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There is extensive interest in mining data from full text. We have built a system

called SLIF (for Subcellular Location Image Finder), which extracts information
on one particular aspect of biology from a combination of text and images in

journal articles. Associating the information from the text and image requires

matching sub-figures with the sentences in the text. We introduced a stacked
graphical model to match the labels of sub-figures with labels of sentences. The

experimental results show that the stacked graphical model can take advantage of

the context information and achieve a satisfactory accuracy.

1. Introduction

The vast size of the biological literature and the knowledge contained
therein makes it essential to organize and summarize pertinent scientific
results. Information extraction (IE) methods can be used to create self-
populating knowledge bases that automatically extract and store assertions
from biomedical papers1–2. However, most existing IE systems are limited
to extracting information only from text, not from image data. We have
built a system called SLIF3 (for Subcellular Location Image Finder) that
extracts information about protein subcellular locations from both text and
images. SLIF analyzes figures in biological papers, which include the image
and the caption.

In a system mining both text and images, associating the information
from the text and the image is very challenging since usually there are
multiple sub-figures in a figure and we must match sub-figures with the
sentences in the text. In the previous version of SLIF, we extracted the
labels for the sub-figures and sentences separately and matched them by
finding the equal-value pair. This naive approach ignores much context
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information, i.e., the labels for sub-figures are usually a sequence of letters
and people assign labels in a particular order rather than randomly. To
reach a satisfactory matching the naive approach requires high-accuracy
image analysis and text analysis to get the labels. In this paper, we in-
troduced a stacked graphical model to match the labels of sub-figures with
labels of sentences. The stacked model can take advantage of the context
information and the experimental results show that the stacked graphical
model achieves a satisfactory accuracy.

In the following of this paper, we give a brief review of SLIF in Section
2. Section 3 describes the stacked model used for the matching. Section 4
summarizes the experimental results and Section 5 concludes the paper.

2. SLIF Overview

SLIF applies both image analysis and text interpretation to figures har-
vested from on-line journals, so as to extract assertions such as “Figure N
depicts a localization of type L for protein P in cell type C”. The protein
localization pattern L is obtained by analyzing the image, the protein name
and cell type are obtained by analysis of the caption.

Figure 1 illustrates some of the key technical issues. The figure encloses
a prototypical image harvested from a biomedical publication,a and the
associated caption text. Note that the text “Fig. 5 Double immunofluores-
cence ... antibodies” is the associated caption from the journal article, and
that the figure contains two panels (independently meaningful sub-figures).

 
 

Fig. 5. Double immunofluorescence confocal 
microscopy using mouse mAb against cPABP 
and affinity-purified rabbit antibodies against 

mrnp 41. Methanol-permeabilized and fixed 
HeLa cells were incubated with affinity-purified 
rabbit anti-mrnp 41 antibodies (a) and with 
monoclonal anti-cPAPB antibodies (b), and the 
bound antibodies were visualized with 
fluorescently labeled secondary antibodies. 

(Bar = 10 µm.) 

Figure 1. A figure caption pair reproduced from the biomedical literature.

The analysis in SLIF system involves several distinct tasks. The first is
to extract all image-caption pairs from articles in on-line journals and to

aThis figure is reproduced from the article “mRNA binding protein mrnp 41 localizes to

both nucleus and cytoplasm”, by Doris Kraemer and Günter Blobel, Cell Biology Vol.

94, pp. 9119-9124, August 1997.
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identify those that depict fluorescence microscope images. The second is
to identify numerical features that adequately capture information about
subcellular location. The third is extraction of protein names and cell types
from captions. The fourth is mapping the information extracted from the
caption to the correct panel.
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Figure 2. Overview of the image and text processing steps in SLIF.

Figure 2 shows an overview of the steps in SLIF system with references
to publications in which they are described in more details.

The current SLIF system can extract image-caption pairs from papers
in PDF format and XML format. Image processing includes several steps:

Decomposing images into panels. For images containing multiple
panels, the individual panels must be recovered from the image.

