
Preventing Information Leaks in Email

Vitor R. Carvalho
Language Technologies Institute

Carnegie Mellon University

William W. Cohen
Machine Learning Department

Carnegie Mellon University

Abstract
The widespread use of email has raised serious privacy concerns.
A critical issue is how to prevent email information leaks, i.e.,
when a message is accidentally addressed to non-desired recipients.
This is an increasingly common problem that can severely harm
individuals and corporations — for instance, a single email leak
can potentially cause expensive law suits, brand reputation damage,
negotiation setbacks and severe financial losses.

In this paper we present the first attempt to solve this problem.
We begin by redefining it as an outlier detection task, where the
unintended recipients are the outliers. Then we combine real
email examples (from the Enron Corpus) with carefully simulated
leak-recipients to learn textual and network patterns associated
with email leaks. This method was able to detect email leaks
in almost 82% of the test cases, significantly outperforming all
other baselines. More importantly, in a separate set of experiments
we applied the proposed method to the task of finding real cases
of email leaks. The result was encouraging: a variation of the
proposed technique was consistently successful in finding two real
cases of email leaks. Not only does this paper introduce the
important problem of email leak detection, but also presents an
effective solution that can be easily implemented in any email client
— with no changes in the email server side.

1 Introduction

On July 6th 2001, the news agency Bloomberg.com pub-
lished an interesting article entitledCalifornia Power-
Buying Data Disclosed in Misdirected E-Mail1. An ex-
cerpt is reproduced below:

“California Governor Gray Davis’s office released data
on the state’s purchases in the spot electricity market — in-
formation Davis has been trying to keep secret — through a
misdirected e-mail. The e-mail, containing data on Califor-
nia’s power purchases yesterday, was intended for members
of the governor’s staff, said Davis spokesman Steve Mav-
iglio. It was accidentally sent to some reporters on the of-
fice’s press list, he said. Davis is fighting disclosure of state
power purchases, saying it would compromise negotiations
for future contracts”.

This was a famous case of information leak via email,
where a message was accidentally sent to unintended recip-
ients. This episode, however, was by no means an isolated
case. In fact, most regular email users have received such
misdirected email messages, often due to email clients that

1In Sep 2006, the entire article could be found athttp://www.
freerepublic.com/forum/a3b4611e82dc0.htm

are overly aggressive at completing partial email addresses.2.
With the widespread use of email, it is reasonable to expect
that an increasing number of email users will experience sim-
ilar situations — as a sender of an information leak or, more
frequently, as a recipient.

As the California Power-Buying example above indi-
cates, unintentional email leaks can be disastrous. They can
lead to major negotiation setbacks, losses in market share
and financial burdens. Furthermore, when related to personal
or corporative privacy policies, an email leak can potentially
be the cause of expensive lawsuits and irreparable brand rep-
utation damage. Even though it is not easy to estimate the
amount of loss caused by information leaks, one thing is for
certain: such incidents should be avoided at all costs. In this
paper we present a new technique to prevent sending email
messages to unintended recipients. To the best of our knowl-
edge, this is the first attempt to solve this critical problem.

We approach this problem using the following method-
ology. We start by casting it as anoutlier detectionproblem:
i.e., we model the messages sent to past recipients, and con-
sider a (message,recipient) pair to be a potential leak if the
message is sufficiently different from past messages sent to
that recipient. This approach has the advantage that it can be
easily implemented in an email client—it does not use any
information that is available to the server only.

To evaluate different approaches of this type, we require
data. Since we do not have access to a considerable number
of real cases of unintentional email leaks, we create artificial
cases of unintended recipients in real-world email data.
More specifically, we simulate email leaks in the Enron
Email corpus3 [2] using different plausible criteria. These
criteria imitate realistic types of leaks, such as misspellings
of email addresses, typos, similar first/last names, etc.

On this benchmark data, we evaluate a number of leak-
detection methods. We show that a classification-based
approach works best. In this method, we extract textual

2For instance, during his employment at AT&T Research, the linguist
Steven Abney noted that he received a large number of misdirected emails
that had been addressed to steven@att.com. At the time he was the alpha-
betically first Steven in the AT&T corporate directory of email addresses.

3A large collection of real email messages from several managers and
employees of the Enron Corporation. This data was originally made public
by the Federal Energy Regulatory Commission during the investigation.

http://www.freerepublic.com/forum/a3b4611e82dc0.htm
http://www.freerepublic.com/forum/a3b4611e82dc0.htm

and social network features from the messages, and then
use supervised learning techniques to predict email leaks.
Evaluations show that this technique can correctly identify
the (synthetically-introduced) “leak recipient” in almost 82%
of the messages.

In a separate set of experiments we apply a variation of
this technique to real data. In particular, we searched the
Enron data for real cases of email leaks, and evaluated the
method on these. We show that a variation of our method
could successfully handle two independent real cases of
email leaks (unintended message recipients) in the Enron
corpus. This result shows that the proposed technique is
effective, and has the potential to prevent actual email leaks
in realistic scenarios.

