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Building an intelligent agent that simulates human learning of math and science could 
potentially benefit both cognitive science, by contributing to the understanding of 
human learning, and artificial intelligence, by advancing the goal of creating human-
level intelligence. However, constructing such a learning agent currently requires manual 
encoding of prior domain knowledge; in addition to being a poor model of human 
acquisition of prior knowledge, manual knowledge-encoding is both time-consuming and 
error-prone. Previous research has shown that one of the key factors that differentiates 
experts and novices is their different representations of knowledge. Experts view the 
world in terms of deep functional features, while novices view it in terms of shallow 
perceptual features. Moreover, since the performance of learning algorithms is sensitive 
to representation, the deep features are also important in achieving effective machine 
learning. In this paper, we present an efficient algorithm that acquires representation 
knowledge in the form of “deep features”, and demonstrate its effectiveness in the domain 
of algebra as well as synthetic domains. We integrate this algorithm into a machine-
learning agent, SimStudent, which learns procedural knowledge by observing a tutor solve 
sample problems, and by getting feedback while actively solving problems on its own. We 
show that learning “deep features” reduces the requirements for knowledge engineering. 
Moreover, we propose an approach that automatically discovers student models using the 
extended SimStudent. By fitting the discovered model to real student learning curve data, 
we show that it is a better student model than human-generated models, and demonstrate 
how the discovered model may be used to improve a tutoring system’s instructional 
strategy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the fundamental goals of artificial intelligence is to understand and develop intelligent agents that simulate 
human-like intelligence. A considerable amount of effort [1–3] has been put toward this challenging task. Further, education 
in the 21st century will be increasingly about helping students not just learn content but to become better learners. Thus, 
we have a second goal of improving our understanding of how humans acquire knowledge and how students vary in their 
abilities to learn.

* Corresponding author.
E-mail addresses: nli1@cs.cmu.edu (N. Li), Noboru.Matsuda@cs.cmu.edu (N. Matsuda), wcohen@cs.cmu.edu (W.W. Cohen), koedinger@cmu.edu

(K.R. Koedinger).
http://dx.doi.org/10.1016/j.artint.2014.11.002
0004-3702/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2014.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:nli1@cs.cmu.edu
mailto:Noboru.Matsuda@cs.cmu.edu
mailto:wcohen@cs.cmu.edu
mailto:koedinger@cmu.edu
http://dx.doi.org/10.1016/j.artint.2014.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2014.11.002&domain=pdf


68 N. Li et al. / Artificial Intelligence 219 (2015) 67–91
To contribute to both goals, there have been recent efforts [4–7] in developing intelligent agents that model human 
learning of math, science, or a second language. Although such agents produce intelligent behavior with less human knowl-
edge engineering than before, there remains a non-trivial element of knowledge engineering in the encoding of the prior 
domain knowledge given to the simulated student agent at the start of the learning process. For example, to build an algebra 
learning agent, the agent developer needs to provide prior knowledge by coding functions that describe, for instance, how to 
extract a coefficient or how to add two algebraic terms. Such manual encoding of prior knowledge can be time-consuming 
and the constructed prior knowledge may not naturally correspond with a human student’s prior knowledge.

Since real students entering a course do not usually have substantial domain-specific or domain-relevant prior knowl-
edge, it is not realistic in a model of human learning to assume this knowledge is given rather than learned. For example, 
for students learning about algebra, we cannot assume that they all know beforehand what a coefficient is, or what the dif-
ference between a variable term and a constant term is. An intelligent system that models automatic knowledge acquisition 
with a small amount of prior knowledge could be helpful both in reducing the effort in knowledge engineering intelligent 
systems and in advancing the cognitive science of human learning.

Previous work in cognitive science [8,9] showed that one of the key factors that differentiates experts and novices in a 
field is their different prior knowledge of world state representation. Experts view the world in terms of deep functional fea-
tures (e.g., coefficient and constant in algebra), while novices only view in terms of shallow perceptual features (e.g., integer 
in an expression). Deep features are often domain-specific, whereas shallow perceptual features are domain-independent. 
Having the correct representation of the deep features aids the process of solving the domain task. For example, in algebra, 
students need to learn to encode equation input into “terms” and “coefficients”. A shallow feature encoding of a coefficient 
(e.g., of the “5” in “5x”) is as a number before a letter. A deep feature encoding requires the learner to develop knowl-
edge, which may include implicit perceptual processing capabilities, to recognize coefficients more generally such as the 
“-5” in “-5x”, the “a” in “ax”, the “3” in “3(x+2)”, the “-1” in “-x”. In general, experts develop deep feature knowledge that 
allows them to see the world in the way novices do not – expert readers see “run” as a word whereas novices see letters 
or just lines, experts in physics see force contact points whereas novices see blocks and inclined planes, chess experts see 
configurations of pieces like a knight fork whereas novices see pieces. Such deep feature perception knowledge is learned 
for specific domains, perhaps as much by implicit experience as by explicit instruction. In algebra, students learn to see 
terms and coefficients in equations building upon more general prior knowledge of numbers. That prior knowledge may be 
the basis for initial shallow feature encoding as in the example above. In general, we consider deep features as part of rep-
resentation knowledge. Representation knowledge organizes low-level perceptual input into a structured form that assists 
the agent to understand and solve problems in a particular domain. Even if the same perceptual input was given, for dif-
ferent problem solving tasks in different domains, the ideal representation of the world can be different for different tasks. 
Deep features can be viewed as the key features that differentiate a well-structured representation from a poorly-structured 
representation.

Deep feature learning is a major component of human expertise acquisition, but has not received much attention in 
AI. Learning deep features changes the representation on which future learning is based and, by doing so, improves future 
learning. However, how these deep features are acquired is not clear. Therefore, we have recently developed a learning 
algorithm that acquires deep features automatically with only domain-independent knowledge (e.g., what is an integer) as 
input [10]. We evaluated the effectiveness of the algorithm in learning deep features, but not its impact on future skill 
learner.

In order to evaluate how the deep feature learner could affect future learning of an intelligent agent, in this paper, we 
integrated this deep feature learning algorithm into SimStudent [11], an agent that learns problem-solving skills by example 
and by feedback on performance. The original SimStudent relies on a hand-engineered representation that encodes an expert 
representation given as prior knowledge. This limits its ability to model novice students. The extended SimStudent first 
acquires the representation of the problems using the deep feature learner. Then, it makes use of the learned representation 
to acquire skill knowledge in later tasks. Integrating the deep feature learner into the original SimStudent both reduces the 
amount of engineering effort and builds a better model of student learning.

We show that the extended SimStudent with better representation learning performs much better than the original Sim-
Student when neither of them are given domain-specific knowledge. Furthermore, we also show that even compared to the 
original SimStudent with the domain-specific knowledge, the extended SimStudent is able to learn nearly as well without 
being given domain-specific knowledge. For the sake of simplicity, we only report experiment results in the algebra domain 
in this paper, but similar results are also observed in other domains [12]. In addition, we use the extended SimStudent 
to automatically discover models of real students, and show that the discovered models are better student models than 
human-generated models [13]. Although not reported here, we further use the extended SimStudent to better understand 
how problem orders affect learning effectiveness by inspecting SimStudent’s learning processes and learning outcomes, 
which are not easily obtainable from human subjects [14].

To summarize, the main contributions of this paper are two-fold. By integrating representation learning into skill learn-
ing, 1) we reduce the amount of knowledge engineering effort required in constructing an intelligent agent; 2) we get a 
better model of human behavior.

In the following sections, we start with a brief review of SimStudent. We then present the deep feature learning algo-
rithm together with its evaluation results. Next, we describe how to integrate the deep feature learner into SimStudent, and 
illustrate the algorithm with an example in algebra. After that, we present experimental results for both the original Sim-
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Fig. 1. The interface where SimStudent is being tutored in an equation solving domain. The given problem was −3x + 2 = 8, and SimStudent has been 
tutored to subtract both sides by 2. After entering divide 3, SimStudent asks the author user/tutor whether this step is correct. If SimStudent has not 
learned an applicable production rule, it asks the author to demonstrate a good next step and then learns a production rule to reproduce steps like this.

Student and the extended SimStudent trained with problem sets used by real students in learning algebra, and show that 
the extended SimStudent is able to achieve performance comparable to the original SimStudent without requiring domain-
specific knowledge as input. We present a method for using SimStudent to automatically discover student models, and 
show that the student model discovered by the extended SimStudent is better than the human-generated models. Finally, 
we discuss related work limitations, and possible future extensions.

2. A brief review of SimStudent

SimStudent is an intelligent agent that inductively learns skills to solve problems from demonstrated solutions and 
from problem solving experience. It is an extension of programming by demonstration [16] using inductive logic program-
ming [17] as one of its underlying learning techniques.

SimStudent, as a theory of learning in academic domains, makes the following assumption: 1. Problem-solving skills can 
be modeled as condition-response patterns. Much of academic learning (expertise development) involves skill acquisition of 
well represented production rules (or schemas) that indicate a mental or external response (how-part) may be made when 
the information needed is found (where-part) and pre-conditions are met (when-part) in hierarchical representations of the 
perceived world. 2. Multiple learning mechanisms are used in skill learning. Effective learning of skills requires three kinds 
of generalizations: where, when, how. 3. Skill learning has a perceptual grounding bias. How the input world is represented 
(e.g., in a perceptual abstraction hierarchy) is an essential inductive bias in skill learning. This learning bias produces real 
differences between learning success or failure, from an engineering perspective, and produces real differences in the quality 
of predictions about human academic learning, from a scientific perspective. 4. Representation learning is modeled as an 
unsupervised induction of perceptual structures. An abstract perceptual representation can be acquired in an unsupervised 
way using spatial and temporal proximity information to create chunks. Later in this paper, we present our approach in 
implementing the fourth tenet by using grammar induction.

SimStudent is similar to the ACT-R [18] and Soar [19] theories of learning. Like those theories, SimStudent represents 
the product of learning as a production system. Unlike those theories, it puts more emphasis on knowledge-level learning 
(cf., [20]) achieved through induction from positive and negative examples. SimStudent is more than a problem-solving 
agent, but is a theory of learning in academic domains, with an emphasis on learning skills and their representational 
basis. As with Soar and ACT-R, the theory is made concrete in a software architecture and has been applied to model 
learning (as well as problem solving or skilled performance) across a variety of domains, including math, science, and 
second language [12,21]. Compared to SOAR or ACT-R, not as many models have been created with SimStudent; however, 
the models that have been created cover new territory, demonstrating knowledge-level learning not achieved in Soar or 
ACT-R., specifically without domain-specific prior knowledge of math, science, and language skills.

Figs. 1 and 2 are screenshots of SimStudent learning to solve algebra equations. Fig. 1 is an interface used to teach 
SimStudent equation solving, and Fig. 2 shows how SimStudent keeps track of the demonstrated steps and acquires skill 
knowledge based on them. In this paper, we will use equation solving as an illustrative domain to explain the learning 
mechanisms. However, the learning algorithms are domain general. In fact, SimStudent has been used and tested across 
various domains, including multi-column addition, fraction addition, stoichiometry, and so on. In the rest of this section, we 
will briefly review the learning mechanism of SimStudent. For full details, please refer to [6].
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Fig. 2. CTAT’s [15] behavior recorder is used to show how SimStudent traces each demonstrated step. Each entry in a GUI element is traced. In this example, 
the state changes (steps) are the four entries in the table cells shown in Fig. 1. These are either traced by an existing production rule or used to learn a 
new production rule. The conflict tree panel in the figure shows that SimStudent applied the skill “divide” incorrectly (i.e., dividing both sides by 3 instead 
of −3).