Identifying fluorescence microscope images. In the current sys-
tem, panels are classified as whether they are fluorescence microscope im-
ages, so that appropriate image processing steps can be performed.

Image preprocessing and feature computations. Firstly the an-
notations such as labels, arrows and indicators of scale contained within
the image are detected, analyzed, and then removed from the image via
image processing techniques. In this step, panel labels are recognized based
on image processing to find plausible label-containing candidates, followed
by Optical Character Recognition (OCR). Panel labels are textual labels
which appear as annotations to images. For example, “a” and “b” printed in
panels in Figure 1 are panel labels. Recognizing the panel label is very chal-
lenging. Image pre-processing and enhancement have to be done carefully
to make OCR more accurate. The OCR results are used as candidate panel
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labels and panel labels are determined by filtering candidates5. Secondly,
image processing techniques are used to locate the scale bar associated with
a panel and the size of the scale bar is extracted from the accompanying
caption. Finally, after knowing the scale of an image, subcellular location
features (SLFs) are produced that summarize the localization pattern of
each cell.

Caption Processing is done as follows.
Entity name extraction. Caption interpretation aims to identify the

name and cell type of the visualized protein in each microscope image.
In the current version of SLIF we use an extractor trained on conditional
random fields6 and an extractor trained on Dictionary-HMMs7.

Image pointer extraction. The linkage between the panels and the
text of captions is usually based on textual labels which appear as anno-
tations to the images, and which are also interspersed with the caption
text. We call these textual labels appearing in text image pointers. In
general, image pointers are strings in the caption that refer to places in
the accompanying images, for example, “(a)” and “(b)” in the caption in
Figure 1. Entity to panel alignment is based on extracting the labels from
panels, and extracting the corresponding image pointers from captions. In
our analysis, image pointers are classified into four categories according to
their linguistic function: Bullet-style image pointers, NP-style image point-
ers, Citation-style image pointers, and other. The image-pointer extraction
and classification steps are done via a machine learning method8.

Entity to image pointer alignment The scope of an image pointer
specifies, indirectly, what text should be associated with that image pointer.
The scope of an image pointer is the section of text that should be associated
with it. The scope is determined by the class assigned to an image pointer
8: for example, the scope of an NP-style image pointer is the closest noun
phrase. In Figure 1, for instance, the scope of (a) is “affinity-purified rabbit
anti-mrnp 41 antibodies”.

In the previous version of SLIF, we map panel labels to image pointers
by finding the equal-value pair. Below we consider an improved method.

3. A Stacked Model to Map Panel Labels to Image Pointers

3.1. Stacked Graphical Models for Classification

Stacked graphical models are a meta-learning scheme to do collective
classification9, in which a base learner is augmented by expanding one
instance’s features with predictions on other related instances. Stacked
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graphical models have been shown to work well on predicting labels for
related instances simultaneously. Figure 3 shows the inference and learning
methods for stacked graphical models. In a stacked graphical model, the
relational template C defines the related instances. For instance xi, C(xi)
retrieves the indices i1, ..., iL of instances xi1 , ..., xiL

that are related to xi.
Given predictions ŷ for a set of instances x, C(xi, ŷ) returns the predictions
on the related instances, i.e., ŷi1 , ..., ŷiL

.

• Parameters: a relational template C and a cross-validation param-
eter J.

• Learning algorithm: Given a training set D = {(x,y)} and a base
learner A:

– Learn the local model, i.e., when k = 0:
Return f0 = A(D0). Please note that D0 = D,x0 = x,y0 =
y.

– Learn the stacked models, for k = 1...K:

(1) Construct cross-validated predictions ŷk−1 for x ∈ D as
follows:
(a) Split D into J equal-sized disjoint subsets D1...DJ .
(b) For j = 1...J , let fk−1

j = A(Dk−1 −Dk−1
j ).

(c) For x ∈ Dj , ŷk−1 = fk−1
j (xk−1).

