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ABSTRACT
We present a non-traditional retrieval problem we callsubtopic re-
trieval. The subtopic retrieval problem is concerned with finding
documents that cover many different subtopics of a query topic.
This means that the utility of a document in a ranking is depen-
dent on other documents in the ranking, violating the assumption
of independentrelevance which is assumed in most traditional re-
trieval methods. Subtopic retrieval poses challenges for evaluating
performance, as well as for developing effective algorithms. We
propose a framework for evaluating subtopic retrieval which gen-
eralizes the traditional precision and recall metrics by accounting
for intrinsic topic difficulty as well as redundancy in documents.
We propose and systematically evaluate several methods for per-
forming subtopic retrieval using statistical language models and a
maximal marginal relevance (MMR) ranking strategy. A mixture
model combined with query likelihood relevance ranking is shown
to modestly outperform a baseline relevance ranking on a data set
used in the TREC interactive track.
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1. INTRODUCTION
The notion of relevance is central to many theoretical and prac-

tical information retrieval models. Traditional retrieval models as-
sume that the relevance of a document isindependentof the rel-
evance of other documents. This makes it possible to formulate
the retrieval problem as computing a relevance value for each doc-
ument separately, and then ranking documents by relevance [6].
In reality, however, thisindependent relevanceassumption rarely
holds; the utility of retrieving one document, in general, may de-
pend on which documents the user has already seen. As an extreme
example, a relevant document may be useless to a user if the user
has already seen another document with the same content. An
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interesting discussion of the need for non-traditional ranking from
the perspective of “optimal search behavior” is found in [7].

In this paper, we study thesubtopic retrievalproblem, which re-
quires modelingdependent relevance. The subtopic retrieval prob-
lem has to do with finding documents that cover as manydifferent
subtopics of a general topic as possible. For example, a student
doing a literature survey on “machine learning” may be most in-
terested in finding documents that cover representative approaches
to machine learning, and the relations between these approaches.
In general, a topic often has a unique structure that involves many
different subtopics. A user with a high recall retrieval preference
would presumably like to cover all the subtopics, and would thus
prefer a ranking of documents such that the top documents cover
different subtopics.

A closely related problem, sometimes called “aspect retrieval,” is
investigated in the interactive track of TREC, where the purpose is
to study how an interactive retrieval system can best support a user
gather information about the different aspects of a topic [8]. Here
we study a particular class of automatic methods for this problem:
methods for producing a ranked list of documents that is ordered so
as to give good subtopic retrieval. In other words, we retain the ba-
sic “query in—ranked list out” model used in traditional retrieval,
but seek to modify the ranking so as to include documents relevant
to many subtopics.

Clearly, methods based on a traditional relevance-based ranking
are unlikely to be optimal for such a problem. Moreover, traditional
evaluation metrics are also inappropriate for this new retrieval task.
We present an initial study of this new problem, describing evalua-
tion metrics, possible methods, and experimental results with these
methods.

2. DATA SET
In order to measure how well a ranking covers different subtopics

of some high-level topic, we must have judgments that tell us which
documents cover which subtopics. Fortunately, the TREC interac-
tive track has accumulated many such judgments. For three years
(TREC-6, TREC-7, and TREC-8), the interactive track has used the
same document collection—The Financial Times of London 1991-
1994 collection (part of the TREC-7 ad hoc collection). This col-
lection is about 500MB in size and contains 210,158 documents,
with an average document length of roughly 400 words [8]. Each
year, the interactive track task introduces six to eight new topics.
In the work reported here, we collect all 20 topics used in these
three years, and form new topics by slightly modifying the original
ad hoc TREC topics, typically by removing the “Narrative” section



and adding an “Instance” section to explain what asubtopicmeans
for the topic.

The following is an example query from TREC7 (number 392i).

Number: 392i
Title: robotics
Description:

What are the applications of robotics in the world
today?

Instances:
In the time alloted, please find as many DIFFERENT
applications of the sort described above as you can.
Please save at least one document for EACH such
DIFFERENT application. If one document discusses
several such applications, then you need not save
other documents that repeat those, since your goal
is to identify as many DIFFERENT applications of
the sort described above as possible.

For each topic, the TREC (NIST) assessors would read a pool
of documents submitted by TREC participants and identify a list of
instances (i.e., subtopics) and determine which documents contain
or cover which instances. For example, for the sample topic 392i
shown above, they identified 35 different subtopics, some of which
are shown below:

1 ’clean room’ applications in healthcare &
precision engineering

2 spot-welding robotics
3 controlling inventory - storage devices
4 pipe-laying robots
5 talking robot
6 robots for loading & unloading memory tapes
... ...

