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Abstract

We consider a dependency-parsed text corpus as an instance of a labeled directed graph,

where nodes represent words and weighted directed edges represent the syntactic relations

between them. We show that graph walks, combined with existing techniques of supervised

learning that model local and global information about the graph walk process, can be used

to derive a task-specific word similarity measure in this graph. We also propose and evaluate

a new learning method in this framework, a path-constrained graph walk variant, in which the

walk process is guided by high-level knowledge about meaningful edge sequences (paths) in

the graph. Empirical evaluation on the tasks of named entity coordinate term extraction and

general word synonym extraction show that this framework is preferable to, or competitive

with, vector-based models when learning is applied, and using small to moderate size text

corpora.

1 Introduction

Graph-based similarity measures have been successfully applied in recent years to a

variety of natural language processing tasks, including word sense disambiguation

(Mihalcea 2005; Agirre and Soroa 2009; Navigli and Lapata 2010), sentiment

analysis (Kamps et al. 2002; Hassan and Radev 2010) and text summarization

(Erkan and Radev 2004; Mihalcea and Tarau 2004). Typically in these works, a task-

specific similarity measure is derived given a graph in which nodes represent words or

word senses, and edges represent a notion of semantic relatedness. The main sources

of information used to construct the graph are ontologies, primarily WordNet

(Fellbaum 1998). While WordNet, and ontologies in general, are an important

resource for lexico-semantic similarity assessments (Toutanova, Manning and Ng

2004; Collins-Thompson and Callan 2005; Hughes and Ramage 2007), they have

several inherent shortcomings, mainly ontologies are static and general compared

with the dynamic, domain and genre-dependent language usage. For this reason,

there is a continuous interest in evaluating lexico-semantic similarity directly from

text corpora, which are abundantly available (Lin 1998; Snow, Jurafsky and Ng

2005; Padó and Lapata 2007).
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In this paper, we apply graph-based similarity measures directly to text corpora,

processing dependency parse trees within a general framework of directed labeled

graphs. We propose a graph schema in which word mentions are represented as

nodes, linked over labeled dependency edges. The parsed sentence structures are

connected in the graph via nodes that denote word types, where a word type is

linked to all of its mentions in the corpus. We apply random walks in the graph,

following the well-studied Personalized PageRank paradigm (Page et al. 1998), to

derive a general inter-word similarity measure.1 In this graph walk paradigm, word

types are assumed to be semantically related if they are connected over multiple paths

in the graph; in addition, short connecting paths are considered more meaningful.

While graph walks reflect a measure of structural similarity in the graph, learning

techniques can be used to further improve the derived corpus-based affinity measure

to reflect a particular flavor of word relatedness sought. We consider two learning

methods in this work that have been successfully applied in another domain (Minkov

and Cohen 2010), namely edge weight tuning and node reranking. Assuming that

the graph edges are associated with a weight according to the relation that they

represent, edge weight tuning aims at optimizing the edge weight parameters so that

the graph walk process is biased toward relation types that are informative. In the

reranking approach, the top nodes ranked according to the graph walk measure are

re-ordered using high-level features, including features that describe the paths (edge-

type sequences) traversed in the walk. As will be demonstrated, path information is

highly informative in evaluating word relatedness based on distributional evidence,

while the performance of the graph walk and weight tuning techniques is limited

due to their local scope.

In this paper, we further describe a non-local path-constrained graph walk variant,

another approach of learning to rank in this framework. In this method, the

random walker is directed to follow paths that lead to relevant nodes with high

probability. While reranking is applied to the top nodes ranked by the graph walk,

the suggested algorithm incorporates high-level path information already in the

graph walk process. We show that this method results in improved performance

compared with the unguided walk, as well as with the other learning methods in

some cases. In addition, we evaluate the effect of pruning low-probability paths using

the path-constrained graph walk variant on performance and computation cost.

The graph representation and the set of learning techniques suggested are

empirically evaluated on two different tasks, namely coordinate term and synonym

extraction. In the coordinate term extraction task, we experiment with extraction of

named entity classes from text corpora, including city and person names, given a

small set of seed examples. In the second task of synonym extraction, we apply the

proposed framework to identify synonymy relations between general English words,

where we learn different models for nouns, adjectives and verbs. While the two tasks

represent different types of word relatedness, and are typically addressed in the

literature separately, we show that the proposed framework can be effectively adapted

1 Throughout this paper, the term similarity will be used to denote general semantic
relatedness.
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to both types of tasks, demonstrating its generality. Our experiments are conducted

using small to moderately sized corpora, where we compare the proposed framework

against several vector-based models, and primarily to dependency vectors (DV), a

state-of-the-art syntactic distributional similarity method (Padó and Lapata 2007).

While the dependency vectors assign different, manually tuned and linguistically

motivated, weights to the syntactic paths connecting a word to its neighbors, we

learn the relative importance of these paths from examples. It is shown that the

graph walk-based approach gives preferable or comparable results to the vector-

based models in all of our experiments. Unlike vector-based models, which are

static, a main advantage of the proposed framework is that it is easily adapted to

the specific type of similarity sought.

The primary contributions of this paper are as follows. First, we represent

dependency-parsed corpora within a general graph walk framework, and derive

inter-word similarity measures using graph walks and learning techniques available

in this framework. To our knowledge, the application of graph walks to parsed text

in general, and to the evaluated tasks in particular, is novel. Another contribution of

this paper is the path-constrained graph walk variant, which is a general technique

for learning a global graph walk-based similarity measure in directed and labeled

graphs. We discuss the properties and applicability of this method in detail. Finally,

we achieve superior or comparable results to a state-of-the-art method on the set of

tasks evaluated using small to moderate size text corpora.

The rest of the paper is organized as follows. Section 2 describes prior work

related to lexico-semantic similarity assessment and graph-based similarity inference

techniques. Section 3 outlines our proposed schema for representing a dependency-

parsed text corpus as a graph. The graph walk-based similarity metric is defined

in Section 4. In Section 5, we outline the learning methods used, including a

formal description of the proposed path-constrained graph walk method; we further

comparatively discuss the set of learning methods in terms of expressiveness, impact

and applicability. The experimental design and main results on named entity

coordinate extraction and synonym extraction tasks are described in Sections 6

and 7 respectively. In Section 8, we discuss and empirically evaluate the effect

of design parameters on performance and scalability. The paper concludes with a

summary and a discussion of future research directions.

2 Related work

In recent years, graph walks have been widely applied to obtain measures of

semantic similarity for Natural Language Processing (NLP) problems. In an early

work, Toutanova et al. (2004) constructed a directed graph, where nodes represented

words and the edges denoted various types of inter-word semantic relations extracted

from WordNet. They applied graph walks to infer a measure of word similarity.

The semantic similarity scores obtained were used for lexical smoothing for the

task of prepositional word attachment. Graph walks over graphs representing word

relations extracted from WordNet have since been shown to generate a measure

of word similarity preferable to alternative approaches (Hughes and Ramage 2007;
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Agirre et al. 2009). Graph walk-based similarity measures inferred using graphs

that represent WordNet relations have been successfully applied to tasks, including

word sense disambiguation (Mihalcea 2005; Navigli and Lapata 2007; Agirre and

Soroa 2009), query expansion (Collins-Thompson and Callan 2005), sentiment

analysis (Kamps et al. 2002; Hassan and Radev 2010), summarization (Erkan

and Radev 2004; Mihalcea and Tarau 2004) and more. In this work we apply

graph walks to derive corpus-based word similarity measures. To our knowledge the

approach presented in this paper is novel in representing a corpus as a graph that

includes syntactic information (in particular, dependency-parsed text), and is novel

in exploring the use of random-walk similarity on such a graph. In addition, while

previous works were tailored to extract a particular flavor of word similarity, with

the goal of improving the performance of a specific end application, we use learning

to tune the generated similarity measure per task.

We note that graphs derived from individual parsed sentences have been widely

used. For example, Snow et al. (2005) used dependency paths to extract hyponyms

from a corpus of parsed text. In particular, they extracted patterns from the parse

tree of sentences in which hyponym word pairs co-appeared, and trained a hyponym

classifier using these patterns as features. Due to data sparsity, however, the ratio

of relevant sentences in the corpus was found to be low. In contrast, we represent

text corpora as a connected graph of dependency structures, where the graph walk

traverses both within- and cross-sentence paths.

Dependency paths of individual sentences have been used also for general relation

extraction. Culotta and Sorenson (2004) explored the detection and classification

of instances of relations linking entity pairs, including relations such as ‘based-in’,

‘member’ and ‘spouse’. In their work, they represent each relation instance as a

dependency tree, where for each pair of entities in a sentence, the smallest common

subtree in the dependency tree is found. Nodes in the dependency tree are augmented

with linguistic and semantic features. Based on the hypothesis that instances

containing similar relations share similar substructures in their dependency trees,

kernel functions were proposed that estimate the similarity between the subtrees.

Empirical evaluation results showed that the tree kernel approach outperformed a

bag-of-words kernel, implying that the structural information captured in the tree

kernel is useful for the relation extraction problem. Bunescu and Mooney (2005)

further observed that the information required to assert a relationship between two

named entities in the same sentence is typically captured by the shortest path between

the two entities in the undirected version of the dependency graph, and proposed a

kernel encoding features over the shortest connecting path. Unlike these works, the

approach presented here models many sentences in a connected graph, creating paths

between lexical items that do not necessarily co-appear in the same sentence due

to shared dependency structures and lexical neighborhoods. Rather than addressing

the relation extraction problem as a classification problem, graph walks approach

it as a ranking (or, retrieval) problem. While this work focuses on assessing word

similarity, the proposed framework may be used for general relation extraction.

The rich feature set encoded by the dependency tree kernels can be represented

in a graph describing a corpus (for example, using part-of-speech walkable nodes
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and edges, WordNet links etc.), or by a node reranking module. General relation

extraction, however, is a challenging problem, which we leave for future exploration.

