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ABSTRACT

Good similarity functions are crucial for many important
subtasks in data integration, such as “soft joins” and data
deduping, and one widely-used similarity function is TFIDF
similarity. In this paper we describe a modification of TFIDF
similarity that is more appropriate for certain datasets: namely,
large data collections formed by merging together many smaller
collections, each of which is (nearly) duplicate-free. Our
similarity metric, called CX.IDF, shares TFIDF’s most im-
portant properties: it can be computed efficiently and stored
compactly; it can be “learned” using few passes over a dataset
(in experiments, one or three passes are used), and is well-
suited to parallelization; and finally, like TFIDF, it requires
no labeled training data. In experiments, the new similarity
function reduces matching errors relative to TFIDF by up
to 80%, and reduces k-nearest neighbor classification error
by 20% on average.
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1. INTRODUCTION

An important step in integrating heterogeneous datasets
is determining a mapping between objects from one source
and objects from another source—a step variously known as
record linkage, matching, and deduping (among other terms)
in the literature. One useful matching strategy is to use
an appropriately thresholded similarity function—i.e., to con-
sider objects as identical if they are “similar enough”. One
widely-used similarity function is TFIDF similarity, which
arose in the field of information retrieval [19]. This similar-
ity function scores objects as similar if they contain many
important identical “terms”. TFIDF similarity works well
in many domains [7], and is often competitive with or su-
perior to more expensive metrics like string edit distance
[6, 9]. TFIDF is also very fast to compute—in fact, well-
known indexing methods mean that terms similar to a query
item = can be found in sublinear time. TFIDF can be com-
puted with no labeled examples—so, to the extent that it
is a learned metric, it is learned in an unsupervised way.
The sufficient statistics for TFIDF similarity can be stored
compactly—only one integer, the document frequency, need
be recorded for each term. Finally, the importance weights
“learned” by TFIDF can be found very quickly—with only
a single pass over the database, using a process that can
be easily parallelized. These factors make TFIDF useful in
many practically important settings, and perhaps explains
why it (and similar token-based similarity metrics) have
been the focus of much recent work on “soft joins” (e.g.,
[2, 23]).

However, although TFIDF’s efficiency and scalability make
it ideal for many large-scale problems, TFIDF does not ex-
ploit all the information in all large data collections. In this
paper, we consider large data collections formed by merging
together many smaller collections, each of which is duplicate-
free (or nearly duplicate-free). This is a very common task:
for instance, consider removing duplicates from a database
of product descriptions formed by merging the catalogs of
a thousand individual merchants; a database of citations
formed by merging the reference section of a thousand tech-
nical papers; or a database of patient records formed by
merging the patient-care information from a thousand hos-
pitals. In each case, we expect to see duplicates across the
smaller collections, but not within them.

In this paper, we define a similarity metric that exploits



the statistical properties of such collections. Our metric is
a variant of TFIDF, and shares TFIDF’s most important
properties: it is term-based, and hence can be computed ef-
ficiently; it can be stored compactly, as a single number for
each term; it can be computed by a small number of passes
over a dataset (in our experiments, either one or three passes
are used); and it requires no labeled training data. Addi-
tionally, the form of the similarity function is unchanged
from that of TFIDF: similarity is still defined as the cosine
of the angle between two unit-length vectors.

Below, we first introduce our notation, present a small ex-
ample dataset, define a baseline similarity metric, and dis-
cuss the limitations of this baseline. We then define a simple
“context-sensitive” variant of the baseline, and discuss some
variations of the context-sensitive similarity metric that are
sometimes useful. We next present pseudo-code for deriv-
ing the similarity metric from a dataset, and argue that the
similarity metric can, like IDF-based metrics, be computed
efficiently in parallel using a map-reduce framework.

We then present experimental results with context-sensitive
similarity on two types of problems: k-nearest neighbor clas-
sification, and finding duplicate objects. For the classifica-
tion tasks, we show that error rates are statistically signifi-
cant reduced, relative to the baseline similarity metric, on a
suite of nine previously-studied tasks. On average, the im-
provement in error rate is about 20%. For finding duplicate
bibliography entries, using a new benchmark consisting of
over 100,000 bibliography entries collected from more than
400 distinct sources, we show that the number of known
errors can be reduced by nearly 70% for the bibliography
matching task. For a similar task involving 40 million prod-
uct descriptions, we show that known errors can be reduced
by more than 90%.

Finally, we discuss related work in the area of similarity
metrics for matching and metric learning, and conclude.

2. A CONTEXT-SENSITIVE SIMILARITY
METRIC

2.1 Notation and background

Let D = x1,...,z, be a dataset of instances. Each in-
stance x; represents some object in the world. Formally, an
instance z; consists of an identifier id(x;), also written id;;
a context c(x;), also written ¢;; and a set of features F(x;),
also written F;.

For example x; might correspond to a product, F; might
be the set of words in the name of the product, and ¢; might
be the name of the merchant offering the product.

Let Vp be the wocabulary associated with a dataset D,
i.e., let

VD = U F(CCZ)

xz; €D

The elements of Vp are all features, fi,..., fjv,|. Any set
F; C Vp can also be represented as a long, sparse vector
vi = (a1,...,a)v,|), where the k-th component ay of v; is
1if fr € F; and ay, is 0 if fi & F;. Below v(x;), also written
vi, will denote the vector representation of F(z;). We use
|v] to denote the Euclidean norm of v.