For this topic, the judgment for each document can be repre-
sented as a bit vector with 35 bits, each indicating whether the doc-
ument covers the corresponding subtopic. In our data set, the num-
ber of subtopics (i.e., the range of the vector length) ranges from 7
to 56, with an average of 20. The number of judged relevant doc-
uments available also differs for different topics, with a range of 5
to 100 and an average of about 40 documents per topic. There are
also some judgments of non-relevant documents1. We did not use
these judgments; instead, we assume that any unjudged document
is non-relevant, and therefore covers no relevant subtopic. This is a
strong assumption, but our hope is that this biased evaluation will
still be useful for comparing different rankings.

3. EVALUATION METRICS

3.1 Why subtopic retrieval difficulty varies
Recall that we wish to explore methods for producing aranked

list which performs well on the subtopic retrieval task. It is not
immediately obvious how one should evaluate such a ranking. In-
tuitively, it is desirable to include documents from many different
subtopics early in the ranking, and undesirable to include many
documents that redundantly cover the same subtopics.

One natural way to quantify success according to the first goal—
of covering many different subtopics quickly—is to measure the
number of different subtopics covered as a function of rank. More
precisely, consider a topicT with nA subtopicsA1 . . . , AnA , and a
rankingd1, . . . , dm of m documents. Letsubtopics(di) be the set
of subtopics to whichdi is relevant. We define thesubtopic recall
1The total number of judgments, including both relevant and non-
relevant documents, has a range of 22 to 243 documents and an
average of 106 documents.
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Figure 1: Typical curves for the functions minRank(S, r) and
minRank(Sopt , r), defined as the minimal rankK at which
subtopic recall of r is reached for systemS and an optimal
system Sopt . Subtopic precision is defined as the ratio of
minRank(Sopt , r) and minRank(S, r).

(S-recall) at rankK as the percentage of subtopics covered by one
of the firstK documents, i.e.,

S-recall atK ≡ | ∪
K
i=1 subtopics(di)|

nA

Clearly it is desirable for subtopic recall to grow quickly asK
increases. However, it is not at all clear what constitutes a “good”
level of recall for a particular topicT . For example, consider two
topicsT1 andT2, each withK subtopics. For topicT1, there are
M/2 relevant documents andM/2 subtopics, and every document
di covers exactly one distinct subtopicai. For topicT2, there are
M/2 relevant documents butM subtopics, and every documentdi
covers subtopicsai, aM/2, . . . , aM . For bothT1 andT2, the rank-
ingd1, d2, . . . , dM/2 is clearly the best possible: however, subtopic
recall for small rankings is much better forT2 than forT1. Simi-
larly, for any natural measure for redundancy (the degree to which
documents in a ranking repeat the same subtopics) the ranking for
T2 would appear much worse than the ranking forT1.

3.2 Accounting for intrinsic difficulty
This example suggests that for a measure to be meaningful across

different topics, it must account for the “intrinsic difficulty” of
ranking documents in a topic. We propose the following evalua-
tion measure. IfS is some IR system that produces rankings and
r is a recall level,0 ≤ r ≤ 1, we defineminRank(S, r) as the
minimal rankK at which the ranking produced byS has S-recall
r. We define thesubtopic precision (S-precision) at recallr as

S-precision atr ≡ minRank(Sopt , r)

minRank(S, r)

whereSopt is a system that produces theoptimal ranking that ob-
tains recallr—i.e., minRank(Sopt , r) is the smallestK such that
some ranking of sizeK has subtopic recall ofr.

We claim that subtopic recall and precision, as defined above,
are natural generalizations of ordinary recall and precision. More
precisely, we claim that ifminRank(S, r) were defined in terms
of ordinary recall rather than subtopic recall, then ordinary pre-
cision could be defined as the ratio ofminRank(Sopt , r) to
minRank(S, r).



To see this, consider the hypothetical curves forminRank(S, r)
andminRank(Sopt , r) shown in Figure 1. Suppose thatS andSopt

are ordinary retrieval systems, andminRank is defined in terms of
ordinary recall. SinceSopt orders all the relevant documents first,
minRank(Sopt , r) = r · nR (wherenR is the number of relevant
documents for the topic). Now consider a non-optimal systemS
that has precisionp and recallr in the firstKr documents. Since re-
call isr, S retrievesrnR relevant documents in the firstKr, and its
precision isp = rnR/Kr = minRank(Sopt , r)/minRank(S, r).