2.1. Learning task

SimStudent is given a set of (ideally simple) feature predicates and a set of (ideally simple) operator functions as prior 
knowledge before learning. Each feature predicate is a boolean function that describes relations among objects in the do-
main. For example, (has-coefficient -3x) means -3x has a coefficient.

Operator functions specify basic functions (e.g., add two numbers, get the coefficient) that SimStudent can apply to 
aspects of the problem representation. Operator functions are divided into two groups, domain-independent operator func-
tions and domain-specific operator functions. Domain-independent operator functions can be used across multiple domains, 
and tend to be simpler (like standard operations on a programming language). Examples of such operator functions include 
adding two numbers, (add 1 2) or copying a string, (copy -3x). These operator functions are not only useful in solving equa-
tions, but can also be used in other domains such as multi-column addition and fraction addition. Because these domain 
general functions are involved in domains that are acquired before algebra, we can assume that real students know them 
prior to algebra instruction. Because these domain general functions can be used in multiple domains, there is a potential 
engineering benefit in reducing or eliminating a need to write new operator functions when applying SimStudent to a new 
domain. Domain-specific operator functions, on the other hand, are more complicated functions, such as getting the coeffi-
cient of a term, (coefficient -3x), or adding two terms, (add-term 5x-8 2x+3). Performing such operator functions implies some 
domain expertise that real students are less likely to have.

Domain-specific operator functions tend to require more knowledge engineering or programming effort than domain-
independent operator functions. For example, compare the “add” domain-independent operator function with the “add-
term” domain-specific operator function. Adding two numbers is one step among the many steps in adding two terms 
together (i.e., parsing the input terms into sub-terms, applying an addition strategy for each term format, and concatenating 
all of the sub-terms together).

Note that operator functions are different from operators in traditional planning systems, operator functions have no 
explicit encoding of preconditions and may not produce correct results when applied in context. For example, dividing both 
sides by 3 (i.e., (divide 3)) is an incorrect step for problem 3x+2=5. Thus, SimStudent is different from traditional planning 
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Fig. 3. A production rule for divide.

algorithms that engage on speed up learning. SimStudent engages in knowledge level learning [20], and inductively acquires 
complex reasoning rules. These rules are represented as production rules, which we will explain later.

During the learning process, given the current state of the problem (e.g., -3x=6), SimStudent first tries to find an appro-
priate production rule that proposes a plan for the next step (e.g., (coefficient -3x ?coef) (divide ?coef)). If it finds one and 
receives positive feedback, it continues to the next step. If the proposed next step is incorrect, negative feedback is given, 
and if SimStudent has no other alternatives, a correct next step demonstration is provided. SimStudent will attempt to mod-
ify or learn production rules accordingly. Although other feedback mechanisms are also possible, in our case, the feedback is 
given by an existing automatic cognitive tutor, CTAT [15], which has been used to teach real students. For each demonstrated 
step, the tutor specifies 1) perceptual information (e.g., -3x and 6 for -3x=6) from a graphical user interface (GUI) showing 
where to find information to perform the next step, 2) a skill label (e.g., divide) corresponding to the type of skill applied, 
3) a next step (e.g., (divide -3) for problem -3x=6). This simulates the limited information available to real students. Taken to-
gether, the three pieces of information form an example action record indexed by the skill label, R = 〈label, 〈percepts, step〉〉. In 
the algebra example, an example action record is R = 〈divide, 〈(−3x, 6), (divide −3)〉〉. For each incorrect next step proposed 
by SimStudent, an example action record is also generated as a negative example. During learning, SimStudent typically ac-
quires one production rule for each skill label, l, based on the set of associated (both positive and negative) example action 
records gathered up to the current step, Rl = (R1, R2, ..., Rn) (where Ri .label = l, i = 1, 2, ..., n).

In summary, since we would like to model how real students are tutored, the learning task presented to SimStudent is 
challenging. First, the total number of world states is large. In equation solving, for instance, there are infinite variety of 
algebraic expressions that can be entered and there are many possible alternative solution strategies. Second, the operator 
functions given as prior knowledge do not encode any preconditions (neither for applicability nor for search control) or 
postconditions. Last, the semantics of a demonstrated step is only partially observable. It usually takes more than one 
operator function to move from one observed state to the next observed state. Correct intermediate outputs of operator 
functions are unobservable to SimStudent. Taken together, the learning task SimStudent is facing is learning skill knowledge 
within infinite world states given incomplete operator function descriptions and partially observable states.

2.2. Production rules

The output of the learning agent is represented as production rules [1,2]. The left side of Fig. 3 shows an example of a 
production rule learned by SimStudent with a simple English description shown on the right. A production rule indicates 
“where” to look for information in the interface (perceptual information), “how” to change the problem state (an operator 
function sequence), and “when” (precondition) to apply a rule (a set of features indicting the circumstances under which 
performing the how-part will be useful). For example, the rule to “divide both sides of -3x=6 by -3” shown in Fig. 3 can 
be read as “given a left-hand side (i.e., -3x) and a right-hand side (i.e., 6) of an equation, when the left-hand side does not 
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have a constant term, then get the coefficient of the term on the left-hand side (i.e., -3) and write “divide” followed by the 
coefficient (i.e., (divide -3).”

The perceptual information part represents paths to identify useful information from the GUI. During execution, Sim-
Student matches the perceptual hierarchy against the acquired production rules. With a properly-structured perceptual 
hierarchy, SimStudent would be able to quickly focus its attention on essential information in solving the problem. As we 
will discuss later, with the extension proposed in this paper, SimStudent is also able to update its perceptual hierarchy based 
on inputs from the environment, which aids the learning process. The precondition (just before “⇒” in Fig. 3) includes a 
set of feature tests representing desired conditions in which to apply the production rule. The last part (after “⇒” in Fig. 3) 
is the operator function sequence which computes what to output in the GUI.

2.3. Learning mechanisms

With all the challenges presented, we have developed three learning mechanisms in SimStudent to acquire the three 
parts of the production rules [6]. The first component is a perceptual learner that learns the where-part of the production 
rule by finding paths to identify useful information in the GUI. The elements in the interface are typically organized in 
a tree structure. The left side of Fig. 10 shows an example perceptual hierarchy in the algebra domain. For example, the 
table node has columns as children, and each column has multiple cells as children. The percepts specified in the above 
production rule are cells associated with the sides of the algebra equation, which are Cell 11 and Cell 21 in this case. Hence, 
the perceptual learner’s task is to find the right paths in the tree to reach the specified cell nodes. There are two ways to 
reach a percept node in the interface: 1) by the exact path to its exact position in the tree, or 2) by a generalized path to a 
set of GUI elements that may have a specific relationship with the GUI element where the next step is entered (e.g., cells 
above next step). A generalized path has one or more levels in the tree that are bound to more than one node. For example, 
a cell in the second column and the third row, Cell 23, can be generalized to any cell in the second column, Cell 2?, or any 
cell in the table, Cell ??. In the example shown in Fig. 3, the production rule has an over-specific where-part that produces 
a next step only when the sides of the current step are in row two.

SimStudent assumes that example action records for the same skill have a fixed number of percepts. Therefore, for each 
positive example action record associated with skill label l, Ri ∈ Rl , the percept field, Ri .percepts, is an m-dimensional 
vector, i.e., Ri .percepts = (perceptsi1, perceptsi2...perceptsim), where perceptsi j stands for the jth percept in the ith example 
action record. Each percept in the vector, perceptsi j , is a GUI element.1 The set of percepts from all positive examples form an 
n × m matrix, P = (R1.percepts, R2.percepts, ...Rn.percepts)T , where each row Pi? is a percepts field in one example action 
record, and each column P? j is composed of percepts of the same index in all of the example action records. For each 
position j, the set of paths, where each path can reach all percepts in P? j , defines a version space V j [22] (i.e., the subset 
of all hypotheses that are consistent with the observed training examples). The learner searches for the least general path 
in the version space V j . This process is done by a brute-force depth-first search. For example, if only given the example 
-3x=6 in row two, the production rule learned as shown in Fig. 3 has an over-specific where-part. If given more examples 
in other rows (e.g., 4x=12 in row three), the where-part will be generalized to any row in the table.

The second part of the learning mechanism is a feature test learner that learns the when-part of the production rule 
by acquiring the precondition of the production rule using the given feature predicates. The acquired preconditions should 
contain information about both applicability (e.g., getting a coefficient is not applicable to the term 3x+5) and search control 
(e.g., it is not preferred to add 5 to both sides for problem -3x=6). The feature test learner utilizes FOIL [23], an inductive 
logic programming system that learns Horn clauses from both positive and negative examples expressed as relations. FOIL 
is used to acquire a set of feature tests that describe the desired situation in which to fire the production rule. For each 
rule, the feature test learner creates a new predicate that corresponds to the precondition of the rule, and sets it as the 
target relation for FOIL to learn. The arguments of the new predicate are associated with the percepts. Each training action 
record serves as either a positive or a negative example for FOIL. The task of FOIL is to find a set of feature tests that 
best separate positive examples from negative examples. For example, (precondition − divide ?percept1 ?percept2) is the 
precondition predicate associated with the production rule named “divide”. (precondition-divide -3x 6) is a positive example 
for it. The feature test learner computes the truthfulness of all predicates bound with all possible permutations of percept 
values, and sends it as input to FOIL. Given these inputs, FOIL will acquire a set of clauses formed by feature predicates 
describing the precondition predicate.

The last component is an operator function sequence learner that acquires the how-part of the production rule. For each 
positive example action record, Ri , the learner takes the percepts, Ri .percepts, as the input, and sets the step, Ri .step, 
as the output. We say an operator function sequence explains a percepts-step pair, 〈Ri .percepts, Ri .step〉, if the system 
takes Ri .percepts as the input and yields stepi after applying the operator functions. For example, if SimStudent first re-
ceives a percepts-step pair, 〈(2x,2), (divide2)〉, both the operator function sequence that directly divides both sides with 
the right-hand side (i.e., (divide ?rhs)), and the sequence that first gets the coefficient, and the divides both sides with 
the coefficient (i.e., (coefficient ?lhs ?coef) (divide ?coef)) are possible explanations for the given pair. Since we have multiple 
example action records for each skill, it is not sufficient to find one operator function sequence for each example action 

1 In the case of the equation solving domain, all percepts are associated with cells, but the learning algorithm is not limited to cells.
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Table 1
Probabilistic context free grammar for coefficient in algebra.