One well-known similarity function is IDF similarity [19].
Define the document frequency of f (with respect to D) as

idi C; Fi

us:ghl toysRus guitar, hero, I1Ix, controller,

from, toys-R-us
us:gh2 toysRus guitar, hero, for, gameboy,

from, toys-R-us
us:b14  toysRus lego, bionicle, kit, x14, from, lego
us:b23  toysRus lego, bionicle, kit, x23, from, lego
us:b37  toysRus lego, bionicle, model, x37, from, lego
bb:gh2 bestbuy guitar, hero, IIIx, for, gameboy
bb:b14 bestbuy lego, bionicle, x14, truck, kit
bb:b23  bestbuy lego, bionicle, x23, zombie, kit
bb:b37 bestbuy lego, bionicle, x37, watermelon, kit

cc:gh2 ccity
cc:bl4 ccity
cc:b23 ccity
cc:b37 ccity

guitar, hero, I1Ix, for, gameboy
lego, bionicle, x14, truck, kit

lego, bionicle, x23, zombie, kit
lego, bionicle, x37, watermelon, kit

Figure 1: A small example dataset. The elements of
the sets F; are conceptually unordered and free of
duplicates, but for clarity, they are given in the or-
der of the original English description (e.g., “guitar
hero IIIx controller from toys-R-us”). Also, occur-
rences of a word after the first are italicized in the
figure - in the actual dataset, repeated occurrences
are discarded.

the number of instances that contain the feature f, i.e.,
DFp(f) = [{z: € D s f € F(a)}]
and define the inverse frequency of w (with respect to D) as
IDF 5 (f) = log(|D|/DF o (w))

Now define the IDF-weighted vector for x; as a vector w(z;) =

(b1,...,bvy|), also written w;, where the k-th component
b of w; is ax - IDFp(fk). IDF similarity is defined as
W; - Wj

stmipr (i, xj) = il )
This is often interpreted as the cosine of the angle between
the vectors, so the term “cosine similarity” is also frequently
used. (The term “TFIDF similarity” is also commonly used,
where the “TF” part of the name comes from a weighting of
“term” frequency within documents, a consideration that we
ignore here.)

One important property of the IDF similarity metric is
that features are given differential importance in computing
similarity scores. While overlapping features f € F; N Fj
always increase similarity, and non-overlapping features f’ €
F, — F; (or f' € F; — F;) always decrease similarity, high-
weight features are much more important to “get right” than
low-weight features.

2.2 A small example

Figure 1 presents a small example dataset. In this dataset,
the features “from”, “lego” and “bionicle” would have rela-
tively low IDF weights, as they are shared by many pairs of
non-identical products. The features “ITIx”, “x14”, and “x37”
would have higher weights, since they appear in no pairs of
non-identical products.

Figure 2 shows the similarity of some pairs of instances—
the pairs below the line refer to different products, and the
pairs above the line refer to the same product.



Pair id;, id; sz, T5)
IDF CX.IDF
bb:b14,cc:b14 | 1.00 1.00
bb:b23,cc:b23 | 1.00 1.00
bb:b37,cc:b37 | 1.00 1.00
bb:gh2,cc:gh2 | 1.00 1.00
bb:b23,us:b23 | 0.86 0.99
cc:b23,us:b23 | 0.86 0.99
bb:gh2,us:gh2 | 0.82 0.84
cc:gh2,us:gh2 | 0.82 0.84
cc:bl4,us:b14 | 0.57 0.88
bb:bl4,us:b14 | 0.57 0.88
bb:b37,us:b37 | 0.31 0.85
cc:b37,us:b37 | 0.31 0.85
us:ghl,us:gh2 | 0.53 0.19
bb:gh2,us:ghl | 0.46 0.62
cc:gh2,us:ghl | 0.46 0.62

Figure 2: Similarities of some pairs of instances in
the sample dataset

2.3 A limitation of IDF similarity

In the small example, each z; corresponds to a product,
F; is words in the name of the product, and the context ¢;
identifies a merchant offering the product. Neither of these
similarity metrics take into account the context associated
with an example; intuitively, however, they should.

The reason contexts matter is that in many cases it is
possible to find contexts ¢ such that all of the instances
with a shared context are likely to be distinct. For example,
suppose D is formed by merging the catalogs of many mer-
chants, where most of the individual catalogs are substan-
tially free of duplications. If z; is a product, F; is the words
in the name of the product, and c¢; is the merchant offering
the product, then two products z;, x; such that ¢; = c; are
unlikely to be identical—as this would indicate a duplication
within a single merchant, an unlikely case.

Ideally, one would like the weights that are assigned to
terms to reflect this—i.e., terms should be have more weight
if they are rare for many merchants, and have less weight
if they are common for some mechants. However, the IDF
weights do not have this property. For instance, the feature
“toys-R-us” is rare (with DF=2) but appears twice in de-
scriptions from the same merchant, while the feature “x14”
is more frequent (DF=3) but appears only once in each
merchant’s product description. We would prefer to weight
“x14” somewhat higher than “toys-R-us”.