(2) Construct an extended dataset Dk = (xk,y) by con-
verting each instance xi to xk

i as follows: xk
i =

(xi, C(xi, ŷk−1)), where C(xi, ŷk−1) will return the pre-
dictions for examples related to xi such that xk

i =
(xi, ŷ

k−1
i1

, ..., ŷk−1
iL

).
(3) Return fk = A(Dk).

• Inference algorithm: given x :

(1) ŷ0 = f0(x).

For k = 1...K,

(2) Carry out Step 2 above to produce xk.
(3) yk = fk(xk).

Return yK .

Figure 3. Stacked Graphical Learning and Inference

Empirically, one iteration of stacking, i.e., K=1, is able to achieve good
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performance on many tasks.
The idea of stacking is to take advantage of the dependencies among in-

stances, or the relevance between inter-related tasks. In our application in
this paper, we conjecture the panel label extraction and image pointer ex-
traction are inter-related, and design a stacked model that combines them.

3.2. A Stacked Model for Mapping

We applied the idea of stacked graphical models to map the panel labels
and image pointers.

In SLIF the image pointer finding was done as follows. Most image
pointers are parenthesized, and relatively short. We thus hand-coded an
extractor that finds all parenthesized expressions that are (a) less than 15
characters long and (b) do not contain a nested parenthesized expression,
and replace X-Y constructs with the equivalent complete sequence. (E.g.,
constructs like “B-D” are replaced with “B,C,D”.) We call the image point-
ers extracted by this hand-coded approach candidate image pointers. The
hand-coded extractor has high recall but only moderate precision. Using
a classifier trained with machine learning approaches, we then classify the
candidate image pointers as bullet-style, citation-style, NP-style, or other.
Image pointers classified as “other” are discarded, which compensates for
the relatively low precision of the hand-coded extractor8.

In SLIF the panel label extraction was done as follows. Image processing
techniques and OCR techniques are applied to find the labels printed within
the panel. That is, firstly candidate text regions are computed via image
processing techniques, and OCR is run on these candidate regions to get
candidate panel labels. This approach has a relatively high precision yet
low recall. We call the panel labels recognized by image processing and
OCR candidate panel labels. A strategy based on grid analysis (a procedure
which analyzes how many panels there are in a figure and finds out how the
panels are ranged) is applied to the candidate panel labels to get a better
accuracy5.

The match between panels labels and image pointers can be formulated
as a classification problem. We construct a set of pairs < oi, pj > for
all candidate panel labels oi’s and candidate image pointers pj ’s from the
same figure. That is, for a panel with li representing the true label, oi

representing the panel label recognized by OCR, and pj ’s representing the
image pointers in the same figure, we construct a set of pairs < oi, pj >. We
label the pair < oi, pj > as positive only if li = pj , otherwise negative. For
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example, in Figure 1, the true label li for panel a is “a”, if OCR recognizes oi

where oi =“o”, image pointers for the figure are “a” and “b”, we construct
two pairs, < o, a > labelled as positive and < o, b > labeled as negative.

We design features based on oi’s and pj ’s. For a base feature set, there
are 3 binary features: one boolean value indicating whether oi = pj , one
boolean value indicating whether oi left = pj − 1 or oi upper = pj − 1, and
another boolean value indicating whether oi right = pj + 1 or oi down =
pj + 1, where i left is the index of the left panel of panel i in the same
row, i upper is the index of the upper panel of panel i in the same column,
pj + 1 is the successive letter of pj and pj − 1 is the previous letter of pj .
This feature set takes advantage of the context information by comparing
oi left to pj − 1 and so on. The second and third features capture the
first-order dependency. That is, if the neighboring panel (an adjacent panel
in the same row or the same column) is recognized as the corresponding
“adjacent” letter, there is a higher chance that oi is equal to pj .