Terminal symbols: −, x;
Non-terminal symbols: Expression, SignedNumber, Variable, MinusSign, Number;
Expression → 1.0, [SignedNumber]Variable
Variable → 1.0, x
SignedNumber → 0.5, MinusSign Number
SignedNumber → 0.5, Number
MinusSign → 1.0, −

record. Instead, the learner attempts to find a shortest operator function sequence that explains all of the 〈percepts, step〉
pairs using iterative-deepening depth-first search within some depth-limit. As in the above example, since (divide ?rhs) is 
shorter than (i.e., (coefficient ?lhs ?coef) (divide ?coef)), SimStudent will learn this operator function sequence as the how-part. 
Later, it meets another example, -3x=6, and receives another percepts-step pair, 〈(−3x,6), (divide − 3)〉. The operator func-
tion sequence that divides both sides with the right-hand side is not a possible explanation any more. Hence, SimStudent 
modifies the how-part to be the longer operator function sequence (coefficient ?lhs ?coef) (divide ?coef).

Last, although we said that SimStudent tries to learn one rule for each label, when a new training action record is added, 
SimStudent might fail to learn a single rule for all example action records. In that case, SimStudent learns a separate rule 
just for the last example action record. More specifically, SimStudent starts with a given set of skill labels associated with 
demonstrated steps. SimStudent tries to learn one rule for each label. It will fail when the perceptual information learner 
cannot find one path that covers all demonstrated steps, or the operator sequence learner cannot find one operator function 
sequence that explains all records. In that case, SimStudent learns a disjunctive rule just for the last record. This effectively 
splits the examples into two clusters. Later, for each new record, SimStudent tries to acquire a rule for each of the clusters 
with the new record, and stops whenever it successfully learns a rule with one of the clusters. If the new record cannot be 
added to any of the existing clusters, SimStudent creates another new cluster. With this approach, the number of clusters 
only increases as more records are seen. There is no merge operation among clusters.

3. Deep feature learning

Having reviewed SimStudent’s production rule learning mechanisms, we move to a discussion of representation knowl-
edge acquisition as deep feature learning. As mentioned above, deep feature learning is important both for human knowl-
edge acquisition, and in achieving effective machine learning. We carefully examined the nature of deep feature learning in 
algebra equation solving, and discovered that it could be modeled as an unsupervised grammar induction problem given 
observational data (e.g., expressions in algebra). Expressions can be formulated as a context free grammar (CFG) and deep 
features are modeled as grammar non-terminal symbols in particular positions in a grammar rule. Table 1 illustrates a por-
tion of a grammar for algebra expressions and the modeling of the deep feature “coefficient” as a non-terminal symbol in 
one of the grammar rules, as indicated by the square brackets (i.e., [SignedNumber]).

Viewing feature learning tasks as grammar induction provides a general explanation of how experts acquire perceptual 
chunks [9,24] and specific explanations for novice errors. In this account, some novice errors are the result of acquiring the 
wrong grammar for the task domain. Let us use the -3x example again. The correct grammar shown in Table 1 produces 
the correct parse tree shown on the left in Fig. 4. A novice, however, may acquire different grammar rules (e.g., because of 
plausible lack of experience with negative numbers) and these result in the incorrect parse tree shown on the right of Fig. 4. 
Instead of grouping - and 3 together, this grammar groups 3 and x first, and thus mistakenly considers 3 as the coefficient. 
In fact, a common strategic error students make in a problem like -3x=12 is for the student to divide both sides by 3 rather 
than -3 [13]. Based on observations like these, we built a deep feature learner by extending an existing probabilistic context 
free grammar (pCFG) learner [25] to support feature learning and transfer learning. Note that the deep feature learner is 
domain general. It currently supports domains where student input can be represented as a string of tokens, and can be 
modeled with a context-free grammar (e.g., algebra, chemistry, natural language processing).

Fig. 4. Correct and incorrect parse trees for −3x.
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Algorithm 1: GSH constructs an initial set of grammar rules, S , from observation sequences, O .
Input: Observation Sequence Set O .

1 S := terminal symbol grammar rules;
2 while not-all-sequences-are-parsable(O , S) do
3 if has-recursive-rule(O ) then
4 s := generate-recursive-rule(O );
5 else
6 s := generate-most-frequent-rule(O );
7 end
8 S := S + s;
9 O := update-plan-set-with-rule(O , S);

10 end
11 S = initialize-probabilities(S);
12 return S

3.1. A brief review of the pCFG learner

Before introducing the deep feature acquisition algorithm, we first briefly review the pCFG learner [25] it is based on. 
The pCFG learner is a variant of the inside–outside algorithm [26] that acquires a probabilistic context-free grammar (pCFG) 
using an expectation-maximization (EM) algorithm [27]. The input to the pCFG learner is a set of observation sequences, O. 
Each sequence is a string of tokens directly from user input. The output is a pCFG that can generate all input observation 
sequences with high probabilities. The system consists of two parts, a greedy structure hypothesizer (GSH), which creates 
non-terminal symbols and associated grammar rules, as needed, to cover all the training examples, and a Viterbi training 
step, which iteratively refines the probabilities of the grammar rules.

3.1.1. Greedy structure hypothesizer (GSH)
Pseudo code for the GSH algorithm is shown in Algorithm 1. GSH creates a xcontext-free grammar in a bottom-up 

fashion. It starts by initializing the rule set S to rules associated with terminal characters (e.g., 3 and x in 3x) in the 
observation sequences, O . Next the algorithm (line 4) detects whether there are possible recursive structures embedded 
in the observation sequence by looking for repeated symbols. If so, the algorithm learns a recursive rule for them. If the 
algorithm fails to find recursive structures, it starts to search for the character pair that appears in the plans most frequently 
(line 6), and constructs a grammar rule for the character pair. To build a non-recursive rule, the algorithm will introduce a 
new symbol and set it as the head of the new rule. After getting the new rule, the system updates the current observation 
set O with this rule by replacing the character pairs in the observations with the head of the rule (line 9).

After learning all the grammar rules, the structure learning algorithm assigns initial probabilities to these rules. If there 
are k grammar rules with the same head symbol, then each of them are assigned the probability 1

k . To break ties among 
grammar rules with the same head, GSH adds a small random number to each probability and normalizes the values again. 
This output of GSH is a redundant set of grammar rules, which is sent to the Viterbi training phase.

3.1.2. Refining schema probabilities: Viterbi training phase
The probabilities associated with the initial set of rules generated by the GSH phase are tuned by a Viterbi training 

algorithm. It considers the parse tree associated with each observation sequence as hidden variables. Each iteration involves 
two steps. Algorithm 2 shows the pseudo code of the Viterbi training phase.

In the first step, the algorithm computes the most probable parse tree for each observation example using the current 
rules. Any subtree of a most probable parse tree is also a most probable parse subtree. Therefore, for each observation 
sequence, the algorithm builds the most probable parse tree in a bottom-up fashion until reaching the start symbol. After 
getting the parse trees for all observation examples, the algorithm moves on to the second step. In this step, the algorithm 
updates the selection probabilities associated with the grammar rules. For a grammar rule with head ai , the new probability 
of being chosen is simply the total number of times that schema appears in the Viterbi parse trees divided by the total 
number of times ai appears in the parse trees.

In comparison with expectation-maximization [27], Viterbi training is considered as a “hard” EM learning algorithm, 
where only the most probable parse tree is viewed as the parse tree of the observation sequence. In contrast, in a typical 
EM learning procedure, all possible parse trees are used when updating grammar rule probabilities. Therefore, this learning 
procedure is a fast approximation of expectation-maximization, which approximates the posterior distribution of trees given 
parameters by the single MAP hypothesis.

After finishing the second step, the algorithm starts a new iteration until convergence. The output of the algorithm is 
a set of probabilistic grammar rules. As we will explain in Subsection 3.3.2, if trained on prior tasks, during the Viterbi 
training phase, the learning algorithm estimates rule frequency using a Dirichlet distribution.
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Algorithm 2: Viterbi-training updates the probabilities associated with the set of given grammar rules, S , from obser-
vation sequences, O .

Input: Observation Sequence Set O , Grammar Rule Set S .
1 while not-converged do

// Compute the most probable parse trees of the observation sequences.
2 T := φ;
3 forall the oi ∈ O do
4 T := T + get-the-most-probable-parsing(oi , S);
5 end

// Update grammar rule probabilities according to the parse trees.
6 forall the si ∈ S do
7 sel := number-of-times-selected(si , T );
8 tol := number-of-times-selected(si .head, T );
9 si .p := sel / tol;

10 end
11 end
12 return S

3.2. Feature learning

Having reviewed Li et al.’s [25] pCFG learning algorithm, before embedding the algorithm into SimStudent, let’s first 
describe how it is extended to support deep feature learning. The input of the system is a set of pairs such as 〈−3x, −3〉, 
where the first element is the input to a feature extraction mechanism (e.g., finding the coefficient of -3x), and the second 
is the extraction output (e.g., -3 is the coefficient of -3x). The output is a pCFG with a non-terminal symbol in one of the 
rules set as the target feature (as shown by [SignedNumber] in Table 1). To produce this output, the deep feature learner 
uses the pCFG learner to produce a grammar, and then searches for non-terminal symbols that correspond to the example 
extraction output (e.g., the -3 in -3x). The process is done in three steps.

The system first builds the parse trees for all of the observation sequences based on the acquired rules. For instance, in 
algebra, suppose we have acquired the pCFG shown in Table 1. The associated parse tree of -3x is shown at the left side of 
Fig. 4. Next, for each sequence, the learner traverses the parse tree to identify the non-terminal symbol associated with the 
target feature extraction output, and the rule to which the non-terminal symbol belongs. In the case of our example, the 
non-terminal symbol is SignedNumber, the associated feature extraction output is -3, and the rule is Expression → 1.0, Signed-
Number Variable. For some of the sequences, the feature extraction output may not be generated by a single non-terminal 
symbol, which happens when the acquired pCFG does not have the right structure. For example, the parse tree shown in 
the right side of Fig. 4 is an incorrect parse of -3, and there is no non-terminal symbol associated with -3. Last, the system 
records the frequency of each symbol rule pair, and picks the pair that matches the most training records as the learned 
feature. For instance, if most of the input records match with SignedNumber in Expression → 1.0, SignedNumber Variable, this 
symbol-rule pair will be considered as the target feature pattern.

After learning the feature, when a new problem comes, the system will first build the parse tree of the new problem 
based on the acquired grammar. Then, the system recognizes the subsequence associated with the feature symbol from the 
parse tree, and returns it as the target feature extraction output (e.g., -5 in -5x).

3.3. Transfer learning for deep feature learning

In order to achieve effective learning, we further extended the feature learner to support transfer learning within the 
same domain and across domains. Different grammars sometimes share grammar rules for some non-terminal symbols. 
For example, both the grammar of equation solving and the grammar of integer arithmetic problems should contain the 
sub-grammar of signed number. We extended the feature learning algorithm to transfer solutions to common sub-grammars 
from one task to another. Note that the tasks can be either from the same domain (e.g. learning what is an integer, and 
learning what is a coefficient), or from different domains (e.g. learning what is an integer, and learning what is a chemical 
formula). We consider two learning protocols: one in which the tutor provides hints to a shared grammar by highlighting 
subsequences that should be associated with a non-terminal symbol; and one in which the shared grammar is present, 
but no hints are provided. For transfer learning with sub-grammar hints, we applied what we will call a feature focus 
mechanism to the acquisition process. For transfer learning without sub-grammar hints, we extended the system to make 
use of grammar rule application frequencies from previous tasks to guide future learning, as explained below.