Recently, it has been proposed to extract mentions of terms and the relationships

between them from corpora of parsed and semantically processed text, integrating

these mentions into a large-scale semantic network. In the generated network, both

terms (e.g. ‘apple cake’, ‘apple’) and relations (e.g. ‘is baked from’) are represented as

nodes. Once the network is built, spreading activation is used to determine semantic

relatedness between terms (Harrington 2010; Wojtinnek, Völker and Pulman 2012).

We note that random graph walks and learning techniques have been successfully

applied to infer long-range associations between concepts in ontologies extracted

from the Web (Lao et al. 2012). In this work, we focus on the analysis of lexico-

syntactic information, where the original sentence structure is preserved in the graph.

The graph representation described in this paper is perhaps most related to

syntax-based vector space models, which derive a notion of semantic similarity

from statistics associated with a parsed corpus (Grefenstette 1994; Lin 1998; Padó

and Lapata 2007). In most cases, these models construct vectors to represent each

word wi, where every vector element for wi corresponds to particular ‘context’ c,

representing a count or an indication of whether wi occurred in context c. A ‘context’

can refer to simple co-occurrence with another word wj , to a particular syntactic

relation with another word (e.g. a relation of direct object with wj) etc. Given these

word vectors, inter-word similarity is evaluated using some appropriate similarity

measure for the vector space, such as cosine vector similarity, or Lin’s similarity (Lin

1998) measure.

In this work, we mainly compare our results against an extended syntactic vector

space model called dependency vectors (Padó and Lapata 2007), in which word vectors

consist of weighted scores that combine co-occurrence frequency and the assumed

importance of a context based on properties of the connecting dependency paths. A

couple of different weighting schemes are considered in this model: a length weighting

scheme, assigning lower weight to longer connecting paths; and an obliqueness

weighting hierarchy (Keenan and Comrie 1977), assigning higher weight to paths that

include grammatically salient relations. In an evaluation of word pair similarity based

on statistics from a corpus of about 100 million words, this approach was shown

to give improvements over several previous vector space models. One important

difference between the proposed framework and the DV method is that while the

latter is based on manual and fixed choices (regarding the set of paths considered

and the weighting scheme), we apply learning to adjust the analogous parameters.

Finally, the framework presented in this paper has been successfully applied to

process various tasks in the domain of personal information management (Minkov

and Cohen 2010). The graph in that domain described a corpus of semi-structured

email messages, where an email header was processed as structured relational data,

and unstructured text corresponding to email content was represented in the graph

as a bag-of-words. In this work we adapt this framework to parsed text, where word

types, word mentions and the syntactic structure binding the word mentions are

processed as an entity-relation graph. These word graphs are generally larger, and

relevant paths considered are generally longer, compared with the previous work.
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Fig. 1. (Colour online) The suggested graph schema, demonstrated for a two-sentence

corpus: ‘He shut down the company’s New-York headquarters’ and ‘MrKume visited Honda’s

headquarters in Tokyo.’

A path-constrained walk (PCW) variant is therefore presented that improves the

performance and the scalability in the domain of parsed text. Overall, the framework

and methods applied in this paper, including the proposed PCW approach, are

applicable to other directed and labeled entity-relation graphs.

3 Graph representation

A typed dependency parse tree consists of directed links between words, where

dependencies are labeled with grammatical relations such as nominal subject, indirect

object etc. We suggest representing a text corpus as a connected graph of dependency

structures according to the schema shown in Figure 1. The graph shown in the figure

corresponds to the dependency analysis of two sentences included in the MUC

corpus (see Section 6): ‘He shut down the company’s New-York headquarters’, and

‘MrKume himself visited Honda’s headquarters in Tokyo’s upscale Aoyama district’.

The graph displays a simplified version of dependency trees of these sentences, for

clarity. As shown, each word mention is represented as a node, associated with the

sentence in which it appears.2 Word mentions are marked as circles in the figure.

The ‘type’ of each word – henceforth a term node – is denoted by a square in

the figure. (For clarity, only a subset of the graph terms is displayed.) Each word

mention is linked to its corresponding term; for example, the nodes ‘headquarters3’

and ‘headquarters204’, which represent distinct word mentions, are both linked to

the term ‘headquarters’. For every edge in the graph, we add another edge in the

opposite direction (not shown in the figure); for example, an inverse edge exists

from ‘headquarters3’ to ‘New-York3’ with an edge labeled as amod-inv. The resulting

graph is highly interconnected and cyclic.

The described schema requires a parsed corpus as its only input. Processing of the

corpus into a graph is then straightforward, where term nodes directly correspond

2 As shown in the figure, sentences are indexed. In practice, a word mention is also marked
with its position within the sentence so that each word mention is unique.
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to the surface form of the words mentioned. One may refine this representation. For

example, term nodes may include part-of-speech tags in addition to lexical values;

or, it is possible to replace lexical information with word lemmas. Note, however,

that automatically acquired syntactic annotations (including parsing) may be noisy.

We follow the schema demonstrated in Figure 1 throughout this paper.

We will apply graph walks to derive an extended measure of similarity, or

relatedness, between word terms. For example, in Figure 1, starting from the term

‘new-york’, we will reach the term ‘tokyo’ via the following path: new-york
mention−→ new-

york3 amod−→ headquarters3 as−term−→ headquarters
mention−→ headquarters204

prep.in−inv−→ tokyo204 as−term−→
tokyo. Intuitively, in a graph representing a large corpus, terms that are more

semantically related will be linked by a larger number of connecting paths. In

addition, short connecting paths may be in general more meaningful (Padó and

Lapata 2007). In the next section we show that the graph walk paradigm addresses

both of these requirements. Further, different edge types, as well as the sequence of

edge types traversed, are expected to have varying importance for different types of

word similarity; for example, verbs and nouns may be associated with different con-

nectivity patterns (Resnik and Diab 2000). These issues are addressed using learning.

4 Graph walks and similarity queries

This section provides a quick overview of the graph walk-induced similarity measure.

The graph walk scheme that we apply is generally known as Personalized PageRank

(Page et al. 1998; Haveliwala 2002; Agirre and Soroa 2009). In this work, Person-

alized PageRank scores are approximated through finite graph walks (Toutanova

et al. 2004; Minkov and Cohen 2010).

Formally, we are given a graph G =< V,E > consisting of a set of nodes V , and

a set of labeled directed edges E. Nodes are denoted by letters such as x, y or z, and

an edge from x to y with label � is denoted as x
�−→ y. Every node x is associated

with type τ(x). The edge labels are limited to a fixed set of possible types.

In our representation of a parsed corpus as a graph, graph node types include

word mentions and terms. The set of edge labels correspond to dependency relations

observed, as well as the ‘as-term’ relation, linking a word mention to the appropriate

term. As mentioned above, for every edge in the graph there is an edge going in the

other direction, labeled as the inverse relation.

Similarity between two nodes in the graph is defined by a weighted graph walk

process, where an edge of type � is assigned an edge weight determined by its type,

θ� ∈ Θ. (Edge weights can be set uniformly, randomly; or the set of weights Θ

can be learned from examples.) The transition probability of reaching node y from

node x over a single time step is defined as the weight of the connecting edge, θ�,

normalized by the total outgoing weight over the connecting edges from x to all of

its children nodes, ch(x), as follows:

Pr(x −→ y) =
θ�∑

y′∈ch(x) θ�′
(1)
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Given the underlying transition matrix M, and starting from an initial distribution Vq

of interest, Personalized PageRank defines a graph walk scheme, where the distribu-

tion of probability scores over the graph nodes in time step d, Vd, is defined as follows:

Vd+1 = γVq + (1 − γ)MVd (2)

The reset factor γ reflects a bias of the random walker interest toward distribution

Vq . We will use Vq to represent a query of interest; for example, the query

Vq = {‘new − york′, ‘london′} designates an interest in items that are similar to

the nodes in this distribution, namely city names. Personalized PageRank scores are

derived from the corresponding stationary state distribution R. The answer to the

query, Vq , is a list of nodes ranked by the scores in distribution R.

The formula of Personalized PageRank graph walk generalizes the more com-

monly known version of PageRank, as used for webpages (Page et al. 1998), in which

Vq is uniform over all of the graph nodes, and the stationary distribution reflects

query-insensitive centrality scores. It has been shown that the final (stationary)

probability distribution of query-sensitive Personalized PageRank walk over the

graph nodes, which we denote as R, can be computed as follows (Fogaras et al. 2005):

R =

∞∑

i=1

γiVqM
i (3)

According to this Personalized PageRank formula, at each step of the walk i, a

proportion γ of the probability mass at every node is emitted. This means that

in computing node scores, this probability model applies exponential decay on the

distance between the target graph nodes and the query nodes. Focusing on the main

paths connecting the graph nodes to a query, we perform a graph walk for a finite

number of steps k, approximating R (Toutanova et al. 2004). In this multi-step walk,

nodes that are reached from the query nodes over shorter paths are assigned a

higher score than nodes connected over longer paths. In addition, node scores are

monotonic with the number of paths connecting them with the query distribution.

5 Learning

The Personal PageRank metric produces similarity scores that reflect structural

information in the graph. It is reasonable to assume, however, that different similarity

notions imply varying importance for different link types. In other words, it is

unlikely that a single set of parameter values Θ (1) will be best for all queries.

Furthermore, the sequences of edge types (paths) that are traversed by the graph

walk in reaching a target node carry semantic meaning characteristic to the type of

relationship between the query and target nodes, where the Markovian graph walk

does not model such high-level path information.

We will use learning to adapt the graph walk-based node rankings to reflect a

specific flavor of similarity sought. We consider supervised learning settings, where

we are given a dataset of example queries and labels indicating (binary) graph node

relevancy per these queries. Three different methods of learning to rank graph nodes

are applied in this work, including a hill-climbing method that tunes the graph weight
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parameters Θ, a node reranking method and a graph walk variant that is constrained

to follow meaningful paths. The first two methods have been described in detail

elsewhere (Minkov and Cohen 2010). In this section, we provide a brief overview of

these methods for completeness. We then motivate and describe the path-constrained

graph walk method in detail. This section concludes with a discussion comparing

the three learning approaches from the perspectives of utility and applicability.