The paper is organized as follows. In Sections 2.1 and
2.2, we introduce the Enron data and describe our approach
to detecting email leaks. Then in Section 2.3 we describe the
criteria used to introduce artificial email leaks in the Enron
data. Sections 3.1 and 3.2 explain our experiments and how
the different sets of features were combined to produce a
very robust and effective model for the problem. In Section
4 we demonstrate that our model was successful in detecting
two real cases of leaks in the Enron data. We then present
related references and a discussion of results in Section 5.

2 Dataset

2.1 The Enron Collection Although email is ubiquitous,
large, public and realistic email corpora are not easy to
find. The limited availability is largely due to privacy issues.
For instance, in most US academic institutions, a email
collection can only be distributed to researchers if all senders
of the collection also provided explicit written consent.

In all experiments of this paper we used the Enron
Email Corpus, a large collection of real email messages
from managers and employees of the Enron Corporation.
This collection was originally made public by the Federal
Energy Regulatory Commission during the investigation of
the Enron accounting fraud. We used the Enron collection
to create a number of simulated user email accounts and
address books, as described below, on which we conducted
our experiments.

As expected, real email data have several inconsisten-
cies. To help mitigate some of these problems, we used the
Enron dataset version compiled by Jitesh and Adibi [7], in
which a large number of repeated messages were removed.
This version contains 252,759 messages from 151 employ-
ees distributed in approximately 3000 folders.

Another particularly important type of inconsistency in
the corpus is the fact that a single user may have multiple
email addresses. We addressed part of these inconsisten-
cies by mapping between 32 “raw” email address and the
normalized email address for some email users. This map-
ping (author-normalized-author.txt) was produced by Andres

Corrada-Emmanuel, and is currently available from the En-
ron Email webpage [2].

For each Enron user, we considered two distinct sets of
messages: messages sent by the user (sent collection) and
messages received by the user (received collection). The
received collection contains all messages in which the user’s
email address was included in theTO, C.C.or B.C.C.fields.
The sent collection was sorted chronologically and then split
into two parts,senttrain andsenttest. Senttrain contains
90% messages sent by the user, corresponding to the oldest
ones. The most recent messages, 10% of the total sent
collection, were placed insenttest. The final message counts
for 20 target Enron users is illustrated in Table 1.

Enron received sent train sent test
user
rapp 408 146 17
hernandez 792 1326 15
pereira 737 179 20
dickson 1263 198 22
lavorato 1930 361 41
hyatt 1797 566 63
germany 466 729 82
white 922 441 50
whitt 836 414 46
zufferli 324 314 35
campbell 1383 531 60
geaccone 889 396 44
hyvl 1246 650 73
giron 667 999 111
horton 964 426 48
derrick 1283 686 77
kaminski 1042 1097 122
hayslett 1590 706 79
corman 2274 686 77
kitchen 5681 876 98

Table 1: Number of Email Messages in the Different Collec-
tions

This 90%/10% split was used to simulate a typical
scenario in a user’s desktop — where the user already has
several sent and received messages, and the goal is to predict
if the next sent message will be an information leak. In
order to make the received collection consistent with this, we
removed from it all messages that were more recent than the
most recent message insenttrain. The general time frames
of the different email collections is pictured in Figure 1.

We also simulated each user’s address book: for each
Enron useru, we build an address book setAB(u), which
is a list with all email addresses that can be found in the
receivedandsenttrain collections of this user. More pre-
cisely, the list was constructed using information from both
senttrain and received collections, but sent and received

Figure 1: Time frames of different email collections.

messages are used in different ways. From senttrain, we
consider all email addresses that were recipients of at least
one message. In the received collection, on the other hand,
we disregard all message recipients—in other words, we
consider all email addresses from the senders of messages,
and only the senders. The message recipients are not added
to AB(u) because a received message is a communication
between its sender and all its recipients, and not among
recipients—i.e., a particular recipient does not necessarily
know the other recipients.

In all our experiments we represented the content of
the messages with a “bag of words”, where the counts of
all tokens in a message were extracted and taken as feature
weights. In this process, a small set of stop words4 was
removed from the email body. In addition, self-addressed
messages with no other recipients were also disregarded.

Only the first six Enron users (rapp, hernandez,. . . ,hyatt)
were used during the development of our methods. After
all development and tuning were complete, the remaining 14
Enron users were added to the test collection as an evaluation
set. As we will see, performance is quite similar on the two
collections of users.

2.2 Generating Synthetic LeaksInformation leaks in
email are a relatively common problem. Most email users
have experienced a “strange” message in their mailboxes and
probably spent some time trying to remember who the sender
was, or why they were copied in the message. In spite of
this, collecting sufficient data for a controlled experiment is
a challenging task, largely due to privacy concerns.

In this work we addressed this limitation by using
real data (the Enron Email collection) in combination with
synthetic information leaks, or simulatedleak-recipients. In
outline, leaks are simulated by adding an additional recipient
to emails from a user’s senttest collection. This process thus
allows us to evaluate performance on over 1100 simulated
leaks for 20 users. There are several plausible ways to add
these “leak-recipient” users, and details on this process are
described in Section 2.3.