3.3.1. Explicitly labeled common sub-grammars
We first consider the situation where SimStudent’s tutor provides a hint toward a shared sub-grammar (the deep fea-

ture). In the original learning algorithm, during the process of grammar induction, the learner acquires some grammar that 
generates the observation sequences, without differentiating potential feature subsequences (e.g. coefficients or constant 
terms) from other subsequences in the training examples. It is possible that two grammars can generate the same set of 
observation sequences, but only one grammar has the appropriate feature symbol embedded in it. We cannot be sure that 
the original learner will learn the right one.
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However, it may be reasonable to assume that a tutor explicitly highlights example subsequences as targeted features as 
in a teacher giving examples of coefficient by indicating that -3 is the coefficient of -3x and -4 is the coefficient of -4x. With 
this assumption, the deep feature learner can focus on creating non-terminal symbols for such feature subsequences. We 
developed this feature focus mechanism as follows. First, we call one copy of the original learner to learn the sub-grammar for 
the deep feature. That is, we extract all the feature subsequences from training sequences, and then learn a sub-grammar 
for it. We then replace the feature subsequence with a special semantic terminal symbol, and invoke the original learner on 
this problem. Since this semantic terminal symbol is viewed as a terminal character in this phase of learning, it must be 
properly embedded in the observation sequence. Finally, the two grammars are combined, and the semantic terminal is 
relabeled as a non-terminal symbol and associated with the start symbol for the grammar for the feature.

3.3.2. Learning and transfer of common sub-grammars without hints
Aiding transfer learning by providing hints for common sub-grammars requires extra work for the tutor. A more powerful 

learning strategy should be able to transfer knowledge without adding more work for the tutor. Therefore, we considered 
a second learning protocol, where the shared grammar is present, but no hints to it are provided. An appropriate way of 
transferring previously acquired knowledge to later learning could improve the speed and accuracy of that later learning. 
The intuition here is that the perceptual chunks or grammar acquired with whole-number experience will aid grammar 
acquisition of negative numbers which, in turn, will aid algebra grammar acquisition. Our solution involves transferring the 
acquired grammar, including the application frequency of each grammar rule, from previous tasks to future tasks.

More specifically, during the acquisition of the grammar in previous tasks, the learner records the acquired grammar 
and the number of times each grammar rule appeared in a parse tree. Since previous research on algebra problem solv-
ing has pointed out that computational parsimony is an important factor in a quality cognitive model of human problem 
solving [28], when faced with a new task, the learning algorithm uses the existing grammar from previous tasks to build 
the smallest number of most probable parse trees for the new records. This process is done in a top-down fashion. For 
each sequence/subsequence, the algorithm first tries to see whether the given sequence/subsequence can be reduced to a 
single most probable parse tree. If it succeeds, the algorithm returns; if it fails, the algorithm separates the sequence/subse-
quence into two subsequences, and recursively calls itself. After building the least number of most probable parse trees for 
the training subsequences, the system switches to the original GSH and acquires new rules based on the partially parsed 
sequences.

For example, if the grammar learner acquired what is a signed number (e.g. -3) in a previous task, when faced with 
a new task of learning what is a term (e.g. -3x), the learner first tries to build a parse tree for the whole term (e.g. -3x). 
But it fails because the grammar for signed number can only build the parse trees for some subsequence (e.g. -3 in -3x). 
Nevertheless, the grammar learner does get some partially parsed sequences (e.g. the partial reduced sequence for -3x is 
SignedNumber x), and calls the original grammar learner on these partially parsed sequences.

During the Viterbi training phase, the learning algorithm estimates rule frequency using a Dirichlet distribution based 
on prior tasks; that is, it adds the applied rule frequency associated with the training problems of the current task to 
the recorded frequency from previous tasks. Note that it is possible that after acquiring new rules with new examples, in 
the Viterbi training phase, the parse trees for the training examples in the previous tasks have changed, and the recorded 
frequencies are no longer accurate, so this is not equivalent to combining the examples from the old task with the examples 
of the new task. By recording only the frequencies, instead of rebuilding the parse trees for all previous training examples 
in each cycle, we save both space and time for learning.

One key SimStudent limitation is that it depends on having a tutor that provides examples and feedback at a fine grained, 
step-by-step level. The more the steps are coarse-grained, requiring lots of inferences between them (that are not part of 
the functions in prior knowledge), the less likely SimStudent will effectively learn. More generally, it is not clear how well 
SimStudent’s representation learning will generalize to all needs for accumulating relevant prior knowledge, particularly new 
features (used in when-learning). Although some work has begun to explore this issue [29], more investigation is needed.

Having acquired the grammar for deep features, when a new problem is given to the system, the learner will extract deep 
features by first building the parse tree of the problem based on the acquired grammar, and then extracting subsequences 
associated with feature symbols from the parse tree as target features. This model presented so far learns to extract deep 
features in a mostly unsupervised way without any goals or context from SimStudent problem solving. Later, we describe 
how to extend its ability by integrating it into SimStudent.

4. Empirical evaluation on deep feature learner

To evaluate the proposed deep feature learner, we carried out two controlled experiments. We compared four alternatives 
of the proposed approach: 1) without transfer learning and no feature focus; 2) without transfer learning, but with feature 
focus; 3) with transfer learning (from unlabeled sub-grammars), and without feature focus; 4) with transfer learning from 
unlabeled sub-grammars and feature focus. Learners without labeled feature have no way of knowing what the feature is; 
instead, we report the accuracy that would be obtained using the non-terminal symbol that mostly frequently corresponds 
to the feature sub-grammar in the training examples. Note that we did not compare the proposed deep feature learner 
with the inside–outside algorithm, as Li et al. [30] have shown that the base learner (i.e. the learner with no extension) 
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Fig. 5. Learning curve in synthetic domain with (a) subtask to task transfer problems (b) overlapping tasks transfer problems.

outperforms the inside–outside algorithm.2 All the experiments were run on a 2.53 GHz Core 2 Duo Macbook with 4 GB of 
RAM.

4.1. Experimental design in synthetic domains

In order to understand the generality and scalability of the proposed approach, we first designed and carried out ex-
periments in synthetic domains. We carried out the experiment with two types of transfer in non-recursive domains, the 
sub-grammar transfer and the overlapping-grammar transfer. The transfer learners (#3 and #4 above) were trained on the 
first grammar before being trained and tested on the second grammar. The non-transfer learners (#1 and #2 above) were 
only trained and tested on the second grammar.

In details, each non-recursive domain is formed by randomly generated rules that form a binary and-or tree. The first 
type is a sub-grammar transfer. We randomly generated two sets of non-recursive rules, S1 and S2. S1 is a sub-grammar 
in S2. The size (in terms of number of non-terminal symbols) of S1 is roughly half of S2. In order to further understand 
how transfer learning affects learning efficiency, we carried out a second experiment where the previous grammar is not a 
subset of the current grammar. Rather, this second experiment tests overlapping grammar transfer. We randomly generated 
two non-recursive domains, S1 and S2, where S1 overlaps with S2 in the feature sub-grammar.

The transfer learners (#3 and #4 above) were trained first on S1. Each training record contains a full observation se-
quence and a set of subsequences (usually just one) associated with the feature. If S1 contains n1 non-terminal symbols 
in S1, the number of training records is 10n1. Then, all four learners were trained and tested on S2. The number of training 
records ranges from zero to ten. If S2 contains n2 non-terminal symbols in S2, the number of testing sequences is 10n2.

For each testing record, we compared the feature recognized by the oracle grammar with those recognized by the 
acquired grammar. The score is the percentage of times the acquired grammar recognized the same feature as the oracle 
grammar averaged over 100 randomly generated feature extraction tasks. In the results section, we show the score achieved 
by the learner given increasing number of training examples, as learning curve.

4.2. Experiment results in synthetic domains

We evaluated both the efficiency and the scalability of the proposed algorithm. For learning efficiency, we measured the 
learning curves of the learners. For scalability, we looked at the accuracy, time, and size of the acquired grammars with 
different domain sizes.

Rate of learning: In order to test the learning speed, we randomly generated 100 sub-grammar-grammar pairs, 〈S1,i , S2,i〉, 
where i = 1, 2, ...100. For each pair, 〈S1,i, S2,i〉, S2,i has 20 non-terminal symbols. We measured the scores of the four learn-
ers of every sub-grammar-grammar pair given different numbers of training sequences. The results are shown in Fig. 5(a) 
and 5(b). We can see that the learner with both transfer learning and feature focus (+Transfer +Feature Focus) has the steepest 
learning curve. In the sub-grammar transfer case, with ten training records, the learner (+Transfer + Feature Focus) achieves 
score 0.99, which is much higher than the score of the base learner without transfer learner and feature focus (-Transfer 
-Feature Focus), 0.65. Learners with a single extension (-Transfer +Feature Focus, and +Transfer -Feature Focus) have a slower 
learning curve comparing with the learner with both extensions (+Transfer +Feature Focus), but both outperform the base 
learner (-Transfer -Feature Focus).

2 http://rakaposhi.eas.asu.edu/nan-tist.pdf.

http://rakaposhi.eas.asu.edu/nan-tist.pdf
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Fig. 6. Time during learning with different domain sizes with (a) subtask to task transfer problems. (b) overlapping tasks transfer problems.

Fig. 7. Score with different domain sizes with (a) subtask to task transfer problems. (b) overlapping tasks transfer problems.

Note that the transfer-only learner (+Transfer -Feature Focus) has a better score with a small number of training records 
than the learner with only feature focus (-Transfer +Feature Focus). But after ten training records, the learner with only feature 
focus (-Transfer +Feature Focus) catches up with the transfer-only learner (+Transfer -Feature Focus). This situation appears in 
both transfer tasks.

Not surprisingly, since sub-grammar transfer is explicitly trained on the feature in task one before switching to task two, 
the difference between learners with and without transfer learning, is larger than that in overlapping task transfer. Moreover, 
since we randomly pick features from randomly generated grammars in the overlapping task transfer, it is possible that the 
selected feature is at a relatively low level in the hierarchy, and thus corresponds to very short subsequences or one specific 
action sequence (no disjunctions). In this case, the targeted feature is easy to learn, and the benefit of transfer is diminished. 
But even so, all the extended learners (-Transfer +Feature Focus, and +Transfer -Feature Focus, and +Transfer +Feature Focus) still 
outperform the base learner (-Transfer -Feature Focus).

Scalability of the learning algorithm: In order to understand the scalability of the proposed algorithms, we also tested 
the performance of the four learners in terms of accuracy, time, and size of acquired grammar, with different numbers 
of domain sizes. The scores of learners in domains with five to twenty-five non-terminal symbols are shown in Fig. 7(a) 
and 7(b). We can see that with ten training records, the learner with both extensions (+Transfer +Feature Focus) performs 
the best among all four learners, while the base leaner (-Transfer -Feature Focus) shows the fastest drop with increasing size 
of domains. The two learners with a single extension (-Transfer +Feature Focus, and +Transfer -Feature Focus) perform roughly 
equally well. With domains of size 25, the scores of the two learners are no more than 3% apart.