The hypothetical curves in Figure 1 are consistent with the per-
formance of ordinary ranked retrieval systems:minRank(Sopt , r)
grows linearly, andminRank(S, r) becomes more gradually dis-
tant from the line for the optimal system, reflecting the fact
that precision decreases as recall increases. Since the shape of
minRank(Sopt , r) is predictable for ordinary retrieval, it is not
necessary to explicitly account for it in measuring performance.
For subtopic retrieval, however,minRank(Sopt , r) may have a
more complex shape.

As concrete examples, the left-hand graphs in Figures 3 and 4
show subtopic recall and subtopic precision for various ranking
schemes, interpolated over 11 points in the usual way, and aver-
aged over all 20 topics in our test suite.

3.3 Penalizing redundancy
Intuitively, it is undesirable to include many documents that re-

dundantly cover the same subtopics; however, this intuition is not
accounted for in the measures of subtopic recall and precision.

One way to penalize redundancy is include an explicit measure
of the cost of a ranking. We let thecostof a ranking be defined as

cost(d1, . . . , dK) ≡
KX
i=1

(a|subtopics(di)|+ b)

= a

KX
i=1

|subtopics(di)|+Kb

Hereb is the cost of presenting a documentdi to a user, anda is the
incremental cost to the user of processing a single subtopic indi.

Proceeding by analogy to the measure introduced above, we de-
fine minCost(S, r) to be the minimal costC at which the ranking
produced byS has S-recallr. We then define theweighted subtopic
precision (WS-precision) at recall levelr to be

WS-precision atr ≡ minCost(Sopt , r)

minCost(S, r)

where againSopt produces the optimal (lowest-cost) ranking that
obtains recallr. Note that S-precision is a special case of WS-
precision whereb = 1 anda = 0. In this paper we will use costs
of a = b = 1 for WS-precision.

Again, as concrete examples, the right-hand graphs in Figures
3 and 4 show subtopic recall and weighted subtopic precision for
various ranking schemes.

3.4 On computing the metrics
Computing S-precision and WS-precision require computing the

optimal valuesminRank(Sopt , r) or minCost(Sopt , r). Unfor-
tunately, this is non-trivial, even given relevance judgements. In-
deed, it can be reduced to a minimum set-covering problem, which
is NP-hard. Fortunately, the benchmark problems are of moderate
size and complexity, and the minimum set cover can often be com-
puted quite quickly using simple pruning heuristics. Furthermore, a
simple greedy approximation seems to obtain results nearly indis-
tinguishable from exact optimization, except at the highest recall

Greedy Ranking Algorithm
Inputs: Set of unranked documentsU ; ranking sizeK
for i = 1, 2, . . . ,K do

di = arg maxd∈U value(d; d1, . . . , di−1)
U = U − {di}

endfor
return the ranking〈d1, . . . , dK〉

Figure 2: A generic greedy ranking algorithm

values forminCost.2 (See Appendix A.) In the evaluations of this
paper, we used exact values ofminRank for all queries. We used
exact values ofminCost for all queries but one (query 352i), and
used a greedy approximation tominCost for query 352i.

4. SUBTOPIC RETRIEVAL METHODS
Since it is computationally complex to find an optimal ranking

for the subtopic retrieval problem, even when the subtopics are
known, some kind of approximation is necessary in practice. A nat-
ural approximation is a greedy algorithm, which ranks documents
by placing at each ranki the documentdi that is “best” for that
rank relative to the documents before it in the ranking. A generic
version of this greedy algorithm is shown in Figure 2.

The key here is to appropriately define the “value” function–i.e.,
to quantify the notion of a “best” documentdi for rank i. Intu-
itively, di should cover many subtopics not covered by the previous
documentsd1, . . . , di−1, and few of the subtopics covered by the
previous documents. Of course, one cannot compute such a metric
explicitly in a value function, since the subtopics are not known to
the retrieval system—only the initial query topic. Such an evalua-
tion metric must therefore be based on a subtopic model.

An alternative to explicitly modeling subtopics is to use a
similarity function that only implicitly accounts for subtopic re-
dundancy. One such similarity-based approach is the maximal
marginal relevance (MMR) ranking strategy [2]. MMR instantiates
the greedy algorithm of Figure 2 using the value function

valueMMR(d; d1, . . . , di−1) =

αSim1(d,Q)− (1− α) max
j<i

Sim2(d, dj)

whereQ is the original query,α is a parameter controlling the rela-
tive importance of relevance and novelty,Sim1 is a typical retrieval
similarity function, andSim2 is a document similarity function
that is intended to capture redundancy (or equivalently novelty).