4about, all, am, an, and, are, as, at, be, been, but, by, can, cannot, did,
do, does, doing, done, for, from, had, has, have, having, if, in, is, it, its, of,
on, that, the, they, these, this, those, to, too, want, wants, was, what, which,
will, with, would

After the simulated leak recipients are generated, we
can then attempt to learn leak patterns and automate the
process of leak prediction. We start by using features based
on the email contents (Section 3.1). We then improve the
prediction by reranking the text-based results using social
network features (Section 3.2).

2.3 Leak Criteria Accidental email leaks can happen in
various situations. A typical case is when the message is a
reply to a previous message but not all previous recipients
should be included. Another common situation is when
one of the intended recipients has a similar first name (or
surname, or email address) of another entry in the user’s
contact list. The latter scenario is particularly frequent
when the email client uses aggressive auto-completion of
addresses and/or contact names.

To simulate the latter situation, we developed the fol-
lowing procedure to create leak-recipients (or outliers)—i.e.,
the email addresses that are unintentially included as a re-
cipient. We will assume that for the senttest messages, the
recorded list of recipients were all intended recipients, and
that no other recipients were intended; thus leak-recipients
can be generated by simply adding some other recipient to
the message. However, we elected to simulate a certain
plausible process for generating email leaks; specifically, we
elected to simulate the actions of an email client that pro-
vides the recipient in response to an incompletely-specified
email address. The procedure we used is illustrated in Table
2 and we refer to it as3g-addresshenceforth.

For a given message withn recipient addresses (i.e.,
the set of recipient addressesA = {a1..an}), we randomly
select one of the addressesai. We then consider the ad-
dressesAB(u) in the address book of the user, discard ad-
dresses inA, and search for other addresses that start with
the same three three initial characters asai. For instance, if
ai=marina.carvalho@enron.com, we would return all email
addresses inAB(u) − A starting with the sequence of char-
acters “mar”5. If the returned list is not empty, we randomly
select one of the addresses as the leak-recipient and finish
the procedure; otherwise, we find all addresses inAB(u)
that cannot be found inA and start with the same two ini-
tial characters asai (i.e., the characters “ma”6). If this list
is not empty, we randomly choose one of the entries as the
leak-recipient and end the procedure; otherwise, we find all
addresses inAB(u) that and cannot be found inA and start
exactly the same initial character ofai (i.e., the character
“m”7). If this list is not empty, we randomly select one of the
entries as leak-recipient and finish the procedure; otherwise,
we randomly select any address fromAB(u) (that cannot be
found inA) and return it.

5For instance,mary...,marco...,margaret...,marcia..., etc.
6For instance,matthew...,may...,manuel...,madaleine..., etc.
7For instance,melyssa...,michael...,monika...,morgan..., etc.

Table 2: 3g-address, an Information Leak Heuristic

1. Input: Useru and set of user’s messagesM = {m1..mj}
2. Build user’s address book setAB(u)

3. For each messagemj in M :

(a) Randomly selectai from set of recipients addressesA in mj .

(b) Find setL3 (i.e., all addresses inAB(u)− A with the same three initial characters ofai)

(c) If L3 6= ∅, randomly select leak-recipient fromL3

(d) Else

• Find setL2 (same asL3 but using the two first characters instead)

• If L2 6= ∅, randomly select leak-recipient fromL2

• Else

– Find setL1 (same asL1 but using only the first character only)

– If L1 6= ∅, randomly select leak-recipient fromL1

– Else, randomly select leak-recipient fromAB(u)− A

(e) Return the selected leak recipient

Even though the3g-addressis a reasonable criterion to
simulate email information leaks, several other leak criteria
could have been used. For instance, we could use a sim-
ilar 3g-address criterion for first names and/or last names;
or even some string distance similarity metric [3]. Unfortu-
nately the Enron dataset does not include contact information
(or address books) of most users; thus only a small percent-
age of the email addresses could have the first and last names
extracted. Because of this limitation, we initially decided to
apply only the 3g-address criterion when evaluating leaks in
the Enron dataset. Later we will consider a variation of this
process as well.

Using a particular leak criterion, we are able to simulate
artificial leaks on real data. The idea is to add a single leak-
recipient to the list of recipients of the message.

With large quantities of email messages with simulated
email leaks, the problem now becomes finding the most
effective way to predict the unintended recipients.

3 Methods for Email Leak Prediction

3.1 Baselines: Using Textual ContentIn this Section we
develop different techniques for the leak prediction problem
based on the textual contents of the messages. The main idea
here is to model the “recipient-message” pairs, and then to
predict the least likely pair (the worst outlier of the model)
to be a leak-recipient. Predicting exactly one pair to be a
leak is a reasonable choice, since in our simulated data, each
message contains exactly one leak-recipient; however, all of
the methods we describe actually produce a ranking of all
message recipients. We start by using only the previously
sent messages (senttrain collection) as training set.