As for the average time spent on each training record, as shown in Fig. 6(a) and Fig. 6(b), all learners acquire the targeted 
feature within a reasonable amount of time. While the transfer-only learner (+Transfer -Feature Focus) took 266 milliseconds 
per training record with domains of size 25, all other learners (-Transfer -Feature Focus, and -Transfer +Feature Focus, and 
+Transfer +Feature Focus) took less than 1 millisecond per training record during learning. We found out that the learner 
with transfer learning from unlabeled sub-grammars, but without the feature focus (+Transfer -Feature Focus) runs slower 
with domains of larger sizes. In fact, it needs 266 milliseconds per training record. This is because in the second task, 
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maintaining the grammar rules acquired from previous task requires much more work in the Viterbi training step. Besides, 
the feature focus mechanism enables the learner to separate a whole sequence into small subsequences and focus on one 
small piece at a time during learning. Since the transfer-only learner (+Transfer -Feature Focus) does not consider feature 
focus during learning, it takes longer than the other learners.

We also looked at the conciseness of the acquired grammar, since grammars of larger sizes typically slow down the 
process of future learning, as well as feature extraction. To measure conciseness, we compute the symbol ratio between 
the number of symbols in the learned grammar and the original schema. With sub-grammar transfer, all four learners 
acquired grammars of roughly equal sizes. With overlapping grammar transfer, since the learners with transfer learning from 
unlabeled sub-grammars (+Transfer -Feature Focus, and +Transfer +Feature Focus) also need to maintain knowledge acquired 
from the previous task, both have a higher symbol ratio then the other two learners. This is reasonable since they do have 
more knowledge embedded in the grammar.

4.3. Experimental design in algebra

In order to understand whether the proposed algorithm is a good model of real students, we carried out a controlled 
simulation study in algebra using the +Transfer+Feature Focus learner. Accelerated future learning, in which learning proceeds 
more effectively and more rapidly because of prior learning, is an essential measure of robust learning. We have little by way 
of precise understanding of the learning mechanisms that yield these results. A computational model of accelerated future 
learning that fits student learning data would be a significant achievement in theoretical integration within the learning 
sciences, and reveal insights on improving current education technologies. In this study, we focus on using the proposed 
learning algorithm to model and to get a better understanding of accelerated future learning.

Two possible causes for accelerated future learning are a better learning strategy or stronger prior knowledge. Learn-
ing with feature focus is an example of using a better learning strategy during knowledge acquisition. Transfer learning 
from unlabeled sub-grammars is an example of developing stronger prior knowledge from previous training to prepare for 
better future learning. The objective of this study is to test 1) whether the proposed model could yield accelerated future 
learning with stronger prior knowledge and better learning strategies, 2) if so, how prior knowledge and learning strategies 
affect the learning outcome. In other words, can we model how students may learn later tasks more effectively after prior 
unsupervised or semi-supervised experience?

4.3.1. Method
In order to understand the behavior of the proposed model, we designed three sequences of learning tasks of increas-

ing difficulties. Here, we refer these sequences as curricula. There were three tasks used across the three curricula. Each 
learning task is again a feature extraction task, that can be captured by an oracle grammar, where the target feature can be 
represented as a non-terminal symbol in a grammar rule. Task one is to learn about signed numbers. Task two is to learn 
how to recognize a coefficient from expressions in the form of {SignedNumber x}. Task three is to learn how to recognize a 
constant in the left-hand side from equations in the form of {SignedNumber x - Integer = SignedNumber}. The three curricula 
contain 1) task one, task two; 2) task two, task three; 3) task one, task two, and task three.

There were also 10 training sequences to control for a difference in training problems. The training data were randomly 
generated following the grammar corresponding to each task. For instance, task two’s grammar is shown in Table 1. In all but 
the last task, each learner was given 10 training problems, which are enough for each learner to acquire the representation 
knowledge in the learning task. For the last task, each learner was given one to five training records to show the rate of 
learning as the number of training records increases.

To measure learning gain under each training condition, a separate testing phase was carried out. In this phase, the 
system no longer updated its knowledge based on the given records. It simply extracted features from the given records 
using the knowledge acquired in the training phase. The quality of the knowledge was evaluated by the accuracy of the 
extracted features. Both systems were tested on 100 expressions in the same form of the training data in the last task. 
For each testing record, we compared the feature extracted by the oracle grammars with that recognized by the acquired 
grammars. Note that in task two, 4% of the testing problems in task two were x and −x. To assess the accuracy of the 
model, we asked both systems to extract the feature from each problem. We then used the oracle grammar to evaluate the 
correctness of output. A brief summary of the method is shown in Table 2.

4.3.2. Measurements
To assess the learning outcome, we measured the learning rate in the last task of each curriculum to evaluate the 

effectiveness of the learners. The experiment tested whether the proposed model is able to yield accelerated future learning, 
that is, a faster learning rate in the last task either because of transfer prior learning or because of a better learning strategy. 
We compare the same four learners used in the previous simulations, that is, the combinations of transfer or not and feature 
focus or not. To evaluate the learning rate, we report learning curves for all four learners by the number of training problems 
given in the last task. The accuracy of the feature extraction task is averaged over 10 training conditions.

This experiment focuses on measuring the learning rate. In Section 7, we also test whether the proposed model fits with 
real student data. We show that after integrating the proposed model into a simulated student, the extended simulated 
student can be used to automatically discover student models. The discovered model fits with real student data better than 
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Table 2
Method summary.

Three tasks: T1, learn signed number
T2, learn to find coefficient from expression
T3, learn to find constant from equation

Three curricula: T1 → T2
T2 → T3
T1 → T2 → T3

Number of training condition: 10
Training size in all but last tasks: 10
raining size in the last task: 1, 2, 3, 4, 5
Testing size: 100

human-generated models. This indicates that the extended simulated student simulates the real student learning process 
well.

4.4. Experiment results in algebra

As shown in Fig. 8(a), with curriculum one, all four learners acquired better knowledge with more training examples.3

With five training problems, either transfer or feature focus are sufficient to acquire knowledge of score 0.96, while the base 
learner with neither was only able to achieve a score around 0.5. Both learners with transfer learning (+Transfer -Feature 
Focus, and +Transfer +Feature Focus) have the steepest learning curve. In fact, they reached a score of 0.96 with only one 
training example. The feature focus learner (-Transfer +Feature Focus) learns more slowly than the learners with transfer 
learning (+Transfer -Feature Focus, and +Transfer +Feature Focus), but is able to reach a score of 0.96 after five training ex-
amples. Learners that transfer prior grammar learning achieve faster future learning than those without transfer learning. 
The base learner (-Transfer -Feature Focus) learns most slowly. A careful inspection shows that without feature focus and 
transfer learning, the base learner was not able to acquire a grammar rule with a non-terminal symbol generally corre-
sponding with the feature “coefficient”, though it does learn to identify positive coefficients (like many novice students). 
This causes the failure of identifying the feature symbol. Comparing the base learner (-Transfer -Feature Focus) and the 
learner with feature focus (-Transfer +Feature Focus) we can see that a better learning strategy also yields a steeper learning 
curve.

Similar results were also observed with curriculum two and curriculum three as shown in Fig. 8(a) and 8(b).4 In curricu-
lum two, case by case inspection shows that, in some conditions, if a transfer learner, (+Transfer -Feature Focus) remembers 
the wrong knowledge acquired from task two, and transferred this knowledge to task three, the learner will perform even 
worse than the learner with no prior knowledge (-Transfer -Feature Focus). This indicates that more knowledge does not 
necessarily lead to steeper learning curves. Transferring incorrect knowledge leads to less learning.

In all three curricula, the transfer learner (+Transfer -Feature Focus) always outperforms the learner with the semantic 
non-terminal constraint (-Transfer +Feature Focus). This suggests that prior knowledge is more effective in accelerating future 
learning than this learning strategy.

5. Integrating deep feature representation learning into SimStudent

Given the promising results shown above, we believe the proposed deep feature learner is effective in acquiring rep-
resentation knowledge, and is a good model of real students. To evaluate how the deep feature representation learner 
could affect the problem-solving learning of an intelligent agent, in this section, we present an integration of deep fea-
ture learning into such an agent, SimStudent. This extension integrates ideas of theories of perceptual chunking [31] as 
a basis for improving knowledge representations that, in turn, facilitate better learning of problem solving skills. With 
the current extension, the representation is acquired by a deep feature learner before skill learning. Hence, the acquired 
representation does not change during the course of skill acquisition. As we will discuss in later sections, one possible 
future step is to use the feedback from the skill learning process to further refine the representation learning pro-
cess.

As we have mentioned above, SimStudent is able to acquire production rules in solving complicated problems, but 
requires a set of operator functions given as prior knowledge. Some of the operator functions are domain-specific and 
require expert knowledge to build. In contrast, the feature learner acquires deep features that are essential for ef-
fective learning without requiring prior knowledge engineering. In order to both reduce the amount of prior knowl-
edge engineering needed for SimStudent and to build a better model of real students, we present a novel approach 
that integrates the representation learner into SimStudent. Fig. 9 shows a comparison between a production rule ac-
quired by the original SimStudent and the corresponding production rule acquired by the extended SimStudent. As 

3 The (+Transfer -Feature Focus, and +Transfer +Feature Focus) are overlapping.
4 The (+Transfer -Feature Focus, and +Transfer +Feature Focus) are overlapping in Fig. 8(c).
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Fig. 8. Learning curves in the last task for four learners in curriculum (a) from task one to task two (b) from task two to task three (c) from task one and 
two to task three. Both prior knowledge transfer and the feature focus strategy produce faster learning.

Fig. 9. Original and extended production rules for divide in a readable format. Grammar learning allows extraction of information in where-part of the 
production rule and eliminated the need for domain-specific function authoring (get-coefficient) for use in the how-part.

we can see, the essential change is that the coefficient of the left-hand side (i.e., -3) is included in the percep-
tual information part in the extended production rule. Therefore, the operator function sequence no longer needs 
the domain-specific operator, “get-coefficient”. Then the question becomes how can the algorithm learn to include -3
into the perceptual information part. To achieve this, we extended the perceptual learning algorithm as described be-
low.

Previously, the perceptual information encoded in production rules was associated with elements in the graphical user 
interface (GUI) such as text field cells in the algebra equation solving interface. This assumption limited the granularity of 
observation SimStudent could achieve. As suggested by previous work [32], both experts and novices perceive mathematical 
expressions based on their syntactic structure. In fact, the deep features we have discussed previously directly correspond to 
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Fig. 10. Original and extended perceptual hierarchy.

such syntactic structure. Representing these deep perceptual features may enhance the performance of the learning agent, 
and may eliminate or reduce the need for authors/developers to manually encode domain-specific operator functions to 
extract appropriate information from appropriate parts of the perceptual input.