5.1 Weight tuning

There are several motivations for learning the graph weights Θ in the underlying

graph. First, some dependency relations – foremost, subject and object – are in

general more salient than others (Lin 1998; Padó and Lapata 2007). In addition,

dependency relations may have varying importance per different notions of word

similarity. Weight tuning allows the adaptation of edge weight parameters Θ to the

type of similarity sought. Given the adapted edge weights, the graph walk process

is biased toward nodes linked over meaningful relations (1).

The weight tuning method implemented in this work is based on an error

backpropagation hill-climbing algorithm (Diligenti, Gori and Maggini 2005). The

algorithm minimizes the following cost function:

E =
1

N

∑

z∈N
ez =

1

N

∑

z∈N

1

2

(
pz − pOptz

)2
(4)

where ez is the error for a target node z, defined as the squared difference between

the final score assigned to z by the graph walk pz , and some ideal score according

to the example’s labels, pOptz .3 Specifically, pOptz is set to 1 in case that the node z is

relevant or 0 otherwise. The error is averaged over a set of example instantiations of

size N. The cost function is minimized by gradient descent where the derivative of

the error with respect to an edge weight θ� is computed by decomposing the walk

into single time steps, and considering the contribution of each node traversed to

the final node score. Note that the gradient descent approach is prone to reach local

minima, as the target function is not convex (Agarwal, Chakrabarti and Aggarwal

2006). We therefore select the best results out of multiple runs, where edge weights

are initialized randomly.

5.2 Node reranking

Reranking of top candidates in a ranked list has been successfully applied to multiple

NLP tasks (Collins 2002; Collins and Koo 2005; Shen and Joshi 2005). In essence,

discriminative reranking allows the re-ordering of results obtained by methods that

perform some form of local search. It is generally assumed that the initial ordering

produced by the local search is of high quality so that the top-ranked candidates

include relevant answers. The goal in reranking is to improve the initial ordering

3 For every example query, a handful of the retrieved nodes are considered, including both
relevant and irrelevant nodes.
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using higher level information. Since features that encode high-level phenomena are

typically costly to compute, reranking is applied to a limited number of top-ranked

candidates. In our framework, the graph walk serves as a local search procedure

that outputs an initially ranked list of nodes, given a large space of candidates

corresponding to all of the graph nodes. Only local information is used in the graph

walk, as random graph walks are a memory-less Markovian process. We will use

reranking to represent nodes in terms of global, high-level connectivity patterns in

the graph. The reranking function and features used are described below.

The reranking function: Formally, for every training example i (1 ≤ i ≤ N), the

reranking algorithm is provided with an initially ranked list of li nodes. Let zij be

the output node ranked at rank j in li, and let pzij be the probability assigned to zij
by the graph walk. Each output node zij is represented through m features, which

are computed by pre-defined feature functions f1, . . . , fm. The reranking function for

node zij is defined as

F(zij , ᾱ) = α0log(pzij ) +

m∑

k=1

αkfk(zij) (5)

where ᾱ is a vector of real-valued parameters. Given a new test example, the graph

walk is first applied to generate a ranked list of nodes, and a small fixed number of the

topmost ranked nodes are then reordered by F(zij , ᾱ), generating a modified ranked

list of graph nodes. The parameter weights ᾱ are learned from the labeled examples

provided. We here apply a boosting learning method (Collins and Koo 2005).

Features: We describe a target node zij in terms of the set of paths traversed

from the query distribution Vq in reaching that node by the graph walk process.

These path-describing features can be computed in the process of executing the

graph walk, or as a post-processing step (Cohen and Minkov 2006). It has been

previously shown that reranking graph nodes using path-describing features can

improve results significantly (Minkov and Cohen 2010). Specifically, we evaluate the

following binary feature templates.

• Edge label sequences. Features indicating whether a particular ordered se-

quence of edge labels �i (path) occurred within the set of paths leading from

the query distribution to the target node zij .

• Lexical unigrams. These features indicate whether a word mention of a

particular lexical value tk was traversed in the graph walk leading to zij .

• Source-count. This feature indicates the number of different source nodes in

the query distribution Vq that zij was reached from. The underlying intuition

is that nodes linked to multiple query nodes, where applicable, are more

relevant.

Example. Consider the graph depicted in Figure 1, where the query distribution is

Vq = {‘new york’}. The target node ‘tokyo’4 is described by the features (denoted as

feature-name.feature-value): sequence.amod.prep.in-inv (where the edges mention and

isa are omitted for brevity) and lexical.headquarters. (The source-count feature is

4 This node will be reached if the graph walk is at least six steps long.
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degenerate in this case as the query distribution is point-wise.) Another potential

target node, ‘Honda’, is reached from Vq over a different edge sequence, and will be

described by the features sequence.amod.poss and lexical.headquarters. If the reranker

is provided with this example query, along with labels indicating that ‘tokyo’ is a

correct response for the query, whereas ‘honda’ is an incorrect response, it will learn

a model that associates the features observed for ‘tokyo’ and other correct target

nodes with high node relevancy and vice versa.

5.3 Path-constrained graph walk

While node reranking allows the incorporation of high-level features, it is a costly

procedure that is typically applied to a small set of the top candidates retrieved

by the local search procedure (aka, the graph walk). Reranking performance is

therefore bound by the quality of the initially ranked list of candidates. For this

reason, it is desirable to incorporate useful high-level information earlier in the

graph walk process. We propose a variant of a graph walk, which is constrained by

high-level path information. Assume that preliminary knowledge is available that

indicates the probability of reaching a relevant node after following a particular

edge-type sequence (path) from the query distribution Vq . We are interested in

directing a random walker to follow paths for which this probability is high. In the

proposed PCW variant, this is achieved by replacing the fixed edge weights Θ with

edge weights that are conditioned on the history of the walk. As will be shown,

this results in accuracy gains, where paths that lead mostly to irrelevant nodes are

degraded in the graph walk process. In addition, it is straightforward to apply a

threshold to prune paths with low estimated probability of reaching a relevant node

in the walk to improve both qualitative performance and efficiency.

This section describes the path-constrained graph walk variant. The algorithm

includes two main components. First, it addresses the evaluation of dynamic edge

weights that are conditioned on the history of a walk, based on training examples.

The space of path histories is |Θ|K for finite graph walks of length K so that a

compact representation is required. To this end, a path tree is constructed based

on training examples in which each node denotes a unique walk history, and leaf

nodes denote full paths observed. Every leaf node in the path tree is associated

with the probability of reaching a relevant target node following the underlying

edge sequence. These probabilities are propagated in the tree to obtain estimates

of edge weights conditional on the history of the walk. The second component

of the algorithm adapts the random walk algorithm to consider path history. We

represent the nodes traversed as a set of node pairscomprising the graph node and

the corresponding vertices in the path tree. The outgoing edge weights from each

node pair are estimated according to the respective vertex in the path tree. Next we

describe in detail how we construct a path tree from labeled examples, and outline

the path-constrained graph walk variant.

5.3.1 The path-tree

We are given a training set of labeled example queries. An initial graph walk of

length K (using fixed edge weights Θ) is performed to generate a ranked list of
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nodes per query. Let a path p denote a sequence of j ≤ K edge types. For each

training example i (1 ≤ i ≤ N), we recover all of the full connecting paths leading

from each query node to the top M (correct and incorrect) nodes. We consider

only acyclic paths.5 Let C+
p be the count of a path p within the paths leading to

correct nodes over all example target nodes N · M; and similarly, let C−
p denote its

count within the paths leading to the negatively labeled nodes in the example node

set. The full set of paths observed can be represented as a tree. (The conversion

to a tree is straightforward, where identical path prefixes are merged.) The leaves

of the tree correspond to the paths traversed to a target node and are assigned a

Laplace-smoothed probability:

Pr(p) =
C+
p + 1

C+
p + C−

p + 2
(6)

Pr(p) is a (smoothed) maximum likelihood estimate of the probability of reaching a

correct node following p, based on observed examples.

While the probability of reaching relevant nodes following various paths over

a random walk of length K is estimated directly from data, we are interested in

assessing conditional typed edge weights that guide the random walk process in

relevant directions, reflecting the probability of reaching a correct target node given

partial walk history (corresponding to a path prefix). We approximate the edge

weights conditioned on walk history by propagating the path (leaf) probabilities

backwards in the path tree to all tree vertices, applying the MAX operator. This

approximation provides an upper bound of the downstream probability of reaching

a correct response once the walk is fully executed.6

Example. Consider the graph shown on the left part of Figure 2. Suppose that

the topmost node in the graph (in black) is submitted as a query Vq , where the two

nodes at the bottom correspond to relevant (on the left, in blue) and irrelevant (on

the right, in red) responses. Assuming a graph walk of three steps or more, there

are three acyclic paths overall, including two unique paths that lead to the relevant

node:
�−→ m−→ k−→ ×2
�−→ n−→ k−→ ×1

The irrelevant node is reached via five paths overall, consisting of three unique

paths, as follows.

�−→ n−→ k−→ ×2
�−→ m−→ n−→ ×2
m−→ �−→ ×1

5 In our experiments, we found that better performance is obtained if C(p) are evaluated
using acyclic paths only, where no node is revisited . Cycle-free network similarity has been
discussed in related research (Koren, North and Volinsky 2006).

6 Interestingly, in reinforcement learning an agent also selects the step that maximizes the
future reward in its path to a goal.
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Fig. 2. (Colour online) The toy graph on the left (a) is annotated with a query node (in black),

as well as a correct answer node (left bottom node, in blue), and an irrelevant node (right

bottom node, in red). The path tree constructed based on this example is shown on the right

(b), including the computed conditional typed edge weights. The graph and path tree include

the edge labels �, m, n and k.