2.4 Context-dependent similarity

To capture this intuition in a principled way, let us con-
sider two quantities. We define the probability of an inter-
context duplication for a feature f (with respect to D), writ-
ten Pr/NTEE (1), to be the probability that two instances
xi,z; have different contexts ¢; # c¢;, given that x;, x; are a
pair of instances, both containing the feature f, drawn uni-
formly at random but without replacement from D. Like-
wise, we define the probability of an intra-context duplica-
tion for f (with respect to D), written Pr/NTEA L (), to be
the probability that z;,z; have the same context c, again
given that z;, x; are a pair of instances, containing f, drawn
uniformly at random but without replacement from D.

To simﬁrj)lif notation below, we will drop the subscript D
from PrIVTEA and Pr/VTER (and elsewhere, when it is clear
from context). We will also define some more quantities.

e Let n = |D| be the number of instances in the dataset.

e Let Cp = {c(z:i) : ;i € D} be the set of contexts in
the dataset

e Let ny = DFp(f) = |[{xzs € D : f € F;}| be the
number of instances in the dataset that contain feature
f.

e Let ney = |{zs € D : f € F,and ¢; = c}| be the
number of instances in the dataset that contain feature
f and have context c.

e Let Dy = {x; € D : f € F;}, be the instances in D
that contain feature f, and let x ~ Dy denote drawing
2 uniformly from Dy.

INTER

Then we can define Pr more precisely as follows:

Pr(e; # ¢jlas ~ Dy and x; ~ Dy and x; # x;)
Z Pr(c; = c|lxs ~ Dy) - Pr(cj # c|lzj ~ Dy — {x:})

ceCp

e, ng — Ne,
= Y lef DY les (1)

c€Cp nyg nffl

PrINTER(f) —

Likewise

PrINTRA(f) —

Pr(c; = ¢jlas ~ Dy and x; ~ Dy and x; # ;)
> Pr(ci = clz; ~ Dy) - Pr(e; = cla; ~ Dy — {z:})

ceCp
= Y heltel )
c€Cp nyg ng — 1

)

Equivalently, one could let pr/NTREA (fi=1- PrINTER(f)'

however, Equation 2 will be useful later on when we consider
smoothing. Now consider the quantity CX(f), defined as

Pr[NTER (f)

If pairs containing f are likely to be within the same mer-
chant, and unlikely to be from different merchants—as for
the feature “toys-R-us” above—then CX(f) is small. If pairs
containing f are unlikely to be within the same merchant,
and likely to be from different merchants—as for the feature
“x14” above—then CX(f) is large. Thus CX(f) captures the
intuition discussed above.

One simple way to extend the IDF metric to addition-
ally incorporate this new context-dependent notion of im-
portance is simply to use the product of IDF(f) and CX(f)
to weight features. Let the context-dependent IDF-weighted
vector for x; be a vector z(z;) = (b1, ..., bjy, ), also written
z;, where the k-th component by, of z; is ax - IDF(f%)-CX(fx).
Now the context-dependent IDF similarity can be defined as

CX(f) =log (3)

Z; - Zj

Simcx.]DF(:Ei, :Ej) = W
i J

A small note: CX(f) is undefined if ny = 1, or it PrINTEA(f) =

0. For the former case, we define CX(f) = 1if ny = 1, which



leaves the IDF weight for f unchanged; we conjecture that
this makes little difference in practice, since features that
occur only once in the dataset are not very useful for simi-
larity comparisons anyway. The latter case can be avoided
by smoothing the estimate for pp/NTRA away from zero, an
issue which is discussed below.

2.5 Some refinements of the metric

The definitions of Pr/NTEA and PrINTER ahove are maxi-
mum likelihood estimates based on the data. If there is prior
knowledge of the importance of a feature f, this can be in-
corporated by smoothing the estimate toward the expected.
We smooth estimates using a Dirichlet prior, encoded as
two values po, mo, representing a prior probability po and a
“strength” (expressed in number of equivalent examples) mo
respectively. Given observations supporting the estimate p;
based on m examples, the Dirichlet-smoothed estimate is

mi mo _ pi1mi + pomo

mi1 + mo

p=p1-

o -
m1 + mo m1 + mo

In some applications, there are multiple types of features,
rather than a single “type” of feature. For instance, there
might be tokens taken from a short name of a product, but
also tokens taken from a longer description; a simple way
of handling this would be to create two features f,, and
f2 for each word w, where fI (respectively f&) represents
word w appearing in the name (respectively description) of a
product. Assume that features in V(D) can be grouped into
disjoint sets Vi,...,Vy,, corresponding to different “types”
of features. If one believes that there are different types
of features have different average levels of informativeness,
then an empirical Bayesian method can be used to smooth
feature values in each subset V; together.

To do this, the PrINTEA Galues for features f are com-
puted with a default prior over each subset of features f €
Vi, and the mean p, and standard deviation o, of these val-
ues are computed. From this, a prior value p¢ is computed
for features in V4, as well as a prior strength myg, which are
defined as

/ !
PoMo + Py
mo +m;

(4)

me = mo-+my (5)

be =

where po, mo are a user-defined universal prior, p, = ¢, and
m} = pe(1—pe)/of. This choice for pj, m), has a nice mathe-
matical property: with these values, the expected value and
standard deviation of the prior distribution, as a Beta dis-
tribution, is equivalent to the observed mean and standard
deviation of the values of the features in V. After the priors
are set, values for PrINTEA can be re-computed using the
revised priors (as well as values for Pr/NTFR and CX).