To improve perceptual representation, we extend the percept hierarchy of GUI elements to further include the parse 
tree for the content in the leaf nodes (e.g., text fields) by appending the parse trees as an extension of the GUI path 
learning to the associated leaf nodes. Fig. 10 shows a comparison of the original perceptual hierarchy and the extended 
perceptual hierarchy. Since our deep feature learner acquires probabilistic grammars, there may be more than one parse 
trees for a given input. In this case, we always use the most probable parse tree of the content in the leaf node. All of the 
inserted nodes are of type “subcell”. In the algebra example, this extension means that for cells that represent expressions 
corresponding to the sides of the equation, the extended SimStudent appends the parse trees for these expressions to the 
cell nodes. Let’s use -3x as an example. In this case, the extended hierarchy includes the parse tree for -3x as shown at of 
Fig. 4 as a subtree connecting to the cell node associated with -3x. With this extension, the coefficient (-3) of -3x is now 
explicitly represented in the percept hierarchy. If the extended SimStudent includes this subcell as a percept in production 
rules, as shown at the right side of Fig. 9, the new production rule does not need the first domain-specific operator function 
“coefficient”.

However, extending the percept hierarchy presents challenges to the original perceptual learner. First of all, since the ex-
tended subcells are not associated with GUI elements, we can no longer depend on the author to specify relevant perceptual 
input for SimStudent, nor can we simply specify all of the subcells in the parse trees as relevant perceptual information; 
otherwise, the acquired production rules would include redundant information that would hurt the generalization capability 
of the perceptual learner. For example, consider problems -3x=6 and 4x=8. Although both examples could be explained by 
dividing both sides with the coefficient, since -3x has eight nodes in its parse tree, while 4x has five nodes, the original 
perceptual learner will not be able to find one set of generalized paths that explain both training examples. Moreover, not 
all of the subcells are relevant percepts in solving the problem. For example, considering the problem -3x=6: among all 
inserted subcells, only -3 is a relevant percept in solving the problem. Including unnecessary perceptual information into 
production rules could easily lead to computational issues. Second, since the size of the parse tree for an input depends 
on the input length, the fixed percept size assumption made by SimStudent no longer holds. Even with the same number 
of percepts, how the inserted percepts should be ordered is not immediately clear. To address these challenges, we extend 
the original perceptual learner to support acquisition of perceptual information with redundant and variable-length percept 
lists.

To do this, SimStudent first includes all of the inserted subcells as candidate percepts, and calls the operator function 
sequence learner to find an operator function sequence that explains all of the training examples. In our example, the 
operator function sequence for (divide -3) would only contain one operator function “divide”, since -3 is already included in 
the candidate percept list. The perceptual learner then removes all of the subcells that are not used by the operator function 
sequence from the candidate percept list. Hence, subcells such as -, 3 and x would not be included in the percept list any 
more. Since all of the training example action records share the same operator function sequence, the number of percepts 
remaining for each example action record should be the same. Next, the percept learner arranges the remaining subcell 
percepts based on their order of being used by the operator function sequences. After this process, the percept learner now 
has a set of percept lists that contains a fixed number of percepts ordered in the same fashion. We can then switch to the 
original percept learner to find the least general paths for the updated percept lists. In our example for skill “divide”, as 
shown at the right side of Fig. 9, the perceptual information part of the production rule would contain three elements, the 
left-hand side and right-hand side cells which are the same as the original rule, and a coefficient subcell which corresponds 
to the left child of the variable term. Note that since we removed the redundant subcells, the acquired production rule now 
works with both -3x=6 and 4x=8.
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Table 3
A list of operator functions used by SimStudents.

Operator function Type Example

GetOperand domain-general (get-operand divide -3) ⇒ -3
GenOne domain-general (generate-one) ⇒ 1
Copy domain-general (copy 3) ⇒ 3
Add domain-general (add 3 5) ⇒ 8
Sub domain-general (subtract 8 2) ⇒ 6
Multiply domain-general (multiply 3 5) ⇒ 15
Divide domain-general (divide 8 3) ⇒ 8/3
Concat domain-general (concatenate 5 x) ⇒ 5x
ReverseSign domain-general (reverse-sign 8x) ⇒ -8x
VarName domain-general (var-name 8x+2) ⇒ x
Denominator domain-general (denominator 3/5x) ⇒ 5x
Numerator domain-general (numerator 3/5x) ⇒ 3
SkillAdd domain-general (skill-add 3) ⇒ add 3
SkillSubtract domain-general (skill-subtract 3) ⇒ subtract 3
SkillMultiply domain-general (skill-multiply 3) ⇒ multiply 3
SkillDivide domain-general (skill-divide 3) ⇒ divide 3
SkillCltOperand domain-general (skill-clt 3x+4+5x-2) ⇒ clt 3x+4+5x-2
SkillMtOperand domain-general (skill-mt 3x) ⇒ mt 3x
EvalArithmetic domain-specific (eval-arithmetic 3x+4+5x-2) ⇒ 8x+2
AddTerm domain-specific (add-term 3x+4 5x-2) ⇒ 8x+2
SubTerm domain-specific (subtract-term 3x+4 5x-2) ⇒ -2x+2
DivTerm domain-specific (divide-term 8x+2 2) ⇒ 4x+1
MulTerm domain-specific (multiply-term 8x+2 2) ⇒ 16x+4
Coefficient domain-specific (coefficient -3x) ⇒ -3
FirstTerm domain-specific (first-term 3x+5) ⇒ 3x
LastTerm domain-specific (last-term 3x+5) ⇒ 5

As we mentioned before, SimStudent holds a perceptual grounding bias, which is how the input world is represented 
is an essential inductive bias in skill learning. With this extension, “deep features” become explicitly represented in the 
perceptual hierarchy, and the patterns in extracting them is automatically acquired by the perceptual information learning 
algorithm. In these cases, no feature extraction operator functions are needed to be predefined in order to calculate what 
the deep features are. The production rule can directly get such features by matching the learned paths of the perceptual 
information part with the extended the perceptual hierarchy. SimStudent gets a basic understanding of what is a term, what 
is a constant, and so on through the perceptual information paths. This extension reduces the number of operator functions 
an intelligent agent developer needs to define in order to generate a SimStudent in maths. In addition, it also reduces the 
number of operator functions required in the production rules, as the feature extraction operator functions are no longer 
needed, which eases the production rule learning process.

6. Experimental study on SimStudent integrated with deep feature learner

In order to evaluate whether the extended SimStudent is able to acquire correct knowledge with reduced prior knowl-
edge engineering, we carried out an experiment in the algebra domain. We use algebra as the testing domain because it 
is one of the most important learning tasks for middle school students. It is also relatively more complicated than other 
similar domains such as multi-column addition and fraction addition. Although not reported here, we have demonstrated 
elsewhere [12] that the extended SimStudent yields better learning performance, with less knowledge engineering, than the 
original SimStudent in fraction addition and stoichiometry.

6.1. Experiment design

Since our goal is to build an intelligent agent that models skill acquisition of real students, instead of using randomly 
generated problems, as training sets four problem sets we select that were used to teach real students as training sets. More 
specifically, the problem sets are from high school students who used Carnegie Learning Algebra I Tutor. The sizes of the 
training sets are 13, 14, 35 and 35 problems. We also choose 10 other problems from real student data as the testing set.

We compare the extended SimStudent with the original SimStudent given different amounts of prior knowledge. The 
extended SimStudent is first trained on a sequence of deep feature learning tasks, which include learning what is a signed 
number, what is a term, and what is an expression. We then construct a weak operator function set and a strong operator 
function set, simulating weak and strong prior knowledge. The weak operator function set contains 24 domain-general 
operator functions such as copying a string, adding two numbers and so on. The strong operator function set includes the 
weak operator function set plus 12 domain-specific operator functions such as getting the coefficient, adding two terms and 
so on. Among all the given operator functions, Table 3 shows the list of operator functions that are used in the production 
rules acquired by the four SimStudents. Two original SimStudents and one extended SimStudent are tested. One of the 
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Fig. 11. Learning curves for three learners (a) first-attempt accuracy (b) all-attempt average accuracy.

original SimStudents is given the strong operator function set (O+Strong Ops), while the other is provided with the weak 
operator function set (O+Weak Ops). The extended SimStudent is given only the weak operator function set (E+Weak Ops).

6.2. Experiment results

Evaluation of learning speed: The first study we carried out focuses on evaluation of learning speed. Since it is often 
possible to have more than one way of solving the same algebra equation, it is also possible that there is more than 
one skill applicable at the same time. In order to evaluate the performance of all applicable skills, we use two different 
measurements in evaluating the learning efficiency. The first measurement is called first-attempt accuracy, where for each 
testing problem, the learner receives score 1 if it proposes a correct step at its first attempt, and gets 0 otherwise. This 
measurement is closest to the evaluation method used in real classroom settings, where even if the student has more than 
one thought in solving the problem, only the one solution he/she writes out is graded. The second measurement, all-attempt 
average accuracy, focuses more on the average performance across all applicable skills. Instead of only counting for the first 
attempt, the evaluator scores the correctness of all applicable skills, and reports the average score as the all-attempt average 
accuracy.

The average learning curves for the three SimStudents are shown in Figs. 11(a) and 11(b). The blue lines correspond 
to the original SimStudents, whereas the black lines represent the performance of the extended SimStudent. As we can 
see in the figures, with both measurements, there is a huge gap between the two original SimStudents with (O+Strong 
Ops) and without (O+Weak Ops) strong operator functions. Our focus is to test whether the extended SimStudent is able 
to achieve performance comparable to the original SimStudent with strong operator functions (O+Strong Ops) while given 
only the weak operator function set. As the result shows, the extended SimStudent (E+Weak Ops) learns slower than the 
original SimStudent with strong operator functions (O+Strong Ops) at the very beginning, but gradually catches up with 
the original SimStudent. With 35 training problems, the all-attempt average accuracy of the extended SimStudent (E+Weak 
Ops) reaches 90%, which is only 5% lower than the original SimStudent with strong operator functions (O+Strong Ops). This 
suggests that with the deep feature learner, the extended SimStudent is able to achieve comparable performance without 
prior domain-specific knowledge engineering.

Evaluation of knowledge engineering needed: We evaluate the learner performance with two measurements, the total 
amount of knowledge used and the learning speed. For the first measurement, we look at the production rules acquired 
from the two problem sets of size 35, and report the average number of domain-specific and domain-general operator func-
tions used in the two rule sets. Recall that domain-specific operator functions usually require more knowledge engineering 
than domain-general operator functions. As shown in Table 4, the SimStudent (O+Strong Ops) that was given strong operator 
functions used 8 of the domain-specific operator functions, plus 7.5 domain-general operator functions on average across 
the two training sequences of size 35. In contrast, the extended SimStudent (E+Weak Ops) was not given any domain-specific 
functions and used 12 domain-general operator functions, which indicates much less knowledge engineering effort. In addi-
tion, the original SimStudent with only domain-general operator functions (O+Weak Ops) used 14.5 domain-general operator 
functions, which suggests that it needs a larger amount of prior knowledge engineering than the extended SimStudents. 
However, as we have seen before, it performs much worse than the extended SimStudents.

To get a better understanding on where the knowledge engineering effort is reduced, we took a closer look at the data. 
As we knew, the extended SimStudent (E+Weak Ops) was able to achieve comparable performance without using any of 
the domain-specific operators. How did the feature learning process aid skill acquisition? For example, the domain-specific 
operator “subtract-term” was needed by the original SimStudent (O+Strong Ops) for “skill-subtract” to perform operations 
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Table 4
Average number of strong and weak operator functions used in acquired 
production rules.

