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ABSTRACT
Collective classification has been widely studied to predict
class labels simultaneously for relational data, such as hy-
perlinked webpages, social networks, and data in a rela-
tional database. Recently there have been studies on re-
lational models for collective inference, such as relational
dependency networks [1], relational Markov networks [2],
and Markov logic networks [3]. The existing collective clas-
sification methods are usually expensive due to the iterative
inference in graphical models and their learning procedures
based on iterative optimization. When the dataset is large,
the cost of maintaining large graphs or related instances in
memory becomes a problem as well.

Stacked graphical learning (SGL) has been proposed for
collective classification with efficient inference - as shown in
[4], stacked graphical learning is 40 to 80 times faster than
Gibbs sampling during inference. Stacked graphical learning
augments a base learner by providing the predicted labels of
related instances and using relational template to build ex-
tended features to capture the dependencies among data. To
obtain the predictions for training examples, stacked graphi-
cal learning applies a cross-validation-like technique. Hence,
the memory and time cost of standard stacked graphical
learning is still expensive during training.

Online Stacked Graphical Learning In this paper,
we propose online stacked graphical learning. The novel
online scheme for stacked graphical learning is based on a
combination of stacked graphical learning with a recently-
developed single-pass online learning algorithm. During the
learning procedure of an online learner, the intermediate
predictions for training data are generated to learn the on-
line model. Thus the predictions for training data can be
obtained naturally and there is no need to apply the base
learner several times to the training data to obtain the pre-
dictions. A single-pass online learner, Modified Balanced
Winnow (MBW), is presented in Carvalho & Cohen’s work
[5] and has been demonstrated to be able to provide excel-
lent performance - even comparable to batch learners.

One practical difficulty is that, while online learning meth-
ods produce satisfactory predictions after learning on the
whole training set, the intermediate predictions for the train-
ing data in the starting stage can be quite inaccurate. Thus,
to obtain fair “predictions” for training examples, we define
a burn-in data size b. That is, after training on b exam-
ples, we start recording intermediate predictions from the
online learner and expanding features with the predictions.
The learning procedure of online stacked learning is shown
in Figure 1.

One thing we would like to point out is that, in stacked
graphical learning for collective classification, given an in-
stance xi, we need to apply the relational template to re-
trieve the predicted labels for the related instances to ex-
tend features. Assume xi and its neighbors are contained in

Figure 1: Online Stacked Graphical Learning

a subset, we provide the instances in a subset to the online
learner as a group and extend the features after the predic-
tions for instances in the whole subset are made. Therefore
in general, we provide the instances in groups to the base
learner and the burn-in data size b will be chosen to include
a few subsets of instances. In practise, the dataset might not
be able to be split into disjoint subsets easily. In our work
we will demonstrate how to split the dataset into subsets
empirically.

Efficiency Analysis Theoretically, when there are in-
finitely many training examples, i.e., kb << n, applying
the online stacked graphical learning scheme only requires
single-pass training over the training set. We do not need
to apply the cross-validation-like trick to get the predictions
for training examples. Therefore, online stacked graphical
learning can save training time. We will show the speed-up
experimentally as well.

In online stacked graphical learning, there are reliable pre-
dictions at level k after (k +1)b examples have streamed by,
and the learner needs to maintain only k classifiers and does
not need to store examples. Therefore, the algorithm can
save memory. This becomes extremely important when the
size of training data is huge. Also this feature allows online
stacked graphical learning to be applied to streaming data.

Experimental Results We evaluated online stacked graph-
ical learning on eleven tasks from three domains - collective
classification over relational datasets, sequential partition-
ing [6], and named entity extraction. In the abstract, we
only show the performance. Detailed descriptions about the
datasets can be found in previous work [4] or in full version
of this paper.

To evaluate the effectiveness of online stacked graphical
learning on the collective classification task, we compare
local models (i.e., the base learner), stacked models, and
a state-of-art competitive model. We evaluated two local
models, MaxEnt and MBW, for the collective classification



Table 1: Performance of online stacked graphical learn-

ing for relational datasets: accuracy for “Document clas-

sification” and F1-accuracy for “SLIF” are reported. We

evaluated two local models: MaxEnt and MBW. We also

compared to a competitive relational model - relational

dependency networks. The standard stacked model used

two-fold-cross-validation predictions. The online stacked

graphical model is based on MBW. We used 1 level of

stacking, i.e., K=1.

SLIF Document classification
WebKB Cora CiteSeer

Local model
MaxEnt 81.5 58.3 63.9 55.3
MBW 82.3 58.6 63.7 56.1
Competitive relational model
Relational Dependency Net-
works

86.7 74.2 72.9 58.7

Stacked model
Standard Stacked model
(with MaxEnt, k=1)

90.1 73.2 73.8 59.8

Standard Stacked model
(with MBW, k=1)

92.1 74.2 73.5 60.3

Online Stacked model (k=1) 92.3 74.1 71.3 -

Table 2: Accuracy comparison of online stacked graph-

ical learning for sequential partitioning. We evaluated

two local models: MaxEnt and MBW. We compared

to a competitive graphical model - conditional random

fields. The standard stacked model used two-fold-cross-

validation predictions. The online stacked graphical

model is based on MBW. We used 1 level of stacking.