The first method was based on cosine similarity between

two vector-based representations of email messages. Given
a message from useru to a set of recipientsA, we derived
the message’s TF-IDF (Term Frequency-Inverse Document
Frequency) vector representation from its textual contents
and then normalized the vector to length 1.0. The second
representation was built from a concatenation of all previous
messages sent from useru to a particular recipientai in
A. In other words, we concatenated all previous messages
sent fromu to ai and considered it to be one single large
document. Analogously, we derived TF-IDF weights in the
concatenated model, and normalized the TF-IDF vector to
1.0. We then computed the cosine similarities between the
current message vector and the|A| concatenated vectors.
The recipient associated with smallest similarity value is
then predicted as leak-recipients. We refer to this method
asCosine.

The second method was based on the K-Nearest Neigh-
bors algorithm described by Yang & Liu [8]. Given a mes-
sage from useru addressed to a set of recipientsA =
{a1..an}, we found its 30 most similar messages in the train-
ing set. The notion of similarity here is also defined as the
cosine distance between the text of two normalized TF-IDF
vectors. With the top 30 most similar messages selected from
the training set, we then computed the weight of each recip-
ient ai according to the sum of similarity scores of the mes-
sages in whichai was one of the recipients. After ranking all
n recipients in the given message according to this method,
we selected the one with lowest score as the predicted leak-
recipient. We refer to this method asKnn-30 (sent).

Both methods above can handle received messages us-
ing a very simple assumption: to treat received messages
as sent messages with a single recipient — the sender. In

fact, this is consistent to what we did to extract the address
booksAB(u) in Section 2.3, where we only added to the
address book the message senders from the received collec-
tion. We use the symbols(sent)or (sent+rcvd)to identify,
respectively, the smaller (senttrain) and the larger(senttrain
+ received) training sets. (TheCosinemethod is shown only
with senttrain messages due to space constraints.)

The overall results in this section are shown in Table
3. This Table shows the experimental results for each Enron
user. The results are expressed in terms of Precision at rank
1 (or Prec@1), i.e., the average number of times (in N trials)
that the predicted leak-recipient is the actual leak-recipient.
We usedN = 10 trials. On each trial, a completely new set
of leak-recipients is generated for the training and test sets,
and the experiment is completely repeated. TheRandom
column shows the Prec@1 values when the leak is chosen
randomly from the recipient list.

From Table 3 we observe that, in average, the Cosine
method had approximately the same level of performance
of the Knn-30 method. Another interesting point is that,
compared to the baseline Random, the gain obtained by
using textual information is obvious, but relatively modest.
As we shall see in Section 3.2, much larger improvements
in performance can be obtained by using social network
features. Also from Table 3, it does not seem to make a lot
of difference to add the received messages to the training set,
since the average performance barely changed.

Enron Random Cosine Knn-30
user (sent) (sent) (s+r)
rapp 0.236 0.470 0.547 0.459
hernandez 0.349 0.226 0.247 0.353
pereira 0.459 0.490 0.450 0.465
dickson 0.462 0.627 0.641 0.659
lavorato 0.463 0.697 0.668 0.637
hyatt 0.400 0.488 0.533 0.586
germany 0.352 0.570 0.620 0.588
white 0.389 0.648 0.626 0.616
whitt 0.426 0.478 0.522 0.563
zufferli 0.479 0.628 0.654 0.697
campbell 0.385 0.454 0.422 0.451
geaccone 0.367 0.413 0.423 0.420
hyvl 0.455 0.523 0.467 0.436
giron 0.444 0.551 0.588 0.616
horton 0.460 0.646 0.604 0.615
derrick 0.454 0.784 0.758 0.668
kaminski 0.471 0.711 0.753 0.739
hayslett 0.304 0.547 0.561 0.551
corman 0.466 0.782 0.728 0.695
kitchen 0.300 0.424 0.379 0.415
Average 0.406 0.558 0.560 0.561

Table 3: Email Leak Prediction Results: Prec@1 in 10 trials.

3.2 Classification-Based Method: Using Social Network
Information So far we have considered only the textual
contents of emails in the task of leak prediction. Yet, it
is reasonable to consider social network features for this
problem, such as the number of received messages, number
of sent messages, number of times two recipients were
copied in the same message, etc. In this Section we describe
how these network features can be exploited to considerably
improve performance on this problem.

In order to combine textual and social network features,
we used a classification-based scheme. The idea is to
perform the leak prediction in two steps. In the first step
we calculate the textual similarity scores using a cross-
validation procedure in the training set. In the second step,
we extract the network features and then we learn a function
that combines those with textual scores.

The textual scores are calculated in the following way.
We split the training set (received + senttrain collections)
in 10 parts. Using a 10-fold cross-validation procedure, we
compute the score for the knn-30 on 90% of the training
data and use it to make predictions in the remaining 10%.
In the end of this process, each training set examples will
have, associated with it, a list of email addresses (from the
top 30 messages selected by Knn-30) and their predicted
scores. Now we have an “outlier score” associated with
each message recipient in the training set. These scores will
be used as features in the second step of the classification
procedure.