We also find it useful to bound the similarity function
away from unity; this is useful since often, objects with
identical features still have some chance of being distinct.
To avoid getting extreme values of similarity one can adjust
the metric by conceptually adding to every instance x; one
additional feature with weight v that never appears any-
where else in the dataset. Larger values of v lead to smaller
maximal similarities.

Equivalently, we can unroll and then modify the defini-
tions of inner product and |v|. Let z; s be the component
of z; that corresponds to feature f, and similarly for z; s.

Then we let
. N — Zi-2Z; Zf Zi,f " 24k
szmox.IDF(mz,l"J) = sz" . ||z]. ” - /72f fo %Zf ijf
dopFif " ik

\/VQJFZfZ?,f\/'YzJFZfZif

Using nonzero value of = in the last line will bound
stmex.ipr(xi, ;) away from 1.0.

In the experiments below, we will use two types of smooth-
ing.

e In the first variant, PrINTEA and PrINTER are com-
puted as in Equations 1 and 2, save that in estimating
Pr(c; = ¢|-) and Pr(c; # ¢|-), we use Dirichlet smooth-
ing with po = 0.5 and mo = 1 (i.e., a Laplace correc-
tion). This minimal amount of smoothing is necessary
to keep CX(f) from taking extreme values: below we
will call this “Laplace-corrected” CX.IDF, or simply
CX.IDF.

e In the second variant, we compute Laplace-corrected
CX.IDF in a first pass, and then use the approach of
Figure 4 as a second pass; here, we again use po = 0.5
and mo = 1 as the “universal prior” of Equations 4 and
5. Below we call this “CX.IDF with empirical priors”,
or simply “smoothed CX.IDF”.

Either of these types of smoothing can be combined with a
non-zero value of v: we used two values of v, v = 10 and
~v =0, leading to four variants of CX.IDF.

Preliminary experiments suggested that for most purposes,
the Laplace smoothing is comparable to the empirical prior
method, but that empirical priors are preferable when (a)
there are many distinct types of features, and some types
tend to be highly informative, while some tend to be less
informative, or (b) most of the features are extremely in-
formative, with a few frequent exceptions. As an example
of the former case, consider matching product names with
two types of features, one type derived from a long textual
“marketing text” field, and one type derived from a shorter
“part number” field. An example of the latter case might be
hard identifiers that contain a few frequent noisy cases (e.g.,
part numbers like “000000000000”, “N/A”, or “UNK?”).

2.6 Computing context-dependent similarity

One important property of the context-dependent IDF
similarity metric is that it can be computed quite inexpen-
sively, even for large datasets. Figures 3 and 4 show one
algorithm for this, described using “map-reduce” framework
[12]. Programs implemented using this framework can be
easily parallelized, so that a single large task can be run on
many smaller computers in parallel quite efficiently.

Briefly, the dataset D is converted first to pairs (f,c),
where f is a feature appearing in context ¢, and then this
output is sorted and grouped into pairs of the form

(f, (er,. .., cn))

where f is a feature and (c1,...,c,) is a sorted list of all
contexts that co-occur with that feature. This can in turn
be converted to a list of the form

(filersneyg) -y (Cns e, 5)))



1. Weight the features.

e (Map step 1). Let the list MapOut be an empty
list.

e For each x; € D and each f € F;,
— Append the pair (f,¢;) to MapOut.
e Sort MapOut lexicographically.

e In the sorted MapOut, collect sequences of adja-
cent pairs (f,c1),...,(f,cn) with the same fea-
ture f and replace them with a single entry
(f,{c1,...,cn)). Call the revised list Reduceln.

e (Reduce step 1). Let the list ReduceOut be empty,
and let the list CXVals be empty.

e For each pair (f, (c1,...,cn)) in Reduceln:

— From the list (ci,...,¢n), compute ny and
ne, s for every c in the list.

— Compute CX(f) using Equations 1, 2, and 3.

— Compute IDF(f) = log(n/ny)

— Append the pair (f,CX(f) - IDF(f)) to Re-
duceOut

— Append the pair (f, CX(f)) to CXVals

Figure 3: Computing context-dependent IDF simi-
larity

where the pair (¢;, ne,,r) contains a context plus the number
of times it was duplicated. Below we will call such a list a
context histogram for feature f.

Note that none of the intermediate representations of the
dataset are larger than the original dataset, and for any par-
ticular feature f, the context histogram will be relatively
small—it is bounded in size by the number of different con-
texts. Importantly, the weight CX(f) - IDF(f) for feature
f depends only on the context histogram; this is why it is
easy to parallelize the computation of the weights.

Figure 4 presents similar pseudo-code for smoothing with
empirically-derived priors.

3. EXPERIMENTAL RESULTS

3.1 Classification of short strings

The first set of experiments we will discuss will be for
the task of K-nearest neighbor (k-nn) classification. Clas-
sification is perhaps the best-studied task that uses similar-
ity metrics—in fact, a data integration system that supports
similarity joins can be straightforwardly used for k-nn clas-
sification, using a reduction proposed by Cohen and Hirsh
[8]. Hence, a plausible way to evaluate a similarity metric
is to use it to classify instances qualitatively like those that
must be matched. For instance, Cohen and Hirsh evaluated
some variations of IDF similarity using a k-nn classifier (for
k = 30) on a suite of nine problem where the instances were
short descriptions, such as book titles, web page titles, game
titles, or names of different bird species. These problems are
summarized in Table 1.