These path counts are summarized as follows:

< C+
�.m.k = 2, C−

�.m.k = 0 >

< C+
�.n.k = 1, C−

�.n.k = 2 >

< C+
�.m.n = 0, C−

�.m.n = 2 >

< C+
m.� = 0, C−

m.� = 1 >

In this toy example, the count statistics indicate that the path �.n.k is relatively ‘noisy’,

in the sense that this path reaches incorrect responses with high probability (twice

out of three times observed). Similarly, the paths �.m.n and m.� lead to irrelevant

nodes only in the observed example. In practice, considering cumulative path counts

over a set of example nodes, path count statistics are expected to represent general

phenomena in the graph. We wish to assign lower walk probability along noisy

paths compared with paths that lead mostly to nodes judged as relevant.

The path tree constructed based on this example is shown on the right part of

Figure 2. The conditional typed edge weights are displayed next to each edge in the

path tree. According to the computed path counts and (6), the leaf probability of

the path �.m.k is estimated at 0.75, and at 0.25 for the path �.m.n. Assuming that the

path prefix �.m has been traversed in the walk, the outgoing edge weights according

to the path tree are θ(k|� → m) = 0.75 and θ(n|� → m) = 0.25. Accordingly, given

that only an edge of type � was traversed, the weight of an edge of type m is

estimated as the maximal probability estimate of the corresponding downstream

leaves in the path tree, i.e. θ(m|�) = Max(θ(k|� → m), θ(m|� → m)) = 0.75. Similarly,

at the root of the tree, the computed edge weights are estimated at θ(�|.) = 0.75 and

θ(m|.) = 0.33. We assume the weights associated with edge types not included in the

path tree at a given vertex to be zero.
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Algorithm 1 Pseudo-code for path-constrained graph walk

Given: graph G, path-tree T , query distribution V0, walk length K

Initialize: for each xi ∈ V0, assign a pair < root(T ), xi >

Repeat for steps k = 0 to K:

For each < ti, xi >∈ Vk:

Let L be the set of outgoing edge labels from xi, in G.

For each lm ∈ L:

For each xj ∈ G s.t., xi

lm−→ xj , add < tj , xj > to Vk+1, where tj ∈ T , s.t. ti
lm−→ tj , with

probability Pr(xi|Vk) × Pr(lm|ti, T ). (The latter probabilities should be normalized with

respect to xi.)

If ti is a terminal node in T , emit xi with probability Pr(xi|Vk) × Pr(ti|T ).

5.3.2 A path-constrained graph walk

The path-constrained graph walk adheres both to the topology of the graph G and

the path tree T . Walk histories of each node x visited in the walk are compactly

represented as pairs 〈t, x〉, where t denotes the relevant vertex in the path tree. This

means, however, that if x was reached via n different paths, it would be represented

using n node pairs.

Example. Assume that a walk is performed using the path tree shown in Figure 2.

If the graph displayed in Figure 2 is used, then after one walk step, the walk

distribution would include a couple of node-history pairs: 〈T (�), x1〉 and 〈T (m), x2〉.
Suppose that another graph node x3 (in a hypothetical graph) is reached in the

next walk step from both x1 and x2; in this case, node x3 would be represented by

multiple node pairs, including 〈T (� → n), x3〉 and 〈T (m → �), x3〉.
Given the path tree vertex indicated in each node-history pair, the weights of

outgoing edges are retrieved from the path tree. These weights are normalized at

each node traversed to generate local transition probabilities (following (1)).

Example. Consider the node pair 〈T (�), x1〉, where the outgoing edges from node

x1 are of types m, n and k. Assuming that the path tree shown in Figure 2 is provided,

the edge weights for this node-history pair are θ(m|�) = 0.75 and θ(n|�) = 0.4. (We

set θ(k|�) = 0 because the sequence � → k is not a path prefix in the path tree.)

Given these conditional edge weights, the graph walk proceeds according to its

original schema.

The pseudo-code for the path-constrained graph walk is given in Algorithm 1.

Note that the number of nodes effectively processed in the path-constrained graph

walk is larger relative to an unconstrained walk, as a graph node may be processed

multiple times, per walk history. On the other hand, paths in the graph that are

not represented in the path tree are pruned. (It is possible, of course, to assign a

small probability to previously unseen paths.) In addition, it is straightforward to

discard paths in the path tree that are associated with a lower probability than some

threshold. A threshold of 0.5, for example, implies that only paths that led to a

majority of positively labeled nodes in the training set are followed. Path pruning
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has a direct effect on the time complexity of the walk, reducing the number of nodes

and edges visited. This is further discussed in Section 8.

5.4 A comparative discussion

We have outlined different approaches for learning to rank graph nodes given

labeled examples and initial rankings generated using graph walks. We now discuss

the strengths and weaknesses of these methods with respect to several key criteria,

including the scope of information modeled by each approach, potential impact of

learning on the graph walk ranking and computational aspects.

Scope. A random graph walk process is strictly Markovian, where the random

walker does not ‘remember’ the history of the walk. Similarly, in learning the

graph edge weights using methods such as error backpropagation, the graph walk

is decomposed into single time steps, and optimization is performed ‘locally’. In

contrast, the node reranking and constrained graph walk approaches allow one

to exploit global properties of the walk; in particular, both methods can model

information about edge sequences traversed over multiple time steps in the walk. As

will be demonstrated, modeling path information is highly important in estimating

semantic relations based on distributional evidence in the proposed word graph.

Overall, reranking is the most ‘global’ method out of the approaches considered.

In addition to edge sequences, reranking can incorporate features that describe

properties of the nodes traversed in a path, for example, their lexical value. Moreover,

information about the collection of paths leading to a node may be represented as

features in reranking. For example, the source count feature denotes the number of

different query nodes that link to the target node. Similarly, reranking features can

explicitly model the number of paths leading to a node, and other global properties

pertaining to node connectivity. Finally, reranking can also model arbitrary domain-

specific features, incorporating additional relevant information sources that are

independent of the graph walk (Minkov and Cohen 2010). In contrast, the proposed

formula of the path-constrained walk models information about the edge sequences

traversed, but cannot model neither properties of the nodes traversed, or information

at path set level.

Impact. Learning may alter the graph walk-based initial rankings to varying

extents. The method of tuning the graph edge weight parameters Θ has relatively

limited impact on the rankings generated using the Personalized PageRank graph

walk scheme. The reason for this is that Personalized PageRank applies an exponen-

tial decay over walk length (3); this makes a node’s distance from the query nodes the

dominant factor in its assigned score. In other words, a strong bias is applied toward

nodes that are linked to the query nodes over short connecting paths. Hence, we

observe that edge weight tuning mainly affects the relative rankings of ‘competing’

nodes residing in similar distance from the query. In contrast, the path-constrained

graph walk variant can affect the output rankings to a large extent: nodes that are

reached from the query nodes over short but unmeaningful paths will be demoted,

or excluded from, the output ranking. Unlike reranking, the path-constrained walk

applies to all of the graph nodes. Finally, discriminative reranking can significantly
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alter the ranked list output by the graph walk. However, for computational reasons,

reranking is only applied to the top candidates (nodes) ranked. This means that

reranking performance is bound by the quality of the initially ranked lists. It is

therefore desirable to apply reranking in combination with a good initial ranking

function. In particular, reranking has been successfully applied in combination with

graph walks that use a learned set of edge weights Θ∗ (Minkov and Cohen 2010).

Similarly, we expect that applying reranking to the top results retrieved using the

path-constrained walks may be beneficial in some cases; as discussed before, while

both methods incorporate high-level information about the edge sequences traversed,

additional information can be incorporated using reranking.

Cost. The learning methods differ in terms of training and run-time requirements.

In training, the error backpropagation weight-tuning approach requires re-computing

the graph walk in each iteration. In addition, in order to avoid local minima, a

recommended strategy is to repeat training multiple times using randomized initial

edge weight parameters and to select the overall best learned set of edge weights

Θ∗. The training procedure of weight tuning is therefore relatively slow. However,

having learned Θ∗, a graph walk is readily applied using the modified edge weight

parameters with no overhead during runtime. The reranking approach requires a

one-time execution of the graph walk to generate the graph walk rankings. Features

describing the top graph nodes retrieved can be derived either during the graph walk

(Cohen and Minkov 2006), or as a separate step, using a path unfolding procedure

(Minkov and Cohen 2010). While the procedure of learning a reranking function

and applying the learned model to other feature vectors is efficient, encoding nodes

with their feature values adds processing overhead to query execution. Finally, the

path-constrained graph walk approach is simple and fast to train. Like reranking,

it requires a single execution of the graph walk for the given example queries, as

well as path unfolding, during training. In run time, maintaining node pairs that

represent the set of walk histories for each graph node traversed imposes relatively

large memory requirements, thus affecting the processing time and scalability of

the walk. We discuss and evaluate empirically the effect of the PCW algorithm on

scalability in Section 8.2.

6 Extraction of named entity coordinate terms

We evaluate the text representation schema and the proposed set of graph-based

similarity measures on the task of coordinate term extraction. In particular, we

evaluate the extraction of named entities, including city names and person names

from newswire data, using word similarity measures. Coordinate terms reflect a

particular type of word similarity, and are therefore an appropriate test case for our

framework. While named entity coordinate term extraction is often addressed by a

rule-based (templates) approach (Hearst 1992), this approach is mainly appropriate

for very large corpora such as the Web, where the availability of many redundant

documents allows use of high-precision and low-recall rules. In contrast, in this paper

we focus on relatively small corpora. Small limited text collections may correspond

to documents residing on a personal desktop, email collections, discussion groups
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Table 1. NE coordinate term extraction: corpus statistics

Corpus Words Mention nodes Term nodes Edges Unique NEs

MUC 140 K 65 K 17 K 244 K 3 K

MUC+AP 2440 K 950 K 80 K 3550 K 36 K

and other specialized sets of documents. The task defined in the experiments is

to retrieve a ranked list of city or person names given a small set of seeds. This

task is implemented in the graph as a query, where we let the query distribution

Vq be uniform over the given seeds (and zero elsewhere). Ideally, the ranked list

generated in response to the query will be populated with many additional city, or

person, names. We compare graph walks with dependency vectors (Padó and Lapata

2007), a state-of-the-art syntactic vector-based model, as well as to a vector-based

bag-of-words co-occurrence model, where text is processed as a sequence of words

rather than as syntactic structures.