Sequential Partitioning
FAQ signature video

Local model
MaxEnt 67.3 96.3 80.9
MBW 64.9 96.5 78.4
Competitive relational model
CRFs 85.6 98.1 83.0
Stacked model
Standard Stacked model
(with MaxEnt, k=1)

87.1 98.1 85.8

Standard Stacked model
(with MBW, k=1)

84.1 98.3 85.5

Online Stacked model (k=1) 86.3 98.3 85.7

tasks. We considered a standard stacked model based on
MaxEnt (with two-fold-cross-validation predictions), a stan-
dard stacked model based on MBW (with two-fold-cross-
validation predictions), and an online stacked graphical model
based on MBW. We also compared our stacked graphical
model to a state-of-art relational graphical model, relational
dependency networks [1].

Table 1 shows that on all of the four relational datasets,
stacked graphical learning improves the performance of the
base learner significantly. The two local models achieved
performance of the same level, so did the stacked graphical
models based on them. Our comparison to relational de-
pendency networks shows that stacked models can achieve
competitive results to the state-of-art model. However, the
online stacked graphical model requires much less training
time, which will be discussed later.

Table 2 shows the performance of online stacked mod-
els on sequence partitioning. The state-of-art models we
consider here are conditional random fields (CRFs). CRFs

Table 3: Performance of online stacked graphical learn-

ing for Named Entity Extraction, F1 accuracy is re-

ported. “Relational template 1” returns predictions of

adjacent tokens only, “relational template 2” returns

predictions of adjacent and repeated tokens.

Named Entity Extraction
UT Yapex Genia CSpace

Local model
MaxEnt 69.1 62.1 66.5 74.2
MBW 67.9 62.3 66.9 75.1
Competitive relational model
CRFs 73.1 65.7 72.0 80.3
Stacked model
With relational template 1
Standard Stacked model
(with MaxEnt, k=1)

70.1 63.7 70.8 77.9

Standard Stacked model
(with MBW, k=1)

72.1 63.9 71.3 79.9

Online Stacked model (with
MBW, k=1)

72.6 64.6 72.3 80.0

With relational template 2
Standard Stacked model
(with MaxEnt, k=1)

77.3 68.2 78.5 82.1

Standard Stacked model
(with MBW, k=1)

76.6 68.9 78.9 83.3

Online Stacked model (with
MBW, k=1)

76.6 69.1 78.9 83.4

are sequential models that can capture the sequential de-
pendency. On all of the three datasets, stacked graphical
learning improves the performance of the base learner sig-
nificantly. The MaxEnt model did better than MBW on
two of three tasks, yet the stacked graphical models based
on them achieved performance of the same level.

Table 3 reported the F1 of online stacked graphical learn-
ing for Named Entity Extraction. One relational template
captures sequential dependency only(denoted as relational
template 1 in Table 3), the other one can also capture the
dependency among the adjacent and repeated tokens(denoted
as relational template 2 in Table 3).

Table 3 shows that on all of the four named entity ex-
traction tasks, stacked graphical learning improves the per-
formance of the base learner. With relational template 1,
the stacked graphical models can capture the sequential de-
pendency and achieved comparable results to CRFs. With
relational template 2, the stacked graphical models achieved
better performance than CRFs. Moreover, the online stacked
graphical model requires much less training time.

Efficiency of the Training for Stacked Graphical
Learning One big success of online stacked graphical learn-
ing is that the learning is an online procedure and thus very
efficient. We compared the training time of online stacked
graphical models (with one iteration) to that of compet-
itive relational models and the baseline standard stacked
graphical model. The baseline algorithm we compare to
is the best algorithm in previous work [4], i.e., the stan-
dard stacked graphical model based on MaxEnt, with 5-
fold-cross-validation to obtain predictions during training.

Table 4 shows the speedup, i.e., in the table “38.1” means
the training in standard stacked graphical learning is 38.1
times slower than that of online stacked graphical learn-
ing. Table 4 shows that compared to online stacked graph-
ical learning, standard stacked graphical learning based on
MaxEnt is approximately 57 times slower in training. We
also compared online stacked graphical learning with the
competitive relational models. Table 4 shows that online
stacked graphical learning is approximately 14 times faster



Table 4: Comparison on training time.

Standard SGM
vs Online SGM

Competitive relational
model vs Online SGM

SLIF 38.1 7.9
WebKB 50.0 10.1
Cora 49.7 9.9
Signature 67.4 13.6
FAQ 69.0 14.0
Video 45.0 9.7
UT 68.7 20.3
Yapex 60.6 17.1
Genia 69.4 22.4
CSpace 52.0 15.3
Average speed-up 57.0 14.0

in training.
Moreover, in the previous work [4], it has been shown

that during inference stacked graphical learning is 40 to 80
times faster than Gibbs sampling in relational dependency
networks.

To summarize, the experimental results demonstrate the
effectiveness and efficiency of online stacked graphical mod-
els, i.e., the proposed online stacked graphical learning presents
accurate and reliable predictions, but with considerably faster
training time and smaller memory requirements.

With high accuracy, fast training, and low memory foot-
print, online stacked graphical learning is very competitive
for real world large-scale applications. Furthermore, because
the proposed scheme does not need to keep all previous ex-
amples in memory, it can effectively handle data in stream-
ing format.
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