In addition to the textual scores, we used three different
sets of social network features. The first set is based on
the relative frequency of a recipient’s email address in the
training set. For each recipient we extracted the normalized
sent frequency (i.e., the number of messages sent to this
recipient divided by the total number of messages sent by this
particular Enron user) and the normalized received frequency
(i.e., the number of messages received from this recipient
divided by the total number of messages received by this
particular Enron user). In addition, we used two binary
features to indicate if no messages were sent to a particular
user, and if no messages were received from a particular user.
We refer to these features asFrequencyfeatures.

The second set of social network information is based on
co-occurrence of recipients on other messages in the training
set. The intuition behind this feature is that we expect
leak-recipients to co-occur less frequently with the other
recipients. Given a message with three recipientsa1, a2 and
a3, let the frequency of co-occurrence between recipientsa1
and a2 be F (a1, a2) (i.e., the number of messages in the
training set that hada1 as well asa2 as recipients). Then
the relative co-occurrence frequency of usersa1, a2 anda3
will be proportional to, respectively,F (a1, a2)+F (a1, a3),
F (a2, a3) + F (a2, a1) and F (a3, a1) + F (a3, a2): i.e.,
the relative co-occurrence frequency of each recipientai =

∑
j 6=i F (ai, aj). These values are then divided by their sum

and normalized to one. In case of two recipients only, the
value of this feature is obviously 0.5 to each. No features
will be extracted if the message has only one recipient. We
refer to this feature in asCoocurr features.

We will call the third set of network features theMax3g
features. To explain this feature set, we need to refer to Table
2 in the Leak Criteria Section. For each recipientaj in a
message, we return theL3 set. And from theL3 set we
select the candidateam with the highest score (score from
the cross-validation procedure). We then use this highest
score minus the score ofaj as a feature. Since the scores
are between 0 and 1, the final value of this feature can be
normalized asscore(aj)−score(am)+1

2 . The intuition behind it
is that leak-recipients are likely to have lower values for this
feature, since their own scores are likely to be lower than
theirL3 highest score. Obviously, ifL3 is empty, theL2 set
is used; and if the latter is empty,L1 is used.

After the three sets of features are extracted, their values
were discretized according to the following thresholds: 0.9,
0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001,
0.0005, 0.0001, 0.00005, 0.00001, 0.000005 and 0.000001.
The feature value is then represented by all thresholds that
are smaller than it. (For example, if a feature B had a
value 0.0003, its representation after being discretized would
be “B-0001, B-00005, B-00001, B-000005, B-000001”. If
the value of B were smaller than 0.000001 then an extra
feature would be generated (B-000001L). This discretization
process was used to increase the robustness of the learning
algorithm.)

We used the Voted Perceptron [4] as learning algorithm,
as an example of a learning method which is robust and ef-
fective, but efficient enough to be plausibly embedded in an
email client. It was trained using five passes through the
same training data, and training examples for each user’s
leak-detection method were generated from the entire train-
ing collection (senttrain + received) for the user. The learn-
ing proceeded in the following way. For each message with
J recipients (where one of them is the leak-recipient), we
createdJ examples: 1 negative example with the features
associated with the leak-recipient andJ − 1 positive exam-
ples associated with the true recipients. The leak-recipient
detection thus becomes a binary classification problem.

Experimental results using textual and network features
are illustrated in Table 4. For comparison, the second
column is the best text-only method from Table 3, i.e., the
Knn-30 using both sent and received messages. The third
column shows the Prec@1 values of our method using the
cross-validation score in addition to the Frequency features.
As we can see, results are surprisingly good, with very
large performance improvements. On average, more than
80% of the test messages had their leak-recipients correctly
predicted.

The fourth column reveals the performance of the cross-
validation score in addition to the Cooccur features. Again, a
general improvement compared to the textual-only methods
can be observed, and for some users results were even better
than the “+Frequency” column. However, in average results
were not as good as using only the first set of network
features.

The fifth column shows results associated to the Max3g
features. Compared to the two previous feature sets, this is
the least effective one, but still performing better than the
best textual-only baseline.

The sixth column illustrates the performance results
when all three feature sets are used in addition to the cross-
validation scores. Again we observe very good results,
better on average than all other feature sets taken in isolation
and obviously considerably better than the best textual-only
method. In average, this technique was able to detect the
leak-recipients in almost 82% of the messages — a very
good result in itself. The last column shows the relative gain
in performance between the “All” column and the Knn-30
column. Gains for all users were observed, include all of the
14 evaluation-set users. (Recall that the method was fully
developed and debugged on the first 6 users.) On average,
the relative gain was nearly 49%.

Overall, Table 4 is a clear indication that the proposed
method is very effective and robust in detecting email leaks,
significantly outperforming all baselines for 20 different
Enron users.

4 Finding Real Leaks on Real Data

4.1 Finding Real Email Leaks In previous sections we
have presented promising results for the task of leak detec-
tion, but they were all based on artificially constructed data.
It is not clear if the technique will in fact work for a real case
of an email information leak.