6.1 Corpora and datasets

As the experimental corpora, we use the training set portion of the MUC-6 dataset

(MUC6 1995), as well as articles from the Associated Press (AP) extracted from the

AQUAINT corpus (Bilotti et al. 2007), all parsed using the Stanford dependency

parser (de Marneffe, MacCartney and Manning 2006). (Due to lower parsing

quality, sentences longer than seventy words were omitted.) The MUC corpus

provides true named entity tags, while the AQUAINT corpus includes automatically

generated noisy, named entity tags. In constructing the graphs, we represent multi-

word named entity expressions using a single node; for example, as shown in Figure 1,

the named entity mention New-York3 is denoted by a single node, and so is the

corresponding (normalized, low-case) term, new york. Statistics on the experimental

corpora and their corresponding graph representation are detailed in Table 1. As

shown, the MUC corpus contains about 140 thousand words, whereas the MUC+AP

experimental corpus is substantially larger, containing about 2.5 million words in

total. In processing the corpora into word graphs, ‘stop words’ (uninformative words

such as ‘the’, ‘to’ etc.) were eliminated. The processed MUC graph contains about 17

thousand term nodes, and 65 thousand word mention nodes; the MUC+AP graph

contains about 80 thousand term nodes and about 1 million word mention nodes.

While the dictionary used grows moderately with the size of the corpus, the number

of word mentions is proportional to corpus size. Finally, the graphs are relatively

sparse: there are about three connecting edges per node in the graph.

We generated ten queries, each comprising four city names selected randomly

according to the distribution of city name mentions in MUC-6. Similarly, we

generated a set of ten queries that include four person names selected randomly

from the MUC corpus. Using a set of seeds, rather than a single seed, gives a

refined definition of the semantic class sought, and is the typical setting in extracting

named entity classes (Wang and Cohen 2007). Another reason for using queries
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that include multiple entities is that some entity nodes may be poorly connected in

the graph and thus provide weak contextual evidence; for example, minor cities are

typically mentioned a small number of times in the corpora so that the set of paths

originating from the corresponding terms in the graph, and the number of other city

names that can be reached over these paths using finite graph walks, are limited.

Given multiple seed entities, it is expected that at least a subset of them would

provide useful evidence. For each task, we use five queries for training and tuning

and the remaining queries for testing. Note that while the number of test queries

is relatively small, all of the city, or person, names in the corpus are considered as

correct answers. This means that a large number of positive and negative query-

target node similarity pairs are evaluated per query. In the experiments, we perform

the same set of queries using the MUC corpus, and the larger MUC+AP corpus,

so that performance is assessed on the same queries for different corpora sizes. To

allow such a comparison, the smaller MUC corpus was appended to AP so that the

same query sets are applicable in both cases.

6.2 Experiments

We evaluated cross-validation performance over the training queries in terms of

mean average precision (MAP) for varying walk lengths K . We found that beyond

K = 6 improvements were small (see also Section 8.1). We therefore set K = 6.

Weight tuning was performed using the training queries and two dozens of target

nodes overall. In reranking, we set a feature count cutoff of 3 to avoid over-fitting.

Reranking was applied to the top 200 ranked nodes output by the graph walk using

the tuned edge weights. Finally, path trees were constructed using the top twenty

correct nodes and twenty incorrect nodes retrieved by the uniformly weighted graph

walk. In the experiments, we apply a threshold of 0.5 to the path-constrained graph

walk method, eliminating paths associated with lower probability of reaching a

correct response from the path tree.

We note that for learning, true labels were used for the fully annotated MUC

corpus (we hand-labeled all of the named entities of type ‘location’ in the corpus as

to whether they were city names). However, noisy negative examples were considered

for the larger automatically annotated AP corpus. (Specifically, for cities, we only

considered city names included in the MUC corpus as correct answers.)

A co-occurrence vector-space model was applied using a window of two tokens

to the right and to the left of the focus word. Inter-word similarity was evaluated in

this model using cosine similarity, where the underlying co-occurrence counts were

normalized by log-likelihood ratio (Padó and Lapata 2007). The parameters of the

DV method were set based on a cross-validation evaluation (using the MUC+AP

corpus). The medium set of dependency paths and the oblique edge weighting scheme

were found to perform best.7 We experimented with cosine as well as the Lin

similarity measure in combination with the DV representation. In applying the

7 We used the code from underlying syntactic patterns to the Stanford dependency parser
conventions.
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vector-space-based methods, we compute a similarity score between every candidate

entity and each of the query terms, and then average these scores (as the query

distributions are uniform) to construct a ranked list. Given the large number of

candidates in the MUC+AP corpus (see Table 1), we show the results of applying

the considered vector-space models to the top, high-quality entities retrieved from

this corpus. Specifically, the set of entities considered includes the union of the top

200 results obtained using the tuned graph walks (i.e. the same set of results that

was processed using reranking) per query. Finally, for both the graph walk and the

vector-based models, we limit the considered set of candidates to named entities.

6.3 Results

We first report the statistics of within-sentence entity co-occurrences in the experi-

mental corpora for the two tasks. In particular, we consider a simple baseline, where

one applies a rule extracting all named entities linked over a conjunction relation to

either one of the query terms (Roark and Charniak 1998). Applying this approach

to the city name extraction task yielded overall precision of 80 percent on the MUC

corpus and 62 percent on the MUC+AP corpus. However, recall based on intra-

sentence term co-occurrences was extremely low: only 7 percent of the city name

mentions in the MUC corpus co-appeared with the query terms within individual

sentences, and only about 11 percent of those mentions were linked to the query

terms over a conjunction relation. Applying this extraction rule to the person name

extraction task was ineffective, where the rate of person names co-occurring with

the query terms within individual sentences was nearly zero. (Alternatively, one can

learn contextual rules for person names extraction (Collins and Singer 1999), but

such learning is performed in a bootstrapping fashion rather than in a single learning

iteration.) Thus, while applying high-precision and low-coverage rules is effective at

Web scale, this approach is not appropriate for the processing of the underlying

corpora. In contrast, extracting coordinate terms based on common lexico-syntactic

neighborhoods does not require term co-occurrence within individual sentences. We

next report our results using the graph-based approaches, comparing them against

distributional vector-based models.

Figure 3 gives results for the city name (top) and the person name (bottom)

extraction tasks. The left part of the figure shows results using the MUC corpus,

and its right part shows results using the MUC+AP corpus. The curves show

precision as a function of rank in the ranked list, up to rank 100. For this evaluation,

we hand-labeled all the top-ranked results as to whether they were city names or

person names. Included in the figure are the curves of the graph-walk method

with uniform weights (G:Uw) and with learned weights (G:Lw), graph walk with

reranking (Rerank) and a path-constrained graph walk. Also given are the results

of the co-occurrence model (CO), and the syntactic vector-space DV model, using

the Lin similarity measure (DV:Lin). Performance of the DV model using cosine

similarity was found comparable or inferior to using the Lin measure, and is omitted

from the figure for clarity.

Several trends are observed in the figure. With respect to the graph walk

methods, the graph walk using the learned edge weights consistently outperforms
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Fig. 3. (Colour online) Test results: precision at the top 100 ranks, for the city name

extraction task (top), and person name extraction task (bottom).

the graph walk with uniform weights. Reranking and the path-constrained graph

walk, however, yield superior results. Both of these learning methods utilize a

richer set of high-level features compared with the graph walk and weight tuning,

which can consider only local information. In particular, while the graph walk

paradigm assigns lower importance to longer connecting paths, reranking and the

path-constrained walker allow the system to discard short yet irrelevant paths and

thereby eliminate noise at the top ranks of the retrieved list. In general, the results

show that edge sequences carry additional meaning compared with the individual

edge label segments traversed.

Out of the vector-based models, the co-occurrence model is preferable for the

city name extraction task, and the syntactic DV model gives substantially better

performance for person name extraction. In general, we find that city name mentions

appear in less structured contexts in the underlying text. For example, the name

of the reporting agency and the city in which it resides are usually given in an

article’s header line, with no meaningful syntactic context. In addition, the syntactic

weighting scheme of the DV model is probably not optimal for the case of city names.

For example, a conjunction relation was found highly indicative for city names (see

below). However, this relation is not emphasized by the DV weighting schema. As

expected, the performance of the vector-based models improves for larger corpora

(Terra and Clarke 2003). These models demonstrate good performance for the larger

MUC+AP corpus, but only mediocre performance for the smaller MUC corpus.
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Contrasting the graph-based methods with the distributional vector-based models,

the difference in performance in favor of reranking and path-constrained walk, espe-

cially for the smaller corpus, can be attributed to two factors. The first factor is learn-

ing, which optimizes performance for the underlying data. The second factor is the

incorporation of non-local information, encoding properties of the traversed paths.

Following is a short description of the models learned by different methods

and tasks. Weight tuning assigned high weights to edge types such as conj-

and, prep-in and prep-from, nn, appos and amod for the city extraction task. For

person extraction, prominent edge types included subj, obj, poss and nn. (The latter

preferences are similar to the linguistically motivated weights of dependency vectors.)

High weight features assigned by reranking for city name extraction included,

for example, lexical features such as ‘based’ and ‘downtown’, and edge bigrams

such as ‘prep-in-inv→conj-and’ or ‘nn-inv→nn’. Positive highly predictive paths in

the constructed path tree included many symmetric paths, such as . . . →conj and-

inv. . . →.conj and. . . , . . . →prep in-inv. . . →.prep in. . . , for the city name extraction

task.

