. Statistical relational learning. MIT Press, Cambridge MA.

Goldman, R., Shivakumar, N., Venkatasubramanian, S., and Garcia-Molina, H. 1998. Prox-
imity search in databases. In VLDB.

Guo, L., Shao, F., Botev, C., and Shanmugasundaram, J. 2003. Xrank: Ranked keyword

search over xml documents. In SIGMOD.

Haveliwala, T. H. 2002. Topic-sensitive PageRank. In WWW.

Holzer, R., Malin, B., and Sweeney, L. 2005. Email alias detection using social network
analysis. In LinkKDD.

Hsiung, P., Moore, A., Neill, D., and Schneider, J. 2005. Alias detection in link data sets.

In Proceedings of the International Conference on Intelligence Analysis.

Jeh, G. and Widom, J. 2002. Simrank: A measure of structural-context similarity. In SIGKDD.

Jeh, G. and Widom, J. 2003. Scaling personalized web search. In WWW.

Adaptive Graph-Walk Based Similarity Measures · 159

Klimt, B. and Yang, Y. 2004. The enron corpus: A new dataset for email classification research.

In ECML.

Kok, S., Singla, P., Richardson, M., and Domingos, P. 2005. The alchemy system for sta-
tistical relational ai. In Department of Computer Science and Engineering, University of

Washington, Technical Report. http://www.cs.washington.edu/ai/alchemy.

Lehmann, E. 1959. Testing statistical hypotheses. Wiley.

Lewis, D. E. and Knowles, K. A. 1997. Threading electronic mail: A preliminary study. Infor-
mation Processing and Management .

Malin, B., Airoldi, E. M., and Carley., K. M. 2005. A social network analysis model for
name disambiguation in lists. Journal of Computational and Mathematical Organization The-
ory 11, 2.

McCallum, A., Corrada-Emmanuel, A., and Wang, X. 2005. Topic and role discovery in social
networks. In IJCAI.

McInerney, J., Haines, K. G., Biafore, S., and Hecht-Nielsen, R. 1989. Back propagation
error surfaces can have local minima. In International Joint Conference on Neural Networks
(IJCNN).

Mihalkova, L. and Mooney, R. J. 2009. Transfer learning from minimal target data by mapping
across relational domains. In IJCAI.

Minkov, E. and Cohen, W. W. 2006. An email and meeting assistant using graph walks. In
CEAS.

Minkov, E. and Cohen, W. W. 2007. Learning to rank typed graph walks: Local and global
approaches. In WebKDD and SNA-KDD joint workshop.

Minkov, E., Cohen, W. W., and Ng, A. Y. 2006. Contextual search and name disambiguation
in email using graphs. In SIGIR.

Minkov, E., Wang, R., and Cohen, W. 2005. Extracting personal names from emails: Applying
named entity recognition to informal text. In HLT-EMNLP.

Neville, J. and Jensen, D. 2004. Dependency networks for relational data. In ICDM.

Nie, Z., Zhang, Y., Wen, J.-R., and Ma, W.-Y. 2005. Object-level ranking: Bringing order to
web objects. In WWW.

Nocedal, J. and Wright, S. J. 1999. Numerical Optimization. Springer Series in Operations
Research.

Page, L., Brin, S., Motwani, R., and Winograd, T. 1998. The pagerank citation ranking:
Bringing order to the web. In Technical Report, Computer Science department, Stanford Uni-

versity.

Pal, C. and McCallum, A. 2006. Cc prediction with graphical models. In CEAS.

Pan, J.-Y., Yang, H.-J., Faloutsos, C., and Duygulu, P. 2004. Automatic multimedia cross-
modal correlation discovery. In KDD.

Petkova, D. and Croft, W. B. 2006. Hierarchical language models for expert finding in enter-
prise corpora. In ICTAI.

Richardson, M. and Domingos, P. 2002. The intelligent surfer: Probabilistic combination of
link and content information in PageRank. In NIPS.

Richardson, M. and Domingos, P. 2006. Markov logic networks. Machine Learning 62, 1-2.

Ripley, B. 1996. Pattern Recognition and Neural Networks. Cambridge University Press.

Schapire, R. E. and Singer, Y. 1999. Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3), 297–336.

Shen, L. and Joshi, A. K. 2003. An svm based voting algorithm with application to parse
reranking. In CONLL.

Shen, L. and Joshi, A. K. 2005. Ranking and reranking with perceptron. Machine Learning 60, 1-
3.

Shen, L., Sarkar, A., , and Och, F. J. 2005. Discriminative reranking for machine translation.

In HLT-NAACL.

Snow, R., Jurafsky, D., and Ng, A. Y. 2005. Learning syntactic patterns for automatic hyper-

nym discovery. In NIPS.

160 · Minkov and Cohen

Toutanova, K., Haghighi, A., and Manning, C. D. 2005. Joint learning improves semantic role

labeling. In ACL.

Toutanova, K., Manning, C. D., and Ng, A. Y. 2004. Learning random walk models for

inducing word dependency distributions. In ICML.

Tsoi, A. C., Morini, G., , Scarselli, F., Hagenbuchner, M., and Maggini, M. 2003. Adaptive
ranking of web pages. In WWW.

Wang, Z., Song, Y., and Zhang, C. 2009. Knowledge transfer on hybrid graph. In IJCAI.

Xi, W., Fox, E. A., Fan, W. P., Zhang, B., Chen, Z., Yan, J., and Zhuang, D. 2005. Simfusion:
Measuring similarity using unified relationship matrix. In SIGIR.

Yeh, J.-Y. and Harnly, A. 2006. Email thread reassembly using similarity matching. In CEAS.

Received February 1986; November 1993; accepted January 1996