First of all, we needed to find real leak cases and, as
expected, this is not a trivial task. We approached the
problem by performing some message filtering8, and then
manually screening the results. Messages containing these
terms tend to occur in the emails following a leak (typically
in the same message thread), after someone realized the
mistake. We discovered several cases of real email leak in the
corpus. Unfortunately, most of these cases were originated
by non-Enron email addresses or by an Enron email address
that is not one of the 151 Enron users whose messages were
collected — two situations in which our technique would
not work since it requires the collection of sent and received
messages of the same user. Eventually, we were still able
to find two distinct email leaks associated with two different

8Selecting messages containing the termssorry, accidentor mistake. We
were looking for sentences similar to “Sorry. Sent this to you by mistake.
Please disregard.”, “I accidentally send you this reminder”, etc.

Enron Knn-30 CV-Scores ∆(%)
user (s+r) +Frequencies +Cooccur +Max3g +All (to Knn-30)

rapp 0.459 0.706 0.747 0.6352 0.788 71.796
hernandez 0.353 0.693 0.7466 0.6533 0.720 103.793
pereira 0.465 0.795 0.78 0.74 0.850 82.796
dickson 0.659 0.814 0.7909 0.7727 0.786 19.317
lavorato 0.637 0.898 0.7731 0.7536 0.910 42.922
hyatt 0.586 0.827 0.8222 0.7634 0.824 40.652
germany 0.588 0.659 0.6209 0.5938 0.665 13.240
white 0.616 0.832 0.776 0.6719 0.812 31.823
whitt 0.563 0.867 0.7826 0.7413 0.889 57.922
zufferli 0.697 0.806 0.7714 0.7971 0.809 15.980
campbell 0.451 0.703 0.7677 0.7457 0.739 63.909
geaccone 0.420 0.782 0.609 0.6613 0.789 87.583
hyvl 0.436 0.826 0.8205 0.7684 0.822 88.682
giron 0.616 0.831 0.7441 0.6729 0.858 39.176
horton 0.615 0.840 0.752 0.7479 0.856 39.333
derrick 0.668 0.942 0.8662 0.8207 0.934 39.880
kaminski 0.739 0.902 0.9213 0.9377 0.902 22.068
hayslett 0.551 0.778 0.5658 0.5556 0.747 35.634
corman 0.695 0.910 0.7792 0.7883 0.912 31.203
kitchen 0.415 0.680 0.5173 0.5459 0.662 59.451
Average 0.561 0.804 0.748 0.718 0.814 49.358

Table 4: Email Leak Prediction Results: Prec@1 in 10 trials.

users in the original 151 Enron user set.
The first case happened in message germany-

c/sent/930; which can be inferred from message germany-
c/all documents/1489. In this case, the email leak contains
20 recipients and the leak corresponds to the address
alex.perkins@enron.com. The second case is located
in the message kitchen-l/sentitems/497, and message
kitchen-l/sentitems/495 can confirm it. Message kitchen-
l/sent items/497 contains 44 recipients, and in this case the
leak address is rita.wynne@enron.com.

In order to detect these two leaks, we prepared the
datasets in the same way as described in Section 2. We
assured that these two email leak messages were placed in
the senttest collection of the two users and then we applied
the best classification-based method on them. For this test,
simulated leak-recipients were added to the training set, but
not to the two test messages. In the two test messages, we
obviously considered, respectively, alex.perkins@enron.com
and rita.wynne@enron.com as the leak-recipients. The train-
ing method is non-deterministic, since it includes cross-
validation to compute the textual similarity, so we ran 100
trails and report the average performance.

The results are indicated in second column (Original) of
Table 5. In addition to Prec@1, we also report Average Rank
(AvgRank) as an evaluation metric. AvgRank is defined as
the average value of the rank in which the true leak-recipient
was listed. The minimum value of AvgRank is 1.0 (when all

predictions are correctly ranked in position 1). Larger values
of AvgRank indicate worse predictions.

Leak Classification-based Classification-based
case (Original) (Variation α = 0.2)
Germany-c [0.0%, 3.7] [0.89%, 1.11]
Kitchen-l [0.0%, 10.9] [0.25%, 2.50]

Table 5: Performance when Detecting Real Leak Cases.
[Prec@1, Average Rank]

Performance was rather disappointing. Not only were
the average ranks far from what we would hope for in a
practical system, and also the Precisions@1 were 0.0 in both
cases. In other words, the algorithm could not predict leaks
correctly even once in 100 attempts.

This disappointing performance, when analyzed
in detail, has a very simple explanation. In both
cases, the two real leaks (alex.perkins@enron.com and
rita.wynne@enron.com) were to recipients that had never
been encountered in the previous messages, either in the
senttrain collection nor in the received collection. In
contrast, recall that the simulated leak-recipients in the
training set are selected from the procedure in Table 2, i.e.,
only email addresses from the Address Book can be selected
as leak-recipients. Since email addresses that were never
observed before will never be selected as leak-recipients,

it is not surprising that the learning method used cannot
detect them. Clearly these email leaks did not occur as
a result of incorrect selection of an address-book value
from an abbreviation, as we assumed in our synthetic-data
experiments.

Therefore, even though we believe the classification-
based method proposed in Section 3.2 works well for pre-
dicting leaks associated with the plausible leak criteria ex-
plained in Section 2.3, it is not suited to predict leaks of
the sort illustrated by germany-c and kitchen-l—i.e., leaks
to email addresses not in a user’s address book. However,
we will describe below, a simple variation in the leak cri-
teria can make the classification-based method considerably
robust to these types of leaks.