7 General word synonym extraction

We next report and discuss the results of a set of experiments on the task of synonym

extraction using our framework. In this task, given a general word such as ‘movie’, we

are interested in ranking the graph nodes such that its synonyms (e.g. ‘film’) appear

at the top of the ranked list. Downstream applications of synonym extraction include

automatic construction of ontologies (e.g. (Lin 1998)), as well as NLP applications,

such as summarization (Barzilay and Elhadad 1999), question answering (Lin and

Pantel 2001) and textual entailment (Mirkin, Dagan and Geffet 2006). Interestingly,

while extensive research has been conducted on extracting measures of general word

semantic relatedness from corpora, relatively few works have focused on identifying

distinct types of word relatedness, such as hyponymy (Snow et al. 2005) or synonymy

(van der Plas and Tiedemann 2006). A major strength of the proposed framework

is that it can be tuned to reflect special flavors of semantic similarity. Given positive

and negative examples of word synonyms, we will here learn models that are

targeted at identifying the synonymy relation. Moreover, it is straightforward to

learn specialized models using our framework for different word types, such as

nouns, verbs and adjectives. Our results suggest that learning typed word similarity

measures in identifying synonymy is indeed advantageous.

Interestingly, the tasks of extracting named entity classes and general word

semantic similarity from text corpora have been treated separately in the literature.

Indeed, these tasks reflect different phenomena in the word graph. Named entity

coordinate terms correspond to a large number of named terms, all of which are

instances of a specific semantic class (such as person, or city). Accordingly, these

instances appear in highly regular lexical and syntactic neighborhoods. For example,

as discussed before, person names often appear with the same modifier (e.g. ‘Mr.’,

‘Dr.’), or with the same verb (e.g. ‘said’). Therefore, named entity mentions are often

retrieved based on distinctive lexical and syntactic patterns, using bootstrapping



382 E. Minkov and W. W. Cohen

Adjectives contemporary : modern infrequent : rare
immediate : instant dedicated : committed
lethal : deadly necessary : essential
particular : specific pressing : urgent
deliberate : planned informal : casual
gay : homosexual isolated : lonely
dubious : doubtful legitimate : valid
infamous : notorious constant : fixed
imperative : vital exact : precise
lucid : clear economic : profitable
intelligent : clever essential : fundamental
prosperous : affluent attractive : appealing

Nouns commencement : graduation murderer : assassin
convention : conference disaster : catastrophe
destiny : fate discount : reduction
hunger : starvation impediment : obstacle
hypothesis : speculation homicide : murder
material : fabric measure : degree
movie : film interplay : interaction
possibility : opportunity inflow : influx
remorse : regret meeting : assembly
association : organization ballot : poll
comfort : consolation bid : tender

Verbs answered : replied oversee : supervise
conform : comply received : got
disappeared : vanished admitted : confessed
cited : quoted began : started
diminished : decreased closes : shuts
enquire : investigate confine : restrict
evaluated : assessed disclose : reveal
inspected : examined illustrate : demonstrate
renewed : resumed assure : guarantee
demonstrated : protested illuminated : clarified
responded : replied nominated : appointed
renewed : resumed

Fig. 4. Word synonym pairs: the left words were used as query terms in our experiments.

techniques (Hearst 1992; Collins and Singer 1999). General words, on the other hand,

are associated with small synonym sets. In addition, there is higher variability of the

lexical and syntactic contexts in which general words appear due to different word

selectional preferences (e.g. Thater, F’́urstenau and Pinkal 2010). The evaluation of

general word similarity is therefore typically addressed using distributional similarity

models. In this section, we show that the graph-based corpus representation, using the

proposed adaptive graph walk-based inference methods, can be effectively applied

to the task of evaluating general word synonymy.

7.1 Dataset and corpus

We have constructed a set of example queries that describe word synonym pairs, dis-

tinguishing between nouns (twenty-two examples), adjectives (twenty-four examples)

and verbs (twenty-three examples). The synonym pairs considered correspond to

popular examples given on websites dedicated to teaching English as a second

language. (Since such sources listed only a handful of adverbs, we did not include

adverbs in this case study.) The full synonym list that constitutes our dataset is given

in Figure 4. Alternatively, one can consider the synonym sets included in a lexico-

semantic ontology, such as WordNet, to construct a dataset for learning and evalu-

ation. However, the synonymy distinctions annotated in WordNet are often intricate
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and context-dependent. We choose to focus on coarse synonymy in this case study, as

we are interested in learning general, rather than word-specific, synonymy relations.

We constructed a corpus of parsed text using the British National Corpus (BNC;

Burnard 1995) for the experiments. The full BNC corpus is a 100-million-word

collection of samples of written and spoken language from multiple sources, designed

to represent a wide cross-section of contemporary British English. We extracted

sentences from the BNC corpus that contained synonymous words. The number of

extracted sentences was limited to 2000 per word. In addition, for infrequent words,

we extracted more example sentences from AP articles included in the AQUAINT

corpus (Bilotti et al. 2007) so as to increase the number of sentences per word to at

least 300, if possible. The constructed corpus, BNC+AP, includes 1.3 million words

overall. This corpus was parsed using the Stanford dependency parser. While named

entity tags are included in the AP corpus, this information is not readily available

for the BNC corpus. The nodes of the constructed graph therefore correspond to

individual words in this case. The corresponding graph included about 400 thousand

word mention nodes, about 40 thousand term nodes and 1.7 million edges overall.

7.2 Experiments

In our experimental setting, the query distribution Vq consists of a single term of

interest. We assume that the word type of the query term is known. Rather than

ranking all terms in response to a query, we use available (noisy) part of speech

information to narrow down the search to the terms of the same type as the query

term, e.g. for the query ‘film’ we retrieve nodes of type τ =noun.

In preliminary experiments, we found that while weight tuning improves graph

walk performance, the quality of the local graph walk models was relatively poor

on the synonym extraction dataset. These results are in line with the findings

reported before (Figure 3). An analysis of the word graph showed that out of

the synonym word pairs included in our dataset, 12.5 percent, 9.5 percent and 4.5

percent of adjective, verb and noun word pairs, respectively, co-appeared within a

single sentence in the corpus. Since the Personalized PageRank graph walk schema

is biased toward nodes linked over shorter paths in the graph, this means that

most synonyms, connected over relatively long cross-sentence connecting paths, are

assigned low probability scores by the graph walk. In addition, applying reranking

to the top results of the graph walk models gave low performance in this case.

We observed that due to the small number of correct examples available in this

dataset (having a single correct answer specified per query, compared with many

relevant terms in the named entity extraction case study) on one hand, and the high

variability of contexts in which general words appear on the other hand (demoting

the importance of lexical path features), this dataset was not large enough to allow

effective learning by the discriminative reranking model. Hence, in this case study

we focus on the PCW method, which incorporates high-level information about the

connecting paths as part of the random graph walk process.

We applied the PCW method, learning separate models for nouns, verbs and

adjectives. The path trees were constructed using the paths leading to the node known
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to be a correct answer, as well as to the otherwise irrelevant top-ranked ten terms, per

query. In the experiments, we considered paths that are six segments long. Such paths

represent distributional similarity phenomena, allowing a direct comparison against

the DV method. In conducting the constrained walk, we applied a threshold of 0.5

to truncate paths associated with lower probability of reaching a relevant response.

Details about the implementation of the DV method are provided in Section 6.

We use here the union of the top 300 terms retrieved by path-constrained walk as

candidate terms for dependency vectors. For all queries, these sets of terms included

the correct answer annotated. We evaluate the following variants of dependency

vectors: having inter-word similarity computed using Lin’s measure (DV-Lin; Lin

1998), or using cosine similarity (DV-Cos). In addition, we consider a non-syntactic

variant, where a word’s vector consists of its co-occurrence counts with other terms

(using a window of two words); that is, ignoring the dependency structure (CO-Lin).

One difference between distributional methods and graph walk methods is that

distributional similarity measures incorporate heuristics that account for the effect

of non-informative word co-occurrences, where co-occurrences of the target word

with highly frequent words (Manning and Schütze 1999), or with otherwise highly

infrequent words (Hughes and Ramage 2007), are often non-informative. For

example, Lin’s similarity metric, which was designed for the task of evaluating

general word similarity from corpus statistics, is based on the mutual information

measure, downweighting frequent word co-occurrences. In order to demote the

effect of uninformative word co-occurrences, we evaluate the PCW approach also in

settings where random and noisy edges have been eliminated from the underlying

graph. Specifically, dependency links in the graph were associated with pointwise

mutual information (PMI) scores of the linked word mention pairs (Manning and

Schütze 1999); edges with low scores are assumed to represent word co-occurrences

of low significance, and so are removed. We empirically set the PMI score threshold

to 2.0, using cross validation (PCW-P).8 Finally, for comparison purposes, in addition

to the specialized PCW models, we also learned a uniform model over all word types

in these settings; that is, this model is trained using the union of all training examples,

being learned and tested using a mixture of queries of all types (PCW-P-U).

7.3 Results

Considering the limited number of positive examples available in our dataset, we

use cross validation rather than a fixed split into train and test sets in the evaluation.

Table 2 gives the results of 10-fold cross-validation experiments in terms of MAP.

Note that for the purpose of evaluation, we discard terms in the ranked list,

which are known inflections of the query or target terms (e.g. for the word pair

‘nominated-appointed’, the terms ‘nominate’, ‘nominates’, ‘appoint’ and ‘appoints’

were eliminated from the output ranked lists.)

As shown in Table 2, the DV model applied using Lin similarity (DV-Lin) performs

best among the vector-based models. The improvement achieved due to edge

8 Eliminating low PMI co-occurrences has been shown to be beneficial in modeling lexical
selectional preferences recently, using a similar threshold value (Thater et al. 2010).
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Table 2. 10-fold cross-validation results: MAP

Nouns Verbs Adjectives All

CO-Lin 0.34 0.37 0.37 0.37

DV-Cos 0.24 0.36 0.26 0.29

DV-Lin 0.45 0.49 0.54 0.50

PCW 0.47 0.55 0.47 0.49

PCW-P 0.53 0.68 0.55 0.59

PCW-P-U 0.49 0.65 0.50 0.54

weighting compared with the co-occurrence model (CO-Lin) is large, demonstrating

that syntactic structure is very informative for modeling word semantics (Padó and

Lapata 2007). Interestingly, the impact of applying the Lin similarity measure versus

cosine (DV-Cos) is even more profound. Unlike the cosine measure, Lin’s metric

allows one to downweight uninformative word co-occurrences.