Here we will study both novelty and relevancy in the language
modeling framework. First, we will present two ways to measure
the novelty of a document, one based on the KL-divergence mea-
sure, and another based on a simple mixture model. We will then
discuss how to combine novelty and relevance in a cost function.

4.1 Novelty and Redundancy Measures
Let {θ1, ..., θi−1} be the unigram language models fori − 1

previously selected documents, which we refer to asreference lan-
guage models. Consider a candidate documentdi and the corre-
sponding language modelθi. Our goal is to define a novelty score
valueN for whichvalueN (θi; θ1, ..., θi−1) will indicate how much
novel information documentdi contains.
2In fact, set cover is hard to approximate up to a logarithmic fac-
tor; however, this level of approximation is achieved by a greedy
algorithm [3].
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Figure 3: Comparison of the curves of S-precision (left) and WS-precision (right) versus S-recall for the six novelty measures and the
baseline relevance ranking.

4.1.1 Single Reference Topic Model
Let us first consider the simplest case, where we have a sin-

gle reference modelθO (where theO subscript indicates “old”).
SupposeθN is the new document model. How do we define
valueN (θN ; θO)?

Notice that novelty is anasymmetricmeasure: we are interested
in measuring the information inθN which is new relative toθO,
not the other way around. For unigram language models, a natu-
ral asymmetric distance measure is the KL-divergenceD(θN ||θO),
which can be interpreted as the inefficiency (e.g., in compression)
due to approximating the true distributionθN with θO. This leads
to a value function ofvalueKL(θN ; θO) = D(θN ||θO).

Another plausible novelty measure is based on a simple mixture
model. Assume a two-component generative mixture model for
the new document, in which one component is the old reference
topic model and the other is a background language model (e.g.,
a general English model). Given the observed new document, we
estimate the mixing weight for the background model (or the refer-
ence topic model), which can then serve as a measure of novelty or
redundancy. The estimated weight can be interpreted as the extent
to which the new document can be explained by the background
model as opposed to the reference topic model. A similar idea, but
with three-component mixture models, has been explored recently
to measure redundancy in information filtering [11].

More formally, letθB be a background language model with a
mixing weight ofλ. The log-likelihood of a new documentd =
w1...wn is

l(λ|d, θO) =

nX
i=1

log((1− λ)p(wi | θO) + λp(wi | θB))

and the estimated novelty score is given by

valueMIX (d; θO) = arg max
λ

l(λ|d, θO)

The EM algorithm can be used to find the uniqueλ∗ that maximizes
this score.

4.1.2 Multiple Reference Topic Models
When there is more than one reference topic model, an appro-

priate account of the previous models must be made to compute
a summarized novelty value for a document. One possibility is to

compute a mixture (average) of the reference topic models, so that
the problem is reduced to the single reference model case. Another
possibility is to compute a novelty score fordi usingeachprevious
dj as a reference topic modelθO, and to then combine these scores.
The first method is straightforward. For the second, three obvious
possibilities for combining the individual novelty scores are taking
the minimum, maximum, and average. However, using the maxi-
mum distance is unreasonable, since a document would be judged
as novel if it is different from a single old documentdj , even the
case where it is identical to anotherdj′ .

With two novelty measures for a single reference model and two
reasonable ways of computing a combined novelty score over mul-
tiple reference models, we have six different novelty measures, as
shown in Table 1.

Aggregation
Basic d1, . . . , di−1 di vsdj scores combined

measure averaged min average

KL KLAvg MinKL AvgKL
Mixture MixAvg MinMix AvgMix

Table 1: Novelty measures based on language models.

4.1.3 Comparison of Novelty Measures
We compared all six novelty measures on the subtopic retrieval

task. In order to focus on the effectiveness of novelty detection
alone, we considered the special task of re-ranking relevant docu-
ments, using the greedy algorithm of Figure 2 andvaluefunctions
which are appropriate aggregations of the functionsvalueKL and
valueMIX . Since none of the novelty measures can be used to se-
lect the very first document, we used the query-likelihood relevance
value function; essentially all different rankings start with the same
(presumably most likely relevant) document.

We evaluated the ranking using both the S-precision and WS-
precision measures. The results are shown in Figure 3. We make
the following observations.

Overall, MixAvg is the best performing novelty-based ranking,
followed by MinMix. Particularly at high recall levels, MixAvg is
noticeably better than any of the other measures.



For both measures, the relevance ranking is relatively good at
low levels of subtopic recall, and relatively poor at higher levels
of subtopic recall. The novelty-based ranking schemes outperform
the relevance measure most consistently on the WS-precision mea-
sure. This is to be expected since the WS-measure more heavily
penalizes redundancy.