4.2 Sampling from Seen and Unseen RecipientsIn or-
der to make the classification-based algorithm handle unseen
leak-recipients, we applied a very simple modification to the
process of selecting artificial leak-recipients.

The idea can be stated in the following way: with prob-
ability 1− α the leak-recipient will be selected according to
the3g-addressleak criteria in Table 2; while with probability
α it will be randomly selected from a distribution of random
email addresses not in the Address Book (i.e., sampling ran-
domly from unseen email addresses).

With this small change, we created a variation of the
original classification-based algorithm that should be able
to learn patterns associated with seen and unseen leak-
recipients. Larger values ofα are expected to predict unseen
leak-recipients more frequently, whereas smaller values ofα
have the opposite effect (whenα = 0, we have the original
classification-based algorithm).

This effect can be observed in Figure 2. There, preci-
sion@1 and average rank curves are illustrated as a function
of α for the two real cases of leak. For Germany-c, values
of α around 10% indicate Precision@1 around 50%. When
α = 0, we return to the original performance values (first
column of Table 5). Asα increases, the performance is con-
sistently improved — for instance, Prec@1 is around 90%
and Average Rank is about 1.11 forα close to 20%.

The Kitchen-l curves in Figure 2 present a similar
behavior — weaker performance numbers for smallα values
and better performance for larger values ofα. It is interesting
to notice that the maximum value of Precision@1 here is
0.25 and the maximum value of Average Rank is 2.5. This
happened because this particular message has 4 different
unseen email addresses (out of 44 recipients) and only one
of these is the true leak. Therefore, the best possible
result for an algorithm which relies only on past email is
to choose randomly among the the four unseen addresses,
i.e., to classify them as leaks with the same confidence. This
is exactly what happens case whenα ≥ 0.1, where the
precision at 1 reaches 25%.

For comparison, performance results of theα = 0.2
variation are also illustrated in Table 5. Now we have a
general method for email leak prediction that handles well
both seen and unseen types of leak-recipients.

4.3 Overall Comparison From Table 5 and Figure 2, it is
clear that the proposed variation of the classification-based
method can handle unseen leak-recipients much better than
the original algorithm. However, it is not obvious how this
modification affects the overall performance for the task, i.e.,
the overall leak prediction performance in all 20 enron users.

We compare the original classification-based method
(α = 0.0) to two of its variations (α = 0.1 andα = 0.2)
in Table 6. Generally speaking, the original method presents
better overall performance than its variations. As expected,
it is easier to make leak predictions when unseen recipients
are never considered leak-recipients. Also, asα values are
increased, the performance is slightly deteriorated. Notice,
however, that even the results of theα = 0.2 variation are
still better than all other baselines from Table 3.

5 Discussion and Related Work

Detecting email leaks is a new problem. To solve it, we pro-
posed a new technique that has shown promising results in
various tests. In our experiments, we applied leak-detection
methods only to messages that actually contain a leak, and
evaluated only the ability to distinguish the intended recipi-
ents of a message from the unintended recipients.

In reality, of course, most messages do not contain
leaks. Thus in a real email client implementation, it would
be necessary to extend our method to also determine if
messages do or do not contain leaks. For instance, we
could use the prediction confidence of the learning algorithm
to decide whether or not the user should be warned of
a potential leak, or use a secondary classifier to decide
whether or a message contains a leak. We have not yet
explored this issue. We note that user studies will probably
be necessary to determine what level of “false positive”
predictions users will tolerate. Also, from a user’s point of
view, the number of false positive predictions might also be
reduced not by machine learning methods, but by applying
additional heuristics to estimate the severity of a possible
leak—e.g., in corporate settings, the potential consequences
might be worse for an email sent outside the company than
an email sent within the company.

The literature overlapping privacy and email is very lim-
ited. Generally speaking, in this paper the leak prediction
task was approached as a supervised outlier detection prob-
lem [5], where the normality distribution was estimated from
real data but the abnormality distribution was simulated.

Boufaden et al. [1] proposed a privacy enforcement
system in which information extraction techniques and do-
main knowledge were combined to monitor specific privacy

Enron α = 0.0 α = 0.1 α = 0.2
User Prec@1 AvgRank Prec@1 AvgRank Prec@1 AvgRank
RappB 0.788 1.471 0.753 1.458 0.747 1.459
Hernandez 0.720 1.900 0.653 2.053 0.613 2.407
Pereira 0.850 1.235 0.790 1.430 0.765 1.360
Dickson 0.786 1.214 0.700 1.300 0.718 1.282
Lavorato 0.910 1.220 0.861 1.253 0.861 1.202
Hyatt 0.824 1.202 0.792 1.244 0.770 1.265
Germany 0.665 1.601 0.679 1.598 0.669 1.542
white 0.812 1.274 0.790 1.310 0.758 1.354
whitt 0.889 1.124 0.872 1.145 0.822 1.200
zufferli 0.809 1.194 0.797 1.211 0.769 1.249
campbell 0.739 1.385 0.678 1.549 0.671 1.536
geaccone 0.789 1.411 0.755 1.525 0.755 1.509
hyvl 0.822 1.196 0.795 1.223 0.773 1.245
giron 0.858 1.188 0.806 1.254 0.782 1.313
horton 0.856 1.265 0.785 1.456 0.767 1.565
derrick 0.934 1.074 0.921 1.112 0.896 1.170
kaminski 0.902 1.129 0.880 1.160 0.886 1.152
hayslett 0.747 1.794 0.719 1.832 0.725 1.834
corman 0.912 1.095 0.866 1.146 0.839 1.177
kitchen 0.662 3.156 0.584 3.305 0.621 2.911
Average 0.814 1.406 0.774 1.478 0.760 1.487