While none of these datasets have a natural notion of “con-
text”, an alternative version of CX.IDF can be used for clas-
sification. We let each class label be represented by a dif-
ferent context, and then modify each vector by dividing the

1. Compute priors for the features.

e Clear all counters ag, by.

e For each pair (f,CX(f)) in the list CXVals pro-
duced by the method of Figure 3:

Let £ be the “type” of feature f, (i.e., the set
Ve such that f € V).

— Increment a; by CX(f).

— Increment b, by CX(f)%.

— Increment ¢, by 1.

e For each “feature type” £,

— Let p;, = ar/ce be the observed average score
of features of type £.

— Let o = \/be/ce — (p,)? be the observed vari-

ance of this average.

Let mj = (pi(1 —p})/0?)

— Let mg = mo +mj

— Let pe = (pymy; + pomo)/(mo + my)

2. Re-weight the features. Re-execute Map step 1 and
Reduce step 1 of the method of Figure 3, but in com-
puting CX(f), use Equations 3 and Dirichlet-smoothed
versions of Equations 1,and 2, where the prior is my
and pg above (such that £ is the type of feature f).

Figure 4: Computing context-dependent IDF simi-
larity with empirical priors

IDF weights of each feature by the CX weight, rather than
multiplying it by the CX weight. Recall that the motivation
of the original CX.IDF formula was to increase the impor-
tance of features that are distributed across many “contexts”,
and decrease the importance of features that are concen-
trated in a single “context”. For classification we would like
to do the reverse. We call this variant IDF/CX.

We performed the same experiments conducted by Cohen
and Hirsh with our system. As in Cohen and Hirsh, if an
example has no neighbors (i.e., no training cases have non-
zero similarity) then the most frequent class is predicted.
The results are shown in Table 2.

Depending on the variant used, the IDF/CX weighting
scheme increases error very slightly on two or three of the
nine problems, but decreases error (by up to 40%) on other
problems. On average, relative to the baseline IDF metric
with v = 0, the error rate is decreased by 14% for IDF/CX
with v = 0, and decreased by nearly 20% for the other three
IDF/CX variants. This reduction is statistically significant
in each case (at 95% confidence or above, using a paired
t-test across the nine problems.)?

For these problems we looked at two values of v: v = 10
and v = 0. (No additional tuning of v was done, and the
default non-zero weight of v = 10 was established on sepa-
rate datasets.) A value of v = 10 statistically significantly
improves over 7 = 0 for unsmoothed IDF/CX, but not for

!The results use our re-implementation of the Cohen and
Hirsh results as a baseline, but the average performance of
our baseline is nearly identical to the results published by
Cohen and Hirsh, and the average reduction in error for the
smoothed versions of IDF/CX are statistically significantly
improved over the published Cohen and Hirsh results as well.



problem | #train | #test | #classes | #terms | text-valued field Tabel
memos 334 | 10cv 11 1014 | document title category
cdroms 798 | 10cv 6 1133 | CDRom game name category
birdcom 914 10cv 22 674 | common name of bird phylogenic order
birdsci 914 | 10cv 22 1738 | common + scientific name of bird | phylogenic order
hcoarse 1875 600 126 2098 | company name industry (coarse grain)
hfine 1875 600 228 2098 | company name industry (fine grain)
books 3501 | 1800 63 7019 | book title subject heading
species 3119 | 1600 6 7231 | animal name phylum
netvet 3596 | 2000 14 5460 | URL title category
Table 1: Description of benchmark problems
Task Error IDF IDF/CX smoothed IDF/CX
Rate | y=0 ~=10| y=0 ~=10| v=0 v=10

memos 0.36 1.00 1.01 0.81 0.81 0.80 0.82

cdroms 0.55 1.00 0.99 1.03 0.97 0.98 0.99

birdcom | 0.18 1.00 0.98 0.69 0.60 0.63 0.62

birdsci 0.12 1.00 0.96 0.63 0.60 0.65 0.63

hcoarse 0.70 1.00 0.96 1.09 1.01 1.00 1.01

hfine 0.80 1.00 0.98 1.05 1.00 1.00 1.02

books 0.41 1.00 0.99 0.92 0.92 0.92 0.90

species 0.07 1.00 1.00 0.79 0.61 0.58 0.55

netvet 0.30 1.00 1.05 0.74 0.74 0.76 0.73

average 0.38 1.00 0.99 | x0.861 %0.807 | *0.813 *(0.808

Table 2: IDF/CX on nine k-nn classification problems with short descriptions.

In the last six columns,

performance is expressed as a fraction of baseline error rate. Starred averages are statistically significantly

below 1.0.

the IDF metric or the smoothed IDF/CX metric. The dif-
ferences between the smoothed and unsmoothed IDF/CX
variants are not statistically significant.

To summarize, the IDF/CX weighting scheme improves
significantly over the baseline IDF, and improves more when
smoothed appropriately. Furthermore, smoothing by using
the simple Laplace correction and «v = 10 performs about as
well as the more expensive empirically Bayesian smoothing.