The KL-based ranking schemes are generally inferior to the
mixture-based ranking schemes, by both measures. They are also
(perhaps surprisingly) generally inferior to the baseline relevance
ranking, especially at high subtopic recall levels. The MinMix
measure performs slightly better than the AvgMix measure, and
similarly, the MinKL measure performs slightly better the AvgKL
measure. We note that MinMix is most similar to the original MMR
measure [2].

4.2 Combining Relevance and Novelty
We now consider how to combine novelty and relevance in a

retrieval model. Based on other relevance-based retrieval exper-
iments [10, 5], we use KL-divergence as a measure for relevance
(valueR) and MixAvg as a measure of novelty (valueN ).

Unfortunately, a direct interpolation of these measures would not
make much sense, since they are not on the same scale. We note
that the MixAvg estimate ofvalueN can be loosely interpreted as
the expected percentage of novel information in the document, or
the probability that a randomly chosen word from the document
represents new information. Thus, we may consider two probabil-
ities associated with a documentd. One is the probability of rele-
vancep(Rel | d), the other is the probability that any word in the
document carries some new informationp(New | d). This leads to
the following general form of the scoring function

s(di; d1, ..., di−1) = c1p(Rel | di)p(New | di)
+ c2p(Rel | di)p(New | di)
+ c3p(Rel | di)p(New | di)
+ c4p(Rel | di)p(New | di)

wherec1, c2, c3, andc4 are cost constants.
Since whether a non-relevant document carries any new infor-

mation is not interesting to the user, we assume thatc3 = c4. Fur-
thermore, we assume that there is no cost if the document is both
relevant and (100%) new, i.e., thatc1 = 0.

Intuitively, c2 is the cost of user seeing arelevant, but redundant
document, whereasc3 the cost of seeing anon-relevantdocument.
We will finally assume thatc2 > 0 (i.e., that the user cares about
redundancy), which allows us to re-write the scoring function in the
equivalent form

s(di; d1, ..., di−1)

= c3 + c2p(Rel | d)(1− c3
c2
− p(New | d))

rank
= p(Rel | d)(1− c3

c2
− p(New | d))

where
rank
= indicates that the two scores differ by a constant, and

therefore give identical rankings. Note that a higherp(New | d)
makes the cost score better (i.e., lower). Further, whenc3

c2
≥ 1,

a higherp(Rel | d) also makes the score lower, but the amount of
reduction is affected by the cost ratioc3

c2
. This ratio indicates the

relative cost of seeing a non-relevant document compared with see-
ing a relevant but redundant document. When the ratio is large, i.e.,
c2 ¿ c3, the influence ofp(New | d) could be negligible. This
means that when the user has low tolerance for non-relevant doc-
ument, the optimal ranking would essentially be relevance-based,
and not affected by the novelty of documents. In general, there will

be a tradeoff between retrieving documents with new content and
avoiding retrieval of non-relevant documents.

One technical problem remains, since we do not usually have
p(Rel | d) available when we score documents with the KL-
divergence function. One possible solution is to consider rank-
ing documents based on the query likelihood, i.e.,p(q | d), which
is equivalent to ranking based on the KL-divergence [4]. Since
valueR = p(q | d), we may further assume thatp(Rel | d) is pro-
portional to p(q | d). Under this assumption, the scoring function
can be rewritten as

s(di; d1, ..., di−1)
rank
=

valueR(θi; θQ)(1− ρ− valueN (θi; θ1, ..., θi−1))

whereρ = c3
c2
≥ 1, valueR(θi; θQ) = p(q | di) is the query like-

lihood, andvalueN (θi; θ1, ..., θi−1) is the estimated novelty coef-
ficient using the mixture model method. We refer to this scoring
function as acost-basedcombination of relevance and novelty.

5. EXPERIMENTS
In order to evaluate the effectiveness of the proposed method

for combining novelty and relevance, we compared it with a well-
tuned relevance-based ranking baseline. The baseline is the best
relevance-based ranking (in terms of the subtopic coverage mea-
sure) using the original (short) queries. This baseline ranking
is achieved using the Dirichlet prior ranking method [10] with
smoothing parameter set toµ = 20, 000. We explored two
tasks:re-ranking relevant documents(the same task used above to
evaluate novelty methods), andranking a mixture of relevant and
non-relevant documents. The latter task is the “real” problem of
subtopic retrieval. For the sake of efficiency, the results for rerank-
ing a mixture of relevant and non-relevant documents are based on
using a cost-based ranking scheme to re-rank the 100 top-ranked
documents returned by the baseline ranking.