In the inference step for the base learner in the stacked model, if a
pair < oi, pj > is predicted as positive, we set the value of oi to be pj

since empirically the image pointer extraction has a higher accuracy than
the panel label recognition. That is, the predicted value ôi is pj for a
positive pair and ôi remains as oi for a negative pair. After obtaining
ôi, we recalculate the features via comparing ôi’s and pj ’s. We call the
procedure of predicting < oi, pj >, updating ôi, and re-calculating features
“stacking”. We choose MaxEnt as the base learner to classify < oi, pj >

and in our experiments we implement one iteration of stacking.
Besides the basic features, we also include another feature that captures

the “second-order context”, i.e., consider the spatial dependency among all
the “sibling” panels, even though they are not adjacent. In general the
arrangement of labels might be complex: labels may appear outside panels,
or several panels may share one label. However, in the majority of cases,
panels are grouped into grids, each panel has its own label, and labels
are assigned to panels either in column-major or row-major order. The
“panels” shown in Figure 4 are typical of this case. For such cases, we
analyze the locations of the panels in the figure and reconstruct this grid,
i.e., the number of total columns and rows, and also determine the row and
column position of each panel. We compute the second-order feature as
follows: for a panel located at row r and column c with label o, as long as
there is a panel located at row r

′
and column c

′
with label o

′
(r
′ 6= r and

c
′ 6= c) and according to either row-major order or column-major order the

label assigned to panel (r
′
, c

′
) is o

′
given the label for panel (r, c) is o, we
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assign 1 to the second-order feature. For example, in Figure 4, recognizing
the panel label “a” at row 1, column 1 would help to recognize “e” at row
2, column 2 and “h” at row 3, column 2.

a b c 

d e f 

g h i 

 
Figure 4. Second-order dependency.

4. Experiments

4.1. Dataset

To evaluate the stacked model for panel label and image pointer matching,
we collected a dataset of 200 figures. This is a random subsample of a larger
set of papers from the Proceedings of the National Academy of Sciences.
Our current approach can only analyse labels contained within panels due
to the limitations on the image processing stage therefore in our dataset
we only collected figures with panel labels printed inside panels. We hand-
labeled all the image pointers in the caption and the label for each panel.
The match between image pointers and panels is also assigned manually.

4.2. Baseline algorithms

In previous SLIF, the match between image pointers and panel labels was
done via comparing their values and finding the equal-value pair.

The approaches to find the candidate image pointers and panel labels
have been described in Section 3.2. In this paper, we take the hand-code ap-
proach and machine learning approach as the baseline algorithms for image
pointer extraction. The OCR-based approach and grid analysis approach5

are baseline algorithms for panel label extraction.
We also compare the stacked model to relational dependency networks

(RDNs)10. RDNs are an undirected graphical model for relational data.
Given a set of entities and the links between them, a RDN defines a full
joint probability distribution over the attributes of the entities. Attributes
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of an object can depend probabilistically on other attributes of the object,
as well as on attributes of objects in its relational neighborhood. We build
an RDN model as shown in Figure 5.

 

o_i p_j 

 Panel label  Image pointer 

equal 

L_pre L_next P_left 

P_right 

P_upper 

P_down 

p_tru

e 

o_tru

e 

Figure 5. An RDN model

In the RDN model there are two types of entities, image pointer and
panel label. For a image pointer, the attribute pj is the value of the can-
didate image pointer and oi is the candidate panel label. p tru and o tru

are the true values to be predicted. The linkage L pre and L next capture
the dependency among the sequence of image pointers: L pre points to the
previous letter and L next points to the successive letter. P left, P right,
P upper, and P down point to the panels to the left, right, upper and down
direction respectively. The RDN model takes the candidate image pointers
and panel labels as input and predict their true values. The match between
the panel label and the image pointer is done via finding the equal-value
pair.

4.3. Experimental Results

We used 5-fold cross validation to evaluate the performance of the stacked
graphical model for image pointer to panel label matching. The evalua-
tion was reported in two ways; the performance on the matching and the
performance on image pointer and panel label extraction. To determine
the matching is the “real” problem, i.e., what we really care about are the
matches, not getting the labels correctly. Evaluation on the image pointer
and panel label extraction is a secondary check on the learning technique.