Table 6: Email Leak Prediction Results for Differentα Values

breaches via email in a university environment. They were
particularly concerned with the following types of entity
breaches: student names, student grades and student IDs.
Using 205 manually labeled emails and tailored ontologies,
they were able to correctly predict breaches with an F-score
of 69.3%. Similar techniques could be used in conjunction
with the methods described here to detect email leaks that
are particularly harmful from a privacy point of view.

Pal & McCallum [6] addressed the “CC prediction
problem”, i.e., the problem of suggesting recipients for an
already composed email messages. The authors proposed
different types of graphical models for the problem and
provided some experimental results on a personal email
collection. In some sense, the leak prediction problem can
be seen as the negative counterpart of the CC prediction
problem: in the latter, we want to find intended recipients,
and in the former, we want to find unintended recipients.
Email leak detection is a somewhat harder problem to study,
since leaks are infrequent. Our main motivation for studying
the email-leak detection problem, rather than CC prediction,
is that the potential cost of email leaks is quite large.

6 Conclusions

In this work we introduced the problem of information leak
prediction in email communication, in which the goal is pre-
dicting unintended message recipients. With the widespread

use of email, the accidental inclusion of unintended recipi-
ents in emails has become increasingly common. In many
cases these mistakes can reveal sensitive or private informa-
tion — which in turn can potentially lead to terrible conse-
quences such as financial losses, brand damage and expen-
sive law suits. In spite of its critical importance, this problem
has received very limited attention from the research com-
munity.

We addressed this critical problem as an outlier detec-
tion task, where the unintended email addresses considered
the outliers. Using simulated leak-recipients in combination
with real world email data (the Enron Email corpus), we
were able to create large amounts of labeled data — which
in turn was used to learn typical outlier patterns. The simu-
lated leak-recipients were created by imitating typical cases
of mistakes such as misspellings of email addresses, typos,
similar first/last names, etc. Using a combination of textual
and social network features, the model correctly predicted
leak-recipients in almost 82% of the test messages, a very
promissing result. Additionally, we tested the effectiveness
of our approach in real cases of information leak — where a
variation of the proposed method was successful in predict-
ing two independent real information leaks from the Enron
corpus.

There are several possibilities for future research from
the ideas introduced in this paper. Depending on the par-
ticular email environment or email client, different leak cri-

teria can be utilized. Also, it might be possible to improve
the current results using different features, or even a better
learning model. Another possibility of future research lies
in addressing the problem from the email server perspective:
notice that a server-based method would be able to derive
additional social network features.

References

[1] N. Boufaden, W. Elazmeh, Y. Ma, S. Matwin, N. El-Kadri,
and N. Japkowicz, “Peep— an information extraction base
approach for privacy protection in email,” inConference on
Email and Anti-Spam (CEAS’2005), 2005.

[2] W. W. Cohen, Enron Email Dataset Webpage,
http://www.cs.cmu.edu/ enron/.

[3] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A compar-
ison of string distance metrics for name-matching tasks.” in
IIWeb, 2003, pp. 73–78.

[4] Y. Freund and R. E. Schapire, “Large margin classification
using the perceptron algorithm,”Machine Learning, vol. 37,
no. 3, pp. 277–296, 1999.

[5] V. Hodge and J. Austin, “A survey of outlier detection
methodologies,”Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126,
2004.

[6] C. Pal and A. McCallum, “Cc prediction with graphical
models,” inConference on Email and Anti-Spam, 2006.

[7] J. Shetty and J. Adibi, “Enron email dataset,” USC Infor-
mation Sciences Institute, Tech. Rep., 2004, available from
http://www.isi.edu/ adibi/Enron/Enron.htm.

[8] Y. Yang and X. Liu, “A re-examination of text categorization
methods,” in22nd Annual International SIGIR, August 1999,
pp. 42–49.

Figure 2: Performance of Real Leak Cases For Different
Probabilitiesα.

	Introduction
	Dataset
	The Enron Collection
	Generating Synthetic Leaks
	Leak Criteria

	Methods for Email Leak Prediction
	Baselines: Using Textual Content
	Classification-Based Method: Using Social Network Information

	Finding Real Leaks on Real Data
	Finding Real Email Leaks
	Sampling from Seen and Unseen Recipients
	Overall Comparison

	Discussion and Related Work
	Conclusions