As a further comparison point, we also tried using pseudo-
feedback on top of our simple baseline. Intuitively, since pseudo-
feedback adds new terms to a query, it might be expected to in-
crease the diversity (and hence decrease redundancy) of the docu-
ments returned as relevant. The feedback approach that we use con-
structs an expanded query model based on an interpolation of the
original maximum-likelihood query model and a pseudo-feedback
model with a weight of1

2
on each. The feedback model is estimated

based on the top 100 documents (from the simple baseline results)
using a mixture model approach to feedback [9] (with the back-
ground noise parameter set to 0.5.) The Dirichlet prior smoothing
parameter is set toµ = 5, 000, which is approximately optimal for
scoring the expanded query.

We varied the cost parameterρ between 1 and 10. Note that it is
unreasonable to setρ to any value below 1, as it would mean that
a larger relevance value corresponds to greater cost. Asρ becomes
large, the combination relies more on relevance; withρ = 10, the
formula is almost completely dominated by relevance. We expect
good subtopic performance to be achieved by both improving rele-
vance ranking and removing redundancy.

5.1 Re-ranking relevant documents
Figure 4 presents the results on the simpler task of re-ranking rel-

evant documents. We show results for the cost-based method with
ρ = 5 andρ = 1.5. Combining relevance and novelty with either
weighting scheme gives a consistent improvement over both base-
lines, across all but the lowest recall levels, and for both measures.
This is in contrast to using novelty scores alone, which improved
over the baseline only for higher subtopic recall levels. This is de-
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Figure 4: Comparison of the curves of S-precision (left) and WS-precision (right) versus S-recall for the task of re-ranking relevant
documents, using a cost-based combination of MixAvg for novelty, and a KL-divergence measure for relevance.
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re-order documents. On the right, WS-precision of the hypothetical relevant-document-only rankers relative to the optimal ranking.

sirable behavior for a method that combines relevance (which does
well at low subtopic recall levels) with novelty (which does well
at high recall levels). Feedback barely improves upon the baseline
retrieval method.

5.2 Ranking mixed documents
Results are presented in Table 2 for the more difficult task of

ranking a mixed pool of documents. We see that the cost-based
combination method still improves over the baseline on both mea-
sures, but only slightly, and only for larger values ofρ. Interest-
ingly, the pseudo-feedback approach also improves slightly over
the baseline method for both S-precision and WS-precision. In
fact, for S-precision the improvement obtained by the feedback
method is somewhatlarger than the improvement obtained by the
cost-based combination of novelty and relevance.3

5.3 Analysis and Discussion
3Graphs are not shown for these results, but the curves for all the
methods track each other quite closely.

Ranking Method Avg S-Precision Avg WS-Precision
baseline 0.332 — 0.468 —
cost,ρ = 1.5 0.305 -8.1% 0.456 -2.6%
cost,ρ = 5 0.339 +2.1% 0.474 +1.2%
baseline+FB 0.344 +3.6% 0.470 +0.4%
“upper bound” 0.416 +25.3% 0.516 +10.3%

Table 2: Comparison of S-precision and WS-precision, aver-
aged across 11 S-recall levels, for the task of re-ranking a mix-
ture of relevant and non-relevant documents, using the cost-
based combination of MixAvg novelty and a KL-divergence
based relevance ranking.

It is likely that with the addition of non-relevant documents,
performance gains due to improving the novelty of documents in
a ranking are largely offset by corresponding performance losses
due to imperfect relevance ranking. Since a relevant document is



much more likely to overlap with another relevant document than
is a non-relevant document, emphasizing novelty may well tend to
move non-relevant documents up in the ranking. It is possible that
the gains obtained by increasing the rank of novel relevant docu-
ments are largely offset by the cost of also pulling up non-relevant
documents in the ranking.

This hypothesis is supported by the performance of the cost-
based method on the task of re-ranking relevant documents. To
further test this possibility, we conducted another test. Recall that
the definitions of (weighted) S-precision and S-recall are based on
comparing a ranking systemS with an optimal systemSopt . One
can use the same methodology to compare any two ranking sys-
tems. To simplify discussion, let us call the system playing the part
of S in a test of this sort thebenchmarked systemand the system
playing the part ofSopt thetarget system. Define theWS-precision
(at r) of a benchmarked systemS1 relative to a target systemS2 as

WS-precision atr ≡ minCost(S2, r)

minCost(S1, r)

Relative WS-precision is a measure of thedifferencein perfor-
mance betweenS1 andS2—the lower the WS-precision, the larger
the performance difference.