3.2 Matching bibliography entries

In order to perform a more direct evaluation of CX.IDF’s
utility for matching object descriptions, we generated data
for a representative matching task that included contexts.
We performed a Google search for publically-indexed files
with the extension “.bib” that contained the phrase “ma-
chine learning”, and downloaded 418 such files that were
valid #TEX bibliography files, which collectively contained
115,940 bibliography entries. The context of a bibliography
entry was the file from which it was extracted, and each bib-
liography entry was described by features 1 where w is a
word (a space-separated string with case folded but without
stemming) and ¢ is a field of the bibliography entry (one

M.«

of “title”; “booktitle” or “journal”’; “author”; “editor”; “key-

9.« ”, W« 9, W« 9.«

words”; “cite” or “key”; “volume”; “month”; “year”; “pages”;

9, K 2, « ”, «

“number”; “series”; “note”; “address”; “howpublished” or “type”;

“publisher”; “organization”, “school”, or “institution”; ‘or ab-

stract”.) Below, these bibliography-entry fields will be used
to establish groups for empirical Bayesian smoothing: specif-
ically, we will define distinct set of features V; = { fil, .
for the words contained in with different fields. There are a
total of 387,383 distinct features of these 17 types.

To evaluate the correctness of matching, it is useful to con-

fuon}

sider matchable items that have “hard identifiers”—strings
that can act as clear and unambiguous identifiers. To this
end, we identified all bibliography entries which were (a) not
identified as parts of a book and (b) contained a field labeled
“url” or “doi” with a value that is a URL containing one of
substrings “doi”, “pdf”, or “ps”. The vast majority of these
fields are either ACM digital library document identifiers, or
else on-line versions of papers; hence when such fields exist,
they can be used as “hard identifiers”. However, only a small
minority of the papers (2,922) have such identifiers. We de-
fine a pair of bibliography entries x,y to be correct if both
z and y have hard identifiers and id(z) = id(y), incorrect if
both z and y have hard identifiers and id(z) # id(y), and
uncertain otherwise.

To evaluate a similarity metric, we followed a methodol-
ogy similar to that used in previous papers on similarity joins
[7]. First, a fixed set of pairs z, y are generated. Second, this
set of pairs is sorted by their similarity. Finally, the interpo-
lated average precision is plotted at each position in the list.
Non-interpolated average precision at rank r is the number
of correct pairs at rank r or above divided by the number of
correct or incorrect pairs at rank r or above. (Hence, uncer-
tain pairs are simply ignored in computing non-interpolated
average precision.) Interpolated average precision at rank r
is the maximum value of non-interpolated average precision
at any rank r’ > r.

The results are shown in Figure 5. “Smoothed CX.IDF”
is CX.IDF with smoothing using empirical Bayes, where the
feature types are defined by the field from which a token
was taken, and a value of 7 = 10 was used throughout. We
ranked a large set of candidate pairs (approximately 300,000,
selected using the method described in Section 3.4, with
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Figure 5: Matching bibliography entries from 418 sources: interpolated average precision using IDF and two
varieties of CX.IDF. Left: precision versus rank. Right: number of known errors versus rank.

thresholds of CX > 1.5 and DF < 1000.) On the left of
the figure, we display precision for the first 10,000 ranks.
Smoothed CX.IDF outperforms the IDF metric over most
of this range—although there is a narrow interval (around
ranks 5000-6000) where IDF performs best. The first 10,000
ranks is the range most interesting for a system that requires
high-precision matches.?

The right-hand side plot Figure 5 summarizes the same
data in a different way. Here, we plot the number of known
matching errors (i.e., errors detectable using the hard identi-
fiers) against rank—for instance, the graph shows that in the
first 7000 pairs listed, the IDF ranking contains 22 known
errors and the smoothed CX.IDF ranking contains about
12 known errors. At the same position in the ranking, the
smoothed CX.IDF ranking contains only 108 pairs known to
be correct, and the IDF ranking contains only 111 known-
correct pairs.

Because these numbers are relatively small, precision es-
timates based on them will necessarily have high variance.
We thus also report, in Table 3, the total number of known
errors for each similarity method for the remainder of the
ranking. In this range, the “unsmoothed” CX.IDF performs
best, reducing the number of errors made by the baseline
IDF ranking by nearly 70% for some recall levels. Smoothed
CX.IDF also reduces errors substantially.

3.3 Matching product descriptions

As a larger-scale matching problem, we took a set of de-
scriptions of consumer products and performed a similar ex-
periment. Consumer product description matching is both
commercially important and technically difficult (e.g., pre-
vious work has shown only moderately accurate performance
for clustering products, even using similarity functions trained
using supervised learning and labeled product-description
pairs [5].) The sample included approximately 40 million
product descriptions from several hundred distinct sources,
and included descriptions of products offered for sale in

2Since the total number of correct pairs is unknown, recall
cannot be determined, although clearly recall is linearly re-
lated to rank. If one extrapolates the rate of duplications of
bibliography entries with hard identifiers to the entire set,
one would expect about 5000 true duplications.

Rank IDF CX.IDF Smooth CX.IDF
x 1000 | Errors | Errors A | Errors A
10 53 30 -43.40 39 -26.42

20 141 54 -61.70 87 -38.30

30 210 77T -63.33 155 -26.19

40 291 103  -64.60 236 -18.90

50 401 129 -67.83 308 -23.19

75 631 192 -69.57 449 -28.84

100 882 274 -68.93 582 -34.01
200 1583 527 -66.71 1018 -35.69
300 1945 788 -59.49 1293 -33.52
500 2464 1308 -46.92 1814 -26.38
1000 3207 2390 -25.48 2724 -15.06
2500 4664 4530  -2.87 4508 -3.34
3000 5245 5245 0.00 5245 0.00

Table 3: Number of known errors as a function of
rank position for three similarity metrics for bibli-
ography entries.