Table 1 shows the accuracy of image pointer to pane label matching. For
the baseline algorithms, the match was done via finding the equal-value pair.
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Table 1. Accuracy of image pointer to pane label matching.

Image pointer to

panel label matching

Baseline algorithm 1 48.7%

Baseline algorithm 2(current algorithm in SLIF) 64.3%

RDN 70.8%

Stacked model (first-order) 75.1%

Stacked model (second-order) 81.3%

Table 2. Performance on image pointer extraction and panel label extraction.

Image pointer Panel label

extraction extraction

Baseline algorithm 1 60.9% 52.3%

Baseline algorithm 2 89.7% 65.7%

RDN 85.2% 73.6%

Stacked model with first order dependency - 77.8%

Stacked model with second order dependency - 83.1%

Baseline algorithm 1 was done via comparing the candidate image pointers
to the candidate panel labels. Baseline algorithm 2 was done via comparing
the image pointers extracted by the learning approach to the panel labels
obtained after grid analysis. The stacked graphical model takes the same
input as Baseline algorithm 2, i.e., the candidate image pointers extracted
by the hand-coded algorithm and the candidate panel labels obtained by
OCR. We observe that the stacked graphical model improves the accuracy
of matching. Both the first-order dependency and second-order depen-
dency help to achieve a better performance. RDN also achieved a better
performance than the two baseline algorithms. Our stacked model achieves
a better performance than RDN, because in stacking the dependency is
captured and indicated “strongly” by the way we design features. That
is, the stacked model can model the matching as a binary classification of
< oi, pj > and capture the first-order dependency and second-order depen-
dency directly according to our feature definition. However, in RDNs, the
data must be formulated as types of entities described with attributes and
the dependency is modeled with links among attributes. Though RDNs can
model the dependency among data, the matching problem is decomposed
to a multi-class classification problem and a matching procedure. Besides
that, the second-order dependency can not be modeled explicitly.
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(a) A hard case for OCR

a b? c? 

  d 

 

(b) A hard case for the stacked

model

Figure 6. Cases where current algorithms fail

Table 2 shows the performance on the sub-task of image pointer ex-
traction and panel label extraction. The results are reported with F1-
measurement. Since during the stacked model we update the value of oi

and set it to be pj when finding a match, the stacking also improves the
accuracy of panel label extraction. The accuracy for image pointer extrac-
tion remains the same since we do not update the value of pj . Baseline
algorithm 1 is the approach of finding candidate image pointers or candi-
date panel labels. Baseline algorithm 2 for image pointer extraction is the
learning approach, and the grid analysis strategy for panel label extraction.
The inputs for the stacked graphical model are candidate image pointers
and candidate panel labels. We observe that by updating the value of oi,
we can achieve a better performance of panel label extraction, i.e., pro-
vide more “accurate” features for stacking. RDN also helps to improve the
performance yet the best performance is obtained via stacking.

4.4. Error Analysis

As mentioned in Section 2, OCR on panel labels is very challenging and we
suffer a low recall of baseline algorithm 1. Most errors occur when there are
not enough oi recognized from the baseline algorithm to obtain information
of the first-order and second-order dependency. Figure 6(a) shows a case
where the current OCR fails. Figure 6(b) shows a case where there is not
enough contextual information to determine the label for the upper-left
panel.

5. Conclusions

In this paper we briefly reviewed SLIF system, which extracts information
on one particular aspect of biology from a combination of text and images
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in journal articles. In such a system, associating the information from the
text and image requires matching sub-figures in a figure with the sentences
in the text. We used a stacked graphical model to match the labels of sub-
figures with labels of sentences. The experimental results show that the
stacked graphical model can take advantage of the context information and
achieve a satisfactory performance. In addition to accomplish the matching
at a higher accuracy, the stacked model helps to improve the performance
of finding labels for sub-figures as well.

The idea of stacking is to take advantage of the context information, or
the relevance between inter-related tasks. Future work will focus on apply-
ing stacked models to more tasks in SLIF, such as protein name extraction.
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