We took the rankings produced by the baseline retrieval sys-
tem, henceforthSbase , and removed all non-relevant documents,
to produce rankings from a hypothetical systemSbase

relOnly . We then
performed the same transformation on the cost-based ranking for
ρ = 5, henceforthScost , to produce rankings for the hypothetical
systemScost

relOnly .
Our conjecture is that the cost-based method ranks relevant doc-

uments better than the baseline system, but also ranks non-relevant
documents higher. Stated in terms of these hypothetical ranking
systems, the conjecture is that (a) WS-precision forSbase relative
to Sbase

relOnly will be higher (i.e., indicate a smaller difference in per-
formance) than the WS-precision forScost relative toScost

relOnly and
(b) WS-precision forSbase

relOnly relative toSopt will be lower (i.e., in-
dicate a larger performance difference) than the WS-precision for
Scost

relOnly relative toSopt .
This conjecture is confirmed by experiments; the results are

shown in Figure 5. For clarity, we show WS-precision at interme-
diate levels of S-recall, where the differences between the systems
are greatest.

A final set of experiments on ranking a mixed pool of documents
was based on the observation that none of the methods considered
more than modestly improves performance over the original rele-
vance baseline. For each query, we created a subtopic query, or
“subquery,” for each subtopic, by concatenating the original query
Q with the description of the subtopic. For instance, for the sam-
ple query 392i, we created 35 subqueries, the first of which was
“What are the applications of robotics in the world today? ’clean
room’ applications in healthcare & precision engineering.” We then
retrieved the top 500 documents for each subquery, using the base-
line methodwith pseudo-feedback, and placed all of the documents
returned by any subquery forQ into a single pool forQ. Finally, we
ran a noise-tolerant version of a greedy set-covering algorithm (de-
scribed in Appendix A). This algorithm uses as a value function the
expected number of new subtopics covered by a document, using
subquery relevance scores to estimate the relevance of a document
to a subtopic.

Unlike the MMR-style algorithms considered above, this algo-
rithm uses anexplicit model of the subtopics, which is acquired
from the subtopic descriptions using pseudo-feedback. It is quite
unreasonable to assume that this much information is available in
practice (recall that in the TREC interactive track, finding descrip-

tions of topics is presented as thegoal of the user). However, it
may be useful to consider the performance of this system as an (in-
formal) upper bound on the performance of retrieval systems that
must operate without any explicit model of subtopics.

The performance of this method is shown in Table 2 under the ti-
tle “upper bound.” Average S-precision and averaged WS-precision
are improved, but by surprisingly little: S-precision is improved by
about 20% over the best realistic method (the baseline with feed-
back), and WS-precision is improved by about 9% over the best
realistic method (cost-based retrieval withρ = 5).

6. CONCLUDING REMARKS
In this paper, we studied a non-traditional subtopic retrieval

problem where document ranking is based ondependentrelevance,
instead ofindependentrelevance, as has been assumed in most tra-
ditional retrieval methods. The subtopic retrieval problem has to do
with finding documents that cover as many different subtopics as
possible. This is often a more accurate formulation of the retrieval
problem, especially when a user prefers high recall, because it re-
flects the user’s preference for removing redundancy, in addition to
the preference for relevant documents. Traditional retrieval meth-
ods and evaluation metrics are insufficient for subtopic retrieval
since the task requires the modeling of dependent relevance.

We proposed a new evaluation framework for subtopic retrieval,
based on the metrics of S-recall (subtopic recall) and S-precision
(subtopic precision). These measures generalize the traditional
relevance-based recall and precision metrics, and account for the
intrinsic difficulty of individual topics—a feature necessary for
subtopic retrieval evaluation. We also introduced WS-precision
(weighted subtopic precision), a further generation of S-precision
that incorporates a cost of redundancy.

We proposed several methods for performing subtopic retrieval
based on statistical language models, taking motivation from the
maximal marginal relevance technique. We evaluated six novelty
measures, and found that a simple mixture model is most effective.
We then proposed a cost-based combination of this mixture model
novelty measure with the query likelihood relevance ranking. This
method was shown to slightly outperform a well-tuned relevance
ranking baseline. However, the improvement is most clearly seen
for ranking only relevant documents; when working on a mixed set
of relevant and non-relevant documents, the improvement is quite
small, slightly worse than a tuned pseudo-feedback relevance rank-
ing of the same documents. This indicates that while both relevance
and novelty/redundancy play a role in subtopic retrieval, relevance
is a dominating factor in our data set.