June 2009 by Google Shopping; product descriptions ex-
tracted from web sites; and hand-constructed product cata-
logs. More than half of these product descriptions included
some sort of universally-recognized “hard” identifier (e.g.,
ISBN number or a UPC code). The set of products is ex-
temely diverse: about two-thirds of the hard identifiers are
distinct.

As before, we generated a list of weakly similar pairs,
and ranked these pairs by each of three similarity functions:
IDF, CX.IDF, and smoothed CX.IDF. In all cases, a value
of v = 10 was used. There were approximately 60 million
pairs in the generated list. The features here were more care-
fully engineered than in the bibliography-matching problem
above, but all feature-tuning was done on a much earlier
version of the dataset.

The results are shown in Figures 6 and 7. Overall per-
formance on this task is much higher, but qualitatively the
results are similar. At high levels of recall, CX.IDF far out-
performs IDF in terms of precision, and smoothed CX.IDF
has precision between IDF and “unsmoothed” CX.IDF. We
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Figure 6: Matching product descriptions from sev-
eral hundred sources: precision plotted against rank,
using IDF and two varieties of CX.IDF, over the first
30 million pairings.

used v = 10 on all of these experiments.

Performance at lower precision levels is harder to see, since
all three algorithms show quite good performance; also, due
to rounding errors, “unsmoothed” CX.IDF gives the same
score to the top 6.8 million (1.7%) of the candidate pairs,
making 8,579 errors on these top-ranked pairs for a precision
of 99.8%.

To visualize performance here, we again look at the num-
ber of errors for each method. Figure 7 shows errors for
the first 300,000 pairs on the left, and errors for the first
14 million pairs on the right. Again, at lower recall lev-
els, smoothed CX.IDF performs best, followed closely by
unsmoothed CX.IDF. At higher recall levels, unsmoothed
CX.IDF generally performs best—with the exception of ranks
between about 8 and 11 million, where ordinary IDF has
the lowest error rate. Table 4 gives the number of known
errors made for certain ranks, including parts of the high-

1. Let Fcanopy be a subset of features.
2. Let C be the empty set.
3. For each f € Feanopy,

(a) Let Xy = {x1,...,2pr(s)} be the set of all in-
stances that have f as a feature
(i.e., the inverted index for f).

(b) For each pair (x;,x;) such that z; € Xy, z; € Xy,
and z; # xj,

(] Add (l’i,l’j) to C

Table 5: A simple algorithm for generating pairs
zi, x; of likely-to-be-similar instances.

precision range (ranks 5,000 through 650,000); the middle
range, where IDF performs best (ranks 2,000,000 through
10,000,000); and the high-recall range (ranks 10,000,000 through
30,000,000). As in Table 3, we also show the percentage im-
provement over baseline.

To summarize, in both matching experiments, there is a
small part of the recall-precision curve in which IDF is com-
petitive with the CX.IDF variants. However, over most of
the curve, one or both of CX.IDF variants greatly outper-
form the IDF baseline.

3.4 Generating plausible candidate pairs

Another important use of IDF scores is for selecting candi-
date pairs for which similarity will be computed. A number
of well-known heuristics for finding candidate pairs involve
finding features f with high IDF, and then proposing pairs
of items z;,x; that share feature f. These pairs can be
conveniently found by using an inverted index for f. Many
fast similarity-join methods use this trick explicitly (e.g., [2,
7]), while others use it indirectly via information-retrieval
engines (which often use “shortcut” retrieval methods based
on high-IDF terms [21]) (e.g., [14]).

We wished to explore the effectiveness of context-sensitive
similarity metrics for generating candidate pairs. In order
to do this, we took the bibliography data, and generated the



Rank IDF CX.IDF Smooth CX.IDF
x 1000 Errors Errors A Errors A
5 23 — — 4 -82.61
20 84 — — 7 -91.67
100 1,009 — — 482  -52.23
650 2,363 — — 1,376 -41.77
2,000 4,487 - — 4,325 -3.61
5,000 7,047 8,579 +21.74 7,555 +7.21
10,000 12,573 16,430 +30.68 17,969 +42.92
10,000 | 3,348,616 665,592  -80.12 | 1,437,196  -57.08
25,000 | 7,440,369 | 1,238,221  -83.36 | 5,214,735  -29.91
30,000 | 11,316,451 | 1,841,019 -83.73 | 9,226,685  -18.47

Table 4: Number of known errors as a function of rank position for three similarity metrics for product

descriptions.
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Figure 8: Pairs of bibliography entries z;, z;, showing
the minimum IDF value of any common feature f €
F; N F; (on the z axis) and the minimum CX value
of any common feature f € F; N F; (on the y axis).

set of all pairs x;,x; that shared the same hard identifier:
there were 131 of these pairs. We will henceforth call this
the known-correct pair set. (Of course, since only a subset
of entries have hard identifiers, this is only a subset of the
full set of correct pairs.)