Among the PCW variants, the specialized PCW models achieve performance that

is comparable with the state-of-the-art DV measure (DV-Lin). Further, removing un-

informative word co-occurrences from the graph (PCW-P) leads to further improve-

ments, yielding the best results over all word types. Finally, the graph walk model that

was trained uniformly for all word types (PCW-P-U) outperforms DV-Lin, showing

the advantage of learning meaningful paths. Notably, the uniformly trained model

is inferior to PCW trained separately per word type in the same settings (PCW-P).

This suggests that learning specialized word similarity metrics is beneficial.

Figure 5 gives a more detailed view of these results. The figure shows the

cumulative recall at the top ranks of the retrieved lists, down to rank 40, for the best

performing DV-Lin and PCW-P methods. The figure shows that the performance

of PCW-P dominates that of DV-Lin in general, and at the top ranks in particular.

Figure 6 provides a view of the top-ranked terms output by the DV-Lin and PCW-

P methods for a couple of examples, corresponding to the queries Vq = {‘isolated’},
retrieving terms known to be adjectives, and Vq = {‘oversee’}, retrieving verb terms.

Along with the ranked lists, the figure details the scores assigned by the methods

to each term. As shown, given the query term ‘isolated’, PCW-P ranks the synonym

‘lonely’ at the first rank (in bold); the DV-Lin method ranks this term at rank 41

(not shown). There are multiple terms, however, that appear at the top ranks of

both lists. Specifically, the terms ‘small’ and ‘rural’ are included in both lists; these

terms are semantically related to the query term, as rural, or small, places are often

isolated. In addition, the terms ‘affluent’ and ‘particular’ were ranked highly by both

methods; we found that these terms, similar to the query term, are often used to

describe ‘areas’, ‘towns’, ‘groups’ and so forth. (The term ‘particular’ and the query

term ‘isolated’ also appear in the neighborhood of terms such as ‘cases’, or ‘issues’.)

Using PCW-P, the term ‘lonely’ is assigned a high weight in response to the query

‘isolated’ due to common adjectival complement relations with the verb ‘feel’; in

addition, ‘lonely’ is found to be related to the ‘isolated’ based on conjunctions of

both terms with adjectives such as ‘frustrated’ and ‘depressed’. Both the complement

and conjunction relations are not assigned a high score based on the linguistically
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Fig. 5. (Colour online) Synonym extraction results: cumulative recall at top ranks.

Vq ={‘isolated’} Vq ={‘oversee’}

Rank DV-Lin PCW-P DV-Lin PCW-P

1 affluent 0.004 lonely 0.015 supervise 0.004 supervise 0.047
2 particular 0.003 different 0.011 operates 0.003 approaches 0.012
3 established 0.003 held 0.010 planning 0.003 case 0.012
4 limited 0.003 affluent 0.010 established 0.003 concerns 0.011
5 class 0.003 prosperous 0.009 planned 0.003 bills 0.010
6 prosperous 0.003 small 0.009 appointed 0.003 sustain 0.011
7 small 0.003 rural 0.009 involved 0.003 levels 0.010
8 rural 0.003 local 0.007 require 0.003 firms 0.010
9 coming 0.002 clear 0.006 resume 0.003 campaign 0.010

10 major 0.002 commanding 0.006 committed 0.003 approve 0.009
11 communist 0.002 specific 0.006 make 0.003 restrict 0.009
12 developed 0.002 particular 0.006 confine 0.003 work 0.008

Fig. 6. Synonym extraction results: top-ranked term lists and the associated scores output by

the DV-Lin and PCW-P methods for a couple of example queries.

motivated weighting scheme used by DV-Lin. In the second example given, both

methods rank the relevant synonym ‘supervise’ at the top rank in response to the

query ‘oversee’. Both terms are often linked over a direct object relation with terms

such as ‘work’, ‘repairs’, ‘production’, as well as share a subject relation with terms

such as ‘board’ or ‘director’. The subject and object relations are weighted highly by

both methods. In addition, PCW-P models clausal complements relations (xcomp)
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with verbs such as ‘employed’ or ‘appointed’ (as in ‘employed to oversee/supervise’),

and conjunction relations with other verbs such as ‘regulate’ and ‘ensure’. Note that

PCW-P assigns a significantly higher score to the correct answer compared with the

following candidates, whereas DV-Lin ranks other related terms in closer proximity

to this synonym. In summary, there are several reasons why the PCW method is

advantageous on these examples. While DV-Lin is designed to capture a general

semantic similarity notion, PCW-P (as well as the other learned PCW variants) is

targeted at finding a specific flavor of similarity, namely synonymy in this case study.

Thus, the relative importance assigned to different edge types is adapted to the

task at hand. In addition, unlike distributional similarity methods, which aggregate

lexico-syntactic evidence at sentence level, PCW models information about the full

paths connecting the query and target terms, allowing one to capture symmetry and

other high-level properties of the common neighborhoods modeled. Finally, we find

that the automatically tuned PCW-P method models richer syntactic paths than the

manually tuned path set used by DV-Lin.

In our experiments, prominent paths that were found to provide strong positive

evidence for noun synonym extraction included:

. . .
nn−→ . . .

nn−inv−→ . . .

. . .
nn−→ . . .

amod−inv−→ . . .

. . .
dobj−inv

−→ . . .
dobj
−→ . . .

. . .
amod−→ . . .

amod−inv−→ . . .

. . .
conj and−inv

−→ . . .
conj and
−→ . . .

. . .
prep of−inv

−→ . . .
prep of
−→ . . .

As one may expect, the salient paths in the models learned are mostly symmetrical.

There are, however, multiple positively weighted non-symmetrical paths learned by

the model. The path ‘. . .
nn−→ . . .

amod−inv−→ ..’ included in the list above reflects a frequent

parsing error, where modification is confused with noun-compound relationship;

e.g. the expression ‘natural disaster’ was erroneously parsed as a noun-compound

in our corpus, where the relation between the word pair ‘natural catastrophe’ was

correctly parsed as modification. Another path, ‘. . .
nn−inv−→ . . .

prep of−inv
−→ ..’, reflects

a valid syntactic variation; e.g. ‘disaster management’ (a noun-compound) versus

‘management of catastrophe’.

In comparison, the set of weighted paths learned per the task of verb synonym

extraction was different, including the following example of prominent paths:

. . .
dobj
−→ . . .

dobj−inv
−→ . . .

. . .
nsubj
−→ . . .

nsubj−inv
−→ . . .

. . .
xcomp−inv

−→ . . .
xcomp
−→ . . .

. . .
advcl−inv−→ . . .

advcl−→ . . .

. . .
infmod−inv

−→ . . .
infmod
−→ . . .
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Finally, examples of significant paths learned in the adjective synonym extraction

models include:

. . .
amod−inv−→ . . .

amod−→ . . .

. . .
advmod−→ . . .

advmod−inv−→ . . .

. . .
nn−inv−→ . . .

amod−→ . . .

. . .
conj and−inv

−→ . . .
conj or
−→ . . .

These different sets of paths demonstrate the utility of learning separate models

for specialized notions of word similarity. While many of the syntactic relations

included in the top paths learned correspond to linguistically salient relations, such

as nominal subject (nsubj) and direct object (dobj), we found that a conjunction

relation of nouns and verbs with the same context word provided good supportive

evidence of word synonymy; common preposition arguments were found to be

meaningful as well in inferring noun synonymy, and so forth. Importantly, the

models learned reflect phenomena observed in the underlying (noisy) parsed texts,

and may be adapted to other text genres, using different parsing conventions.

8 Design and scalability considerations

In this section, we are interested in assessing the effect of the framework’s design

choices on performance. We first evaluate graph walk performance, varying the

graph walk length and reset probability. In addition, we examine the effect of

pruning the path-constrained walk on performance and scalability. We provide

empirical evidence using the named entity coordinate extraction corpora and tasks

in this section, but similar trends have been observed for the general word synonym

extraction case study. Further discussion of design choices concerning the weight

tuning and reranking learning methods, as well as their combination, is available

elsewhere (Minkov and Cohen 2010).

8.1 Graph walk

The graph walk framework includes two parameters: the reset probability γ; and, as

we perform finite graph walks, the length of the walk K . In this section we discuss

the effect of these parameters on performance.

In all of the experiments reported thus far, the reset probability was set to γ = 0.5.

In experiments conducted on the tasks and corpora evaluated in this work, we found

that the value of γ had negligible effect on the actual produced rankings. These results

are in line with previous findings, showing that while the reset probability parameter

affects the actual scores assigned to the graph nodes, it does not change their ranking

(Page et al. 1998; Agirre and Soroa 2009; Minkov and Cohen 2010).

We further report empirical results of tuning the graph walk length. Figure 7

shows performance for the city name (left) and person name (right) extraction tasks

varying the walk length K . The graphs report results for the MUC corpus, which is

fully annotated, thus allowing us to show performance in terms of a precision-recall

curve. Both graphs in Figure 7 demonstrate clearly that increasing the graph walk
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Fig. 7. (Colour online) Precision-recall curves varying the walk length K for city name

extraction (top) and person name extraction (bottom). The left graphs show full curves, and

the right graphs focus on the top of the lists (down to recall 0.2). These results were all

generated using the MUC corpus.

length improves recall. For both tasks, short walks where k� 4 yielded poor recall.

(For the person name extraction task, recall was near zero, and the corresponding

curves were eliminated from the figure.) The reason for this low recall is that there

are relatively few relevant nodes that can be reached over short connecting paths

in this domain. For example, the two-hops path ‘mention – conj-and – isa’ models

a conjunction relation between words appearing in the same sentence. This type of

evidence is relatively scarce in our experimental corpora, occurring more frequently

for city names than for person names. (Co-occurrence frequency within the same

sentence is generally low for word synonyms, or hypernyms; Snow et al. 2005.)

The majority of meaningful paths are of length six in the graph; e.g. the path that

models a common direct object or subject arguments is of length six. Increasing the

walk beyond length K = 6 in this domain improves recall, as shown in the figure;

however, the additional nodes reached in longer walks are generally added at the

bottom of the retrieved list due to the exponential decay associated with the walk.