In future work, we need to further study the interaction of rele-
vance and redundancy, perhaps by using synthetic data to control
factors such as the level of redundancy and the number of subtopics.
A major deficiency in all of the MMR style approaches considered
here is theindependenttreatment of relevance and novelty. As a re-
sult, there is no direct measure of relevance of the new information
contained in a new document. Thus, a document formed by con-
catenating a seen (thus redundant) relevant document with a lot of
new, but non-relevant information may be ranked high, even though
it is useless to the user. As another direction for future work, we
will explore how to model the subtopics more directly with models
such as latent Dirichlet allocation [1].

APPENDIX

A. COMPUTING MINRANK & MINCOST
By definitionminRank(Sopt , r) is the smallest set of documents



d1, . . . , dK such that| ∪i subtopics(di)| = rnA, wherenA is the
number of subtopics. This is equivalent to the minimum set cover
problem, which is NP-hard.

To computeminRank, we used an iterative deepening algo-
rithm. For every documentdi, a setAi = subtopics(di) is created.
Let A = {A1, . . . , An}. ForD = 1, 2, . . . , we find the size-D
subset of ofA which covers the largest number of subtopics. This
iteration is halted whenD is large enough to cover all the subtopics.

To do this more efficiently a few tricks were used. First, any set
Ai that is strictly dominated by some otherAj (i.e., Ai ⊂ Aj)
is removed fromA. If Ai = Aj , then the set with the largest
index is removed. Second, let amain diagonal setto be any setAi
containing exactly one subtopicai such thatai is contained only
in Ai. Main diagonal sets are also removed fromA, and added
the cover (in an arbitrary order) after all other subtopics have been
covered. Third, for eachD, an upper boundU(D) on the number
of subtopics covered by a set of sizeD is computed. The upper
bound is the the smaller of the number of subtopicsna and the sum
|Ai1 |+ ...+ |AiD | wherei1, ...,iD are the indices of theD largest
sets. When searching for an optimal size-D set, the search is halted
whenever a set of sizeU(D) is found.

To computeminCost, a similar scheme was used, except that
iterative deepening was performed over all possible cost levels, up
to and including the cost obtained by a greedy set covering scheme
(described below) for a set that covered all subtopics. The heuris-
tics used forminCost were similar to those used forminRank,
except that it is not possible to eliminate dominated documents;
however, we did remove “duplicate” documents, which cover ex-
actly the same set of subtopics as another document.

We also implemented greedy set covering schemes forminRank
andminCost. ForminRank, value(di; d1, . . . , di−1) was defined
asanew (di), whereanew (di) is the number of subtopicsa such that
no previous documentd1, . . . , di−1 is relevant toa. ForminCost,
the value function is the ratioanew (di)/|subtopics(di)|.

It is known that this algorithm achieves a factor oflogn of the
optimal solution in the worse case. On these problems, it seems
to perform extremely well. Compared to the exact method de-
scribed above, the greedy algorithm forminRank always obtains
the optimal result. For the 19 queries for whichminCost could be
computed exactly, the WS-precision of the greedy approximation
is more than 99.6% for all recall values up to 0.9, and for recall 1.0,
the WS-precision of the greedy approximation is 84%.

In Section 5.3 we used a version of the greedy algorithm that
uses imperfect, corrupted relevance judgements. The true rele-
vance judgements can be viewed as a matrixR, whereRi,j = 1
if subtopicai is relevant to documentdj andRi,j = 0 otherwise.
The “noisy” version of the greedy algorithm assumes an estimate
R̂i,j of each of these numbers, where0 ≤ R̂i,j ≤ 1, and uses the
value function

value(di; dj1 , . . . , dji−1) =

nAX
i=1

 
R̂i,j ·

i−1Ỳ
=1

(1− R̂i,j`)
!

To test this method, we began with true relevance judgements
Ri,j , and replaced with real numberŝRi,j drawn from a binomial
with parameters1

2
+ γ · (2Ri,j − 1) andm. That is to say, we

picked a probabilityq asq = 1
2
− γ if Ri,j = 0, andq = 1

2
+ γ

if Ri,j = 1, flippedm coins with biasp, and saved the fraction of
heads as a new valuêRi,j .

Experiments with this corrupted data confirm that the noisy
greedy set-covering algorithm works well, even when there is a
relatively weak signal in the estimates ofRi,j . With m = 10,
the algorithm obtains average S-precision of 0.92 forγ = 0.35,

S-precision of 0.78 forγ = 0.25, and S-precision of 0.44 for
γ = 0.05. Notice that this system optimizes S-precision, not WS-
precision.
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