Operator functions used

Strong domain-specific Weak domain-general

Original+Strong Ops 8 7.5
Extended+Weak Ops 0 12
Original+Weak Ops 0 14.5

such as (3x+4) - 4. Since we have extended the perceptual hierarchy, 3x is now explicitly represented. The extended Sim-
Student can simply test whether the constant term of 3x+4 (i.e., 4) equals to the subtrahend 4. If so, it directly grabs 3x
from the hierarchy and returns it as the result. In this case, the need of the operator “subtract-term” is removed. Instead, 
only an “equal” feature test and a “copy” operator functions were needed, which are much simpler than the “subtract-term” 
operator function.

7. Using SimStudent to discover better cognitive models

As mentioned above, we are not only interested in building a learning agent: we would also like to construct a learning 
agent that simulates how students acquire knowledge. In this section, we are going to present an approach that automat-
ically discovers cognitive models using the extended SimStudent. If the discovered model turns out to be a good cognitive 
model, we should be able to conclude that the extended SimStudent simulates the real student learning process well. A cog-
nitive model is a set of knowledge components (KC) encoded in intelligent tutors to model how students solve problems [33]. 
The set of KCs includes the component skills, concepts, or percepts that a student must acquire to be successful on the tar-
get tasks. For example, a KC in algebra can be how students should proceed given problems of the form -Nv=N (e.g., -3x=6). 
The cognitive model provides important information to automated tutoring systems in making instructional decisions. Better 
cognitive models match with real student learning behavior, that is, changes in performance over time. They are capable of 
predicting task difficulty and transfer of learning between related problems, and can be used to yield better instruction.

Traditional ways to construct models include structured interviews, think-aloud protocols, rational analysis, and so on. 
However, these methods are often time-consuming, and require expert input. More importantly, they are highly subjective. 
Previous studies [34,35] have shown that human engineering of these models often ignores distinctions in content and 
learning that have important instructional implications. Other methods such as Learning Factor Analysis (LFA) [36] apply an 
automated search technique to discover cognitive models. It has been shown that these automated methods are able to find 
better cognitive models than human-generated ones. Nevertheless, LFA requires a set of human-provided factors given as 
input. These factors are potential KCs. LFA carries out the search process only within the space of such factors. If a better 
model exists but requires unknown factors, LFA will not find it. Therefore, having an approach that is able to find the “right” 
set of factors that lead to better predictions of human data is essential in the success of cognitive modeling.

To address this issue, we propose a method that automatically discovers cognitive models without depending on human-
provided factors. The system uses the extended SimStudent to acquire skill knowledge. Each production rule corresponds to 
a KC that students need to learn. The model then labels each observation of a real student based on skill application.

7.1. Method

In order to evaluate the effectiveness of the proposed approach, we carried out a study using an algebra dataset. We 
compared the SimStudent model with a human-generated KC model by first coding the real student steps using the SimStu-
dent model and the human-generated KC model, and then testing how well the two model codings predict real student data. 
Note that DataShop [37] has 21 different KC models for the current dataset, the human-generated KC model we selected 
here is one of the best models in predicting human student behavior among the existing student models.

For the human-generated model, the real student steps were first coded using the “action” label associated with a correct 
step transaction, where an action corresponds to a mathematical operation(s) to transform an equation into another in a 
way that makes progress toward the solution. As a result, the “default” model contains eight KCs defined (called the Action 
KC model) – add, subtract, multiply, divide, distribute, clt (combine like terms), mt (simplify multiplication), and rf (reduce 
a fraction). Four KCs associated with the basic arithmetic operations (i.e., add, subtract, multiply, and divide) were then 
further split into two KCs for each, namely a skill to identify an appropriate basic operator and a skill to actually execute 
the basic operator. The former is called a transformation skill whereas the latter is a typein skill. As a consequence, there 
were 12 KCs defined (called the Action-Typein KC model). Not all steps in the algebra dataset were coded with these KC 
models – some steps are about a transformation that we do not include in the Action KC model (e.g., simplify division). 
There were 9487 steps that can be coded by both KC models mentioned above. The “default” KC model, which were defined 
by the productions implemented for the cognitive tutor, has only 6809 steps that can be coded. To make a fair comparison 
between the “default” and “Action-Typein” KC models, we took the intersection of those 9487 and 6809 steps. As a result, 
there were 6507 steps that can be coded by both the default and the Action-Typein KC models. We then defined a new KC 
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model, called the Balanced-Action-Typein KC model that has the same set of KCs as the Action-Typein model but is only 
associated with these 6507 steps, and used this KC model to compare with the SimStudent model.

To generate the SimStudent model, SimStudent was tutored on how to solve linear equations by interacting with the 
Carnegie Learning Algebra I Tutor, like a human student. As the training set for SimStudent, we selected 40 problems 
that were used to teach real students. Given all of the acquired production rules, for each step a real student performed, 
we assigned the applicable production rule as the KC associated with that step. In cases where there was no applicable 
production rule, we coded the step using the human-generated KC model (Balanced-Action-Typein). Each time a student 
encounters a step using some KC, it is considered as an “opportunity” for that student to show mastery of that KC, and 
learn the KC by practicing it.

Having finished coding real student steps with both models (the SimStudent model and the human-generated model), 
we used the Additive Factor Model (AFM) [36] to validate the coded steps. AFM is an instance of logistic regression that 
models student success using each student, each KC, and the KC by opportunity interaction as independent variables as 
shown in Equation 1 below,

ln
pij

1 − pij
= θi +

∑

k

βk Q kj +
∑

k

Q kj(γk Nik) (1)

Where:

i represents a student i.
j represents a step j.

k represents a skill or KC k.
pij is the probability that student i would be correct on step j.
θi is the coefficient for proficiency of student i.
βk is coefficient for difficulty of the skill or KC k

Q kj is the Q-matrix cell for step j using skill k, i.e., whether completing step j needs skill k.
γk is the coefficient for the learning rate of skill k;

Nik is the number of practice opportunities student i has had on the skill k.

AFM assumes that each student has his/her own proficiency of learning to start with, while the rate of learning for each 
KC is roughly the same across students. Given the past behavior of a set of students on a set of tests, AFM is able to predict 
the probability of success for one specific student on a specific problem step. In our case, the KC model is used in defining 
the variables in the AFM model. Once the form of the AFM model (e.g., how many KCs are there in the domain, what are 
the KCs), we fit the AFM model with the human student dataset, and test to see how well it predicts future behavior of the 
students. We utilized DataShop [37], a large repository that contains datasets from various educational domains as well as 
a set of associated visualization and analysis tools, to facilitate the process of evaluation, which includes generating learning 
curve visualization, AFM parameter estimation, and evaluation statistics including AIC (Akaike Information Criterion) and 
cross validation.

7.2. Dataset

We analyzed the same data from 71 students who used an Carnegie Learning Algebra I Tutor unit on equation solving. 
The students were typical students at a vocational-technical school in a rural/suburban area outside of Pittsburgh, PA. The 
problems varied in complexity, for example, from simpler problems like 3x=6 to harder problems like x/-5+7=2. A total 
of 19,683 transactions between the students and the Algebra Tutor were recorded, where each transaction represents an 
attempt or inquiry made by the student, and the feedback given by the tutor.

7.3. Measurements

To evaluate the quality of the SimStudent model and the human-generated KC model, we measured how well the models 
can be used in predicting human student behavior. The quality of the prediction generated by the KC models using AFM 
is measured by AIC and a 3-fold cross validation. AIC measures the fit to student data while penalizing over-fitting. More 
specifically, AIC measures the log likelihood of the model comparing with the human data, and punishes the model on 
using too many parameters. The cross validation was performed over three folds with the constraint that each of the three 
training sets must have data points for each student and KC. We report the root mean-squared error (RMSE) averaged over 
three test sets.

7.4. Experiment results

The SimStudent model contains 21 KCs. Both the AIC (6448) and the cross validation RMSE (0.3997) are lower than the 
human-generated model (AIC 6529 and cross validation 0.4034). This indicates that the SimStudent model better predicts 
real student behavior.
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Fig. 12. Different parse trees for -3x and -x.

In order to understand whether the differences are statistically reliable or not, we carried out two significance tests. 
The first significance test evaluates whether the SimStudent model is actually able to make better predictions than the 
human-generated model. During the cross validation process, each student step was used once as the test problem. We 
took the predicated error rates generated by the two KC models for each step during testing. Then, we compared the KC 
models’ predictions with the real student error rate (0 if the student was correct at the first attempt, and 1 otherwise). After 
removing ties, among all 6494 student steps, the SimStudent model made better predictions than the human-generated KC 
model on 4260 steps. A sign test on this shows that the SimStudent model is significantly (p < 0.001) better in predicting 
real student behavior than the human-generated model. In the second test, due to the random nature of the assignment to 
folds in cross validation, we evaluated whether the lower RMSE achieved by the SimStudent model was consistent or could 
be due to chance. To do this, we repeated the cross validation 20 times, and calculated the RMSE for both models. Across 
the 20 runs, the SimStudent model consistently outperformed the human-generated model: in particular, a paired t-test 
shows the SimStudent model is significantly (p < 0.001) better than the human-generated model.5 Therefore, we conclude 
that the SimStudent model is a reliably better student model than the human-generated KC model.

7.5. Implications for instructional decision

We can inspect the data more closely to get a better qualitative understanding of why the SimStudent model is better and 
what implications there might be for improved instruction [38]. Among the 21 KCs learned by the SimStudent model, there 
were 17 transformation KCs and four typein KCs. It is hard to map the SimStudent KC model directly to the human-generated 
KC model. Approximately speaking, the distribute, clt (i.e. combine like terms), mt, rf KCs as well as the four typein KCs are 
similar to the KCs defined in the human-generated KC model. The transformation skills associated with the basic arithmetic 
operators (i.e., add, subtract, multiply and divide) are further split into finer grain sizes based on different problem forms.

One example of such split is that SimStudent created two KCs for division. The first KC (simSt-divide) corresponds to 
problems of the form Ax=B, where both A and B are signed numbers, whereas the second KC (simSt-divide-1) is specifically 
associated with problems of the form -x=A, where A is a signed number. This is caused by the different parse trees for 
Ax vs -x as shown in Fig. 12. To solve Ax=B, SimStudent simply needs to divide both sides with the signed number A. On 
the other hand, since -x does not have -1 represented explicitly in the parse tree, SimStudent needs to see -x as -1x, and 
then to extract -1 as the coefficient. If SimStudent is a good model of human learning, we expect the same to be true for 
human students. That is, real students should have greater difficulty in making the correct move on steps like -x=6 than on 
steps like -3x=6 because of the need to convert (perhaps just mentally) -x to -1x. To evaluate this hypothesis, we computed 
the average error rates for a set of problem types – these are shown with the solid line in Fig. 13 with the problem types 
defined in forms like -Nv=N, where the Ns are any integer number and the v is a variable (e.g., -3x=6 is an instance of -Nv=N
and -6=-x is an instance of -N=-v). The problem types are sorted by increasing error rates. In other words, the problem types 
to the right are harder for human students than those to the left.