Based on these results, we set the walk length in the experiments to K = 6.

8.2 Path-constrained walks

The number of distinct paths observed in our experiments, using constrained graph

walks up to length K = 6, ranged roughly from 400 to 1500. The corresponding

path trees consist of roughly 500 to 3500 nodes respectively. In general, the number

of distinct paths observed increases with the number of examples, as well as with the

size of the corpus. In the experiments conducted, highly meaningful paths (reported

in Sections 6.3 and 7.3) were found to be highly frequent, and were observed in

most of the examples used. In general, pruning infrequent paths from the path tree

may be desired to avoid over fitting and for efficiency considerations. It is possible,

however, that infrequent paths be useful in some domains; we recommend tuning

the training set size empirically by means such as cross validation.
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Fig. 8. (Colour online) Precison-recall performance for city name extraction from the MUC

corpus for path-constrained walks with varying thresholds, and graph walks with uniform

weights.

The PCW algorithm allows the elimination of paths associated with a low

probability of reaching relevant target nodes. Specifically, it is straightforward to

prune paths from the path tree for which the estimated path probability is below a

pre-set threshold. Next we discuss and empirically evaluate the effect of pruning the

path-constrained walks on performance and scalability.

Figure 8 shows the results of applying the PCW variant to the task of city

name extraction and the MUC corpus using various thresholds. Specifically, we

have evaluated thresholds of value 0 (PCW:0), considering all the paths in the

corresponding path tree; 0.5 (PCW:0.5), following paths that lead to a majority of

relevant nodes only and 0.8 (PCW:0.8), following paths that lead to a strong majority

of relevant nodes. Results are shown in terms of a precision-recall curve, using the

MUC corpus gold labels. In addition to PCW, the figure includes the performance of

graph walks with uniform weights for reference. It is shown that applying a higher

threshold to the path-constrained walk leads to improved precision, in this case, at

the top ranks. It is also shown, on the other hand, that using a higher threshold

yields lower overall recall as the result of decreased path coverage. Based on these

results, we have elected to apply a threshold of 0.5 in our experiments, as this

threshold gives good performance both in terms of precision and recall. In general,

the utility of a threshold of a particular value may be task- or domain-dependent,

and can be tuned as a system parameter. In addition, one should consider the effect

of the selected threshold on scalability.

In order to discuss the effect of the path-constrained walk on processing time

and memory requirements, we first give details on our implementation of the graph

walk, including empirical query processing times per our experimental corpora. The

reported results in this paper were obtained using a commodity PC with 4-GB

RAM, where graph information has been loaded to memory. The option of online

computation may be less desirable given larger graphs due to longer response times

and memory requirements. To evaluate performance on large graphs, we constructed

three intermediate size corpora that include MUC, and incrementally larger portions

of the AP corpus. Specifically, the intermediately sized corpora include a quarter of
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Table 3. Node and edge counts of incrementally larger corpora constructed for graph
walk scalability assessment

Corpus Nodes (K) Edges (K)

MUC 82 244

MUC+1/4AP 326 1077

MUC+1/2AP 564 1910

MUC+3/4AP 785 2682

MUC+AP 1030 3550
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Fig. 9. (Colour online) Average query processing time and standard deviation (sec) for

the named entity coordinate extraction tasks, using graph walk of k = 6 steps and

path-constrained graph walk with varying thresholds.

the AP corpus (MUC+1/4AP); about a half of the AP corpus (MUC+1/2AP) and

about three quarters of the AP corpus (MUC+3/4AP). The number of nodes and

edges of each corpus are detailed in Table 3.

In the experiments, we observed the processing time per query, ti, averaged over

the queries in the test set of each dataset. We obtained five such observations in

repeated runs, for which we report the average:
∑5

i=1 ti/5. Using the MUC corpus,

query processing time was 0.4 seconds on average for the person name extraction

task and 0.8 seconds on average for the city name extraction task. The difference

in processing times between the two tasks is due to a larger number of city name

occurrences in the corpus. (Most of the person names included in the experimental

datasets correspond to only few mentions in the corpus such that a smaller number

of edges is traversed.)

Figure 9 shows the average query processing times for MUC, as well as for

the larger corpora, applying graph walks. Results are displayed as a function of

corpus size (in terms of number of edges; see Table 3). As shown, average query

processing time gets substantially longer, up to 11.3 seconds on average per query

for the MUC+3/4AP corpus and the city name extraction task. In general, the

implementation scheme applied in our experiments can be improved by using better

machinery as well as by distributed computing. We therefore expect processing times



392 E. Minkov and W. W. Cohen

noitcartxeemannosrePnoitcartxeemanytiC

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1  2  3  4  5  6

N
od

es
 v

is
ite

d 
(lo

g2
)

Walk steps

 0

 2
 4
 6
 8

 10
 12
 14
 16
 18

 1  2  3  4  5  6

N
od

es
 v

is
ite

d 
(lo

g2
)

Walk steps

Graph walk
PCW:0

PCW:0.5
PCW:0.8

Fig. 10. (Colour online) The cumulative number of nodes visited at each step of the graph

walk using the MUC+AP corpus, for city name extraction and person name extraction,

applying unconstrained graph walk and path-constrained walk with varying thresholds.

to be shorter using optimized systems, as well as using algorithms that approximate

the graph walk (e.g. Fogaras et al. 2005).

Figure 9 also shows the empirical average query processing time, applying the path-

constrained walk with no threshold (PCW:0); with a threshold of 0.5 (PCW:0.5) and

with a high threshold (PCW:0.8) on these corpora. (Results of the path-constrained

walk for the MUC+3/4AP are not reported due to high memory requirements, as

discussed later in this section.) The results indicate that longer processing times are

required using the path-constrained walks, compared with the unconstrained graph

walk. As expected, the processing times shorten as the threshold applied increases.

Rather than process the graph walk using the machine’s memory, it is also possible

to store the graphs in secondary memory. We used the open-source database package

Sleepycat to store the user-defined nodes and edges. This allowed us to execute the

graph walk for the large MUC+AP corpus (Table 1). The cumulative number of

graph nodes visited at each step of the graph walk for the MUC+AP corpus is

presented in Figure 10 (logarithm scale). It is shown in the figure that the number

of nodes visited at each step of the walk starts dropping at k = 4 using the path-

constrained walks. Constraining the graph walk to follow a path tree reduces the

number of nodes (and edges) traversed in the walk for a couple of reasons. First,

the path tree only represents paths observed within the set of connecting paths

leading to the top nodes ranked in training examples, where other possible paths are

assumed as irrelevant and discarded from the path-constrained walk. In addition,

increasing the threshold on the probabilities associated with the path tree edges

eliminates more (possibly frequent) paths.

While the path-constrained walk limits the number of nodes (and edges) that

are traversed in the walk, it requires the processing of all combinations of a node

and its unique histories. In the experiments reported in Figure 9, these added

processing requirements overcome the savings due to node pruning in terms of

running time. (See the processing times of the base graph walk in the figure

as reference.) In addition, maintaining graph and path tree node pairs requires

additional memory in comparison to the unconstrained walk. Therefore, we conclude
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that path-constrained walks, while contributing to performance, involve overall an

additional computational cost. Path-constrained walks are expected to save on

processing times, however, in case the graph is accessed from a secondary memory.

In that case, node pruning will reduce the cost involved in disk access.

9 Conclusion

We have described a novel but natural representation for a corpus of dependency

parsed text as a labeled directed graph. Given the graph, semantic relatedness

between word types can be derived using similarity queries in a general purpose

graph walk-based query language. In addition, learning techniques can be applied in

this framework to adapt the similarity metric to the type of word similarity sought.

Available learning methods include tuning of the weights associated with different

dependency relations, and candidate reranking using path information and other

high-level features derived from the graph walk. In this paper, we have introduced

another learning approach, a path-constrained graph walk variant, in which the

graph walk is guided by high-level knowledge about meaningful paths learned from

training examples. The PCW method outlined is general and can be readily applied

to other domains. While it involves an additional computation cost compared with

the memory-less random walk, we have shown that this method yields improved

performance, and that computation costs can be controlled using pruning.

We have evaluated this framework through a couple of case studies, referring to

the tasks of named entity coordinate term extraction and general word synonym

extraction from text corpora. We have found that in the studied language domain,

learning using high-level information about the paths traversed in the walk was

beneficial compared with the local information modeled by the graph walk process.

In particular, learning path information allows one to assign higher importance to

specific cross-sentence word lexico-semantic neighborhoods. Overall, the proposed

framework enables learning of semantic similarity measures based on both within-

sentence and cross-sentence (distributional) contextual evidence. Compared with the

state-of-the-art distributional syntactic vector space model (dependency vectors),

in which fixed weights are set manually per different syntactic paths for context

modeling, we learn path weights from examples dynamically, generating a specialized

graph walk model for each query type. We have shown that this results in improved

extraction performance in many cases for both tasks evaluated using small to

medium corpora. We have further shown that learning specialized similarity models

at both task and word type granularity can improve the performance of the similarity

metric.

In the future, we would like to apply this framework to the extraction of additional

specialized word similarity flavors, e.g. hyponymy. While within-sentence path

learning has been applied toward extracting hyponym pairs, it has been indicated

that within-sentence co-occurrence of hyponyms was rare (Snow et al. 2005). We

believe that graph walk across sentences can capture more hyponym pairs from

a given corpus. Further, the outlined framework can be applied to the extraction

of more specialized notions of word relatedness, as in relation extraction (Culotta
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and Sorensen 2004; Bunescu and Mooney 2005). Another venue of future work is

enriching the modular graph representation with available ontologies, adding known

semantic (and morphological) relations between words. We believe that a graph

walk similarity metric inferred from such a heterogeneous graph, which integrates

various resources and includes a large variety of relations, should benefit from

learning, considering high-level phenomena in the graph. Finally, we are interested

in exploring more scalable graph walk algorithms and learning methods for inference

using the word graph (Lao and Cohen 2010).
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