We also calculated the mean of the predicted error rates for each problem type for both the human-generated model and 
the SimStudent model. Consistent with the hypothesis, as shown in Fig. 13, we see that problems of the form Ax=B (average 
error rate 0.283) are much simpler than problems of the form -x=A (average error rate 0.719). The human-generated model 
predicts all problem types with similar error rates (average predicted error rate for Ax=B 0.302, average predicted error rate 
for -x=A 0.334), and thus fails to capture the difficulty difference between the two problem types (Ax=B and -x=A). The 
SimStudent model, on the other hand, fits with the real student error rates much better. It predicts higher error rates (0.633 
on average) for problems of the form -x=A than problems of the form Ax=B (0.291 on average).

SimStudent’s automatic split of the original division KC into two KCs, simSt-divide and simSt-divide-1, suggests that the 
tutor should teach real students to solve two types of division problems separately. In other words, when tutoring students 
with division problems, we should include two subsets of problems, one subset corresponding to simSt-divide problems 
(Ax=B), and one specifically for simSt-divide-1 problems (-x=A). We should perhaps also include explicit instruction that 
highlights for students that -x is the same as -1x.

5 Note that differences between competitors in the KDD Cup 2010 (https://pslcdatashop.web.cmu.edu/KDDCup/Leaderboard) have also been in this range 
of thousands in RMSE.

https://pslcdatashop.web.cmu.edu/KDDCup/Leaderboard
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Fig. 13. Error rates for real students and predicted error rates from two student models.

8. Related work

The main contribution of this paper is to build a human-like intelligent agent, and to reduce the amount of knowl-
edge engineering required by integrating feature learning into an agent. Previous work in cognitive science has shown that 
“chunking” is an important component of human knowledge acquisition. Theories of the chunking mechanisms [9,31,39]
have been constructed. EPAM [9] is one of the first chunking theories proposed to explain key phenomena of expertise in 
chess. Learning occurs through the incremental growth of a discrimination network, where each node in the network is 
a chunk. It has been shown that chunks can be used to suggest plans, moves and so on. A later version of EPAM, EPAM-
IV [31], extends the basic chunking mechanism to support a retrieval structure that enables domain-specific material to be 
rapidly indexed. In these theories, chunks usually refer to perceptual chunks. In addition, CHREST [39] proposes a template 
theory, where the discrimination network contains both perceptual chunks and action chunks. A more detailed review of 
these works can be found in [40]. Our work is similar to these works as we are also modeling the learning of perceptual 
chunks, a kind of deep feature learning, but differs from these theories since none of the above theories uses pCFG learning 
to model the acquisition of perceptual chunks.

There has also been considerable research on learning within agent architectures. Soar [19] uses a chunking mechanism 
to acquire knowledge that constrains problem-space search. Another architecture ACT-R [2] creates new production rules 
through a compilation process that gradually transforms declarative representations into skill knowledge [18]. Icarus [3]
acquires complex conceptual predicates in the context of problem solving. Unlike those theories, SimStudent puts more em-
phasis on knowledge-level learning (cf., [20]) achieved through induction from positive and negative examples. It integrates 
ideas of theories of perceptual chunking [31] as a basis for improving knowledge representations that, in turn, facilitate 
better learning of problem solving skills.

Other research in cognitive science also attempts to use probabilistic approaches to model the process of human learning. 
Kemp and Xu [41] apply a probabilistic model to capture principles of infant object perception. Kemp and Tenenbaum [42]
use a hierarchical generative model to show the acquisition process of domain-specific structural constraints. But again, 
neither of the above approaches tend to use the probabilistic model as a representation acquisition component in a learning 
agent.

Another closely related research area is learning procedural knowledge by observing others’ behavior. Classical ap-
proaches include explanation-based learning [43,44], learning apprentices [45] and programming by demonstration
[46,16]. Most of these approaches used analytic methods to acquire candidate procedures. Other works on transfer learn-
ing (e.g., [47–50]) also share some resemblance with our work. They focus on improving the performance of learning by 
transferring previously acquired knowledge from another domain of interest. However, to the best of our knowledge, none 
of the above approaches uses the transfer learning learner to acquire a better representation that reveals essential percept 
features, and to integrate it into an intelligent agent.

Additionally, research on deep architectures [51] shares a clear resemblance with our work and has been receiving in-
creasing attention recently. Theoretical results suggest that in order to learn complicated functions such as AI-level tasks, 
deep architectures that are composed of multiple levels of non-linear operation are needed. Although not having been stud-
ied much in the machine learning literature due to the difficulty in optimization, there are some notable exceptions in 
the area including convolutional neural networks [52–55], sigmoidal belief networks learned using variational approxima-
tions [56–59], and deep belief networks [60,61]. While both the work in deep architectures and our work are interested 
in modeling complicated functions through non-linear features, the tasks we work on are different. Deep architectures are 
used more often in classification tasks whereas our work focuses on simulating human problem solving and learning of 
math and science.

A lot of efforts have been put toward comparing the quality of alternative student models. LFA automatically discovers 
student models, but is limited to the space of the human-provided factors. Other works such as [62,63] are less dependent 
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on human labeling, but may suffer from challenges in interpreting the results. In contrast, the SimStudent approach has the 
benefit that the acquired production rules have a precise and usually straightforward interpretation. Baffes and Mooney [64]
apply theory refinement to the problem of modeling incorrect student behavior. Other systems [65,66] use a Q-matrix to 
find knowledge structure from student response data. None of the above approaches use simulated students to construct 
student models.

Besides SimStudent, there has been a lot of work on creating simulated students [7,67,68]. VanLehn’s [69] Sierra models 
the impasse-driven acquisition of hierarchical procedures for multi-column subtraction from sample solutions. However, his 
work focused on explaining the origin of bugs for real students, which is not the focus here. In addition, Sierra is given a CFG 
for parsing the visual state of the subtraction problems, whereas our system automatically acquires a pCFG. Ohlsson [70]
reviews how different learning models are employed during different learning phases in intelligent systems. Our work on 
integrating representation learning and skill learning also reflects how one learning mechanism is able to aid other learning 
processes in an intelligent systems. None of the above approaches compared the system with human learning curve data. 
To the best of our knowledge, our work is the first combination of the two whereby we use student model evaluation 
techniques to assess the quality of a simulated learner.

9. Further discussion

In spite of the promising results, there are still many fruitful possibilities to further improve SimStudent. First of all, 
we should carry out more extensive studies in more domains to evaluate the generality of the proposed system. Moreover, 
since the extended SimStudent only uses domain-independent operator functions, we should also evaluate whether this 
extension enables better transfer learning. In other words, after trained on one relevant task, does the extended SimStudent 
needs fewer number of extra operator functions than the original SimStudent in the new learning task. We have shown 
experimental results being repeated in other domains, such as fraction addition, stoichiometry, and second language learn-
ing [12,21]. Basically, any domain that could be represented as a set of production rules can be potentially addressed by 
SimStudent. In future studies, we would like to see whether the similar results would be reproduced in more probabilistic-
based domains. Since we are interested in modeling real student learning, we would also like to carry out more experiments 
comparing our system performance with real student data. In particular, we are interested in matching the type of errors 
made by SimStudent with the common errors made by real students. We believe that with these extensions, we would be 
able to gain more insights of human learning, as well as to advance the process of creating an integrated intelligent agent.

Second, as mentioned above, pCFGs are more suitable in representing 1-dimensional information, which is an appropri-
ate choice for many maths domains such as algebra, multi-column addition and so on. There are other domains that may 
require representation in a 2-dimensional space. In response, we have extended the feature learning mechanism to use a 
two-dimensional variant of a probabilistic context-free grammar (pCFG) in modeling how a user perceives the structure 
of a user interface [71]. The proposed 2-dimensional pCFG learning algorithm models acquisition of this representation. 
Our learning method exploits both the spatial layout of the interface, and temporal information about when users interact 
with the interface. Since the additional temporal and spatial information was used in the representation acquisition proce-
dure, the search space is reduced and thus the learning process remains relatively effective. More specifically, experimental 
studies were carried out in both synthetic domains and tutoring domains including fraction addition, equation solving, and 
stoichiometry. We show that the proposed layout learner is able to acquire the high-quality layouts with a small number of 
training examples, and demonstrate the intelligent agent with the acquired layouts is able to perform equally well compar-
ing with the agent given manually constructed layouts. We believe that similar changes can be made to further extend the 
2-dimensional grammar to support domains such as integral or differential equations.

Additionally, the deep feature learning process is currently carried out before the SimStudent knowledge acquisition. 
Only the acquired grammar is used to provide better representation to SimStudent. It is possible that the feedback given to 
SimStudent could also provide feedback to the integrated grammar. For example, if the deep feature learner initially acquired 
the incorrect grammar, and caused a lot of failures for SimStudent learning, the extended SimStudent could potentially feed 
this information back to the deep feature learner, and ask it to revise its grammar. Moreover, the training records for 
the deep feature learner could also be automatically generated from the steps demonstrated to SimStudent. By doing this, 
SimStudent would be able to learn better representation knowledge during skill knowledge acquisition. The two learning 
systems would mutually assist each other in achieving better performance.

Lastly, SimStudent’s learning mechanism presents a bias towards more generalized skills over specific ones without 
considering computational cost. This bias appears to be a limitation of SimStudent as a model of student learning. In cases 
where a more general strategy invokes a more complicated procedure (like dividing both sides by -1 in solving -x=A), 
human students may prefer to use a less general but simple strategy (such as moving the minus sign from left-hand side to 
right-hand side). We have recently developed a conflict resolution strategy which could be used to prefer skills of smaller 
computational cost [21]. This extension potentially addresses this limitation of SimStudent as a student model.

10. Concluding remarks

As also shown in previous studies [8,9], we claim that representation learning is one of the important aspects in human 
knowledge acquisition, and should be modeled in cognitive theories of human learning. In our theory, perceptual chunks 
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correspond to nodes in a context-free grammar that organizes perceptual knowledge. Perceptual processing is modeled by 
parsing stimuli using this grammar, with the result being a parse tree that organizes their constituents. The learning process 
of the representation is carried out in a bottom-up, unsupervised fashion guided by statistical regularities in observed 
stimuli. While results show that the acquired representation is able to model some types of student errors, other forms of 
representation such as discrimination networks [9,31,39] and connectionist models (e.g., [72]) are also possible.

We integrate the proposed representation learner into skill learning. We claim that the speed of skill acquisition depends 
on the quality of the representation given to the skill learner. By integrating representation learning into skill learning, the 
speed of skill learning increases. In later studies [13], we showed that the extended agent can be used to discover better 
models of student learning, which suggests that the extended agent better models human knowledge acquisition.

To sum up, building an intelligent agent that simulates human-level learning is an essential task in AI and cognitive 
science, but building such systems often requires manual encoding of prior domain knowledge. In this paper, we proposed 
a novel algorithm that automatically acquires deep features from observations without any annotation or with light anno-
tations. We then integrate this stand-alone feature learning algorithm into an intelligent agent, SimStudent, as an extension 
of the perception module. We showed that after the integration, the extended SimStudent is able to achieve comparable 
performance without requiring any domain-specific operator function as input. In addition to being an effective learner, 
we further showed that the extended SimStudent could be used to discover better models of real students. Given all the 
results, we conclude that the extended SimStudent is a good human-like intelligent agent that requires a small amount of 
knowledge engineering.
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