We also generated a set of candidate pairs using the method
outlines in Table 5: we picked a set of features Feanopy, Cre-
ated inverted indices Xy for all features f € Fianopy, and
then used these inverted indices to generate all pairs (x;, ;)
that contained at least one common feature f € Ftanopy-
This technique is quadratic in the size of the largest in-
verted index, so to make this computationally feasible, we
let Franopy be the set of all features with DF(f) < 1000.
Equivalently, this set could be defined as all features f with
IDF(f) > 6, where 6 is (on this dataset) around 7.8 for this
dataset. This set contains about 4.4 million pairs, and will
be called the canopy pair set.

From the canopy set, we sampled a much smaller set of 447
pairs, which we will call the random pair set, for the purpose
of visualization. In Figure 8, we plot each pair (x;,z;) in
random using a red “4”; and also each pair in known-correct
using a green “x”. The position of each pair is chosen so that
its x-axis position is the smallest IDF value of any common
feature f € F; N Fj, and the y-axis position is the smallest

CX value of any common feature f € F; N Fj.

From inspection of the figure, it is easy to see that the
known-correct pairs cluster in the top right, while the ran-
dom pairs are more widely dispersed. The pairs in the top
right have a common feature that has high IDF, and also
common feature with high CX. This suggests that one could
restrict the canopy set by using a more restrictive set of
features Fianopy: specifically, one could either (a) impose a
higher threshold on IDF(f) or (b) combine a threshold on
IDF(f) with a threshold on CX(f). The blue line in Figure 8
suggests one such combination, namely a linear combination
of IDF and CX.

More specifically, the graph shows that most known-correct
pairs (all but four) have an x axis position of 10 or greater.
Thus, a set of candidate pairs generated by taking all pairs
sharing a common feature f with IDF> 10 would be ex-
pected to include most of the correct, and hence have fairly
high recall. Likewise, we can see that relatively few of the
pairs in random set are to the right of the line x = 10 (only
24 of 447). Thus, increasing the threshold from 6 = 7.8 to
0 = 10 would significantly decrease the size of the canopy
(by a factor of around 20), while maintaining high recall. In
Figure 8 thus helps to justify the commonly-used heuristic
of using high-IDF features to generate canopies.

Looking now at the y-axis position, we see that most (all
but eight) of the known-correct pairs have an y position of
more than 4. This suggests imposing a secondary threshold
on CX(f) for features in Feanopy—i.e., defining

Feanopy = {f : IDF(f) > 61 and CX(f) > 02}

The canopy set of 4.4 million pairs described above cor-
responds to 61 & 7.8 (or equivalent, DF(f) < 1000) and
02 > —oo. Increasing 02 to 3.8 reduces the number of canopy
by more than 23%, without changing the coverage of the gold
pairs at all. Alternatively, increasing 62 to 4.0 reduces the
size of the canopy set by more than 40%, and reduces recall
on the gold set by only 5%.

While in some practical cases a 40% improvement in speed
is worth a modest loss in recall, in this paper we do not use
aggressive thresholds on CX (or IDF) in generating candi-
date pairs. In the matching experiments of Sections 3.3 and
3.2, we used thresholds DF(f) < 1000 and CX(f) > 1.5,
which are in each case well below the thresholds associated
with any known-correct pairs.



4. RELATED WORK

Context-sensitive similarity, as defined here, is closely re-
lated to the problem of clustering with instance-level con-
straints [22]. In particular, for the CX.IDF weighting scheme,
each context ¢ could be viewed as a set of (soft) cannot-link
constraints that hold between all pairs x; and z; such that
¢i = ¢;. Likewise, for the IDF/CX weighting scheme, each
context ¢ could be viewed as a set of soft must-link con-
straints. A number of techniques have been proposed for
incorporating such constraints in clustering (e.g., see [1] for
an overview of recent research.) One particularly related
piece of prior work is the technique of Oyama and Tanaka
[17], which, like this paper, focuses on the effect of cannot-
link constraints only. Oyama and Tanaka show that if only
cannot-link constraints are available, then a distance metric
learned using convex quadratic programming methods can
be used to improve object identification performance. The
work described here differs primarily in its emphasis on very
scalable techniques; we also demonstrate that our techniques
are applicable to a wide range of information-integration re-
lated tasks.

Shen et al [20] introduce a technique called “source-aware
matching”, which has some points of similarity with context-
sensitive similarity. In source-aware matching, instances
from many sources are clustered, using different matching

methods (e.g., different similarity functions, or different thresh-

olds for the same function) to match instances extracted
from different sources. Source-aware matching requires user
input for each source (solicited via active learning) to deter-
mine parameters of the source-specific matching functions.
Shen et al also describe methods for finding a “match plan”
that orchestrates sequence of individual source-aware match-
ing operations used to build an overall clustering of the data.
In contrast, we use unsupervised methods to learn a single
similarity function that can be applied to any pair instances,
for any source. To some extent the two techniques are com-
plementary, however: for instance, one could use a “match
plan” to orchestrate a series of intra-source merges using a
single context-sensitive similarity function.

5. CONCLUDING REMARKS

Deduping, or removing duplicated objects, is an impor-
tant task in heterogeneous data integration. Here we have
proposed a novel modification of IDF similarity that is de-
signed explicitly for large data collections formed by merging
together many smaller collections, each of which is duplicate-
free (or nearly so). The new metric, CX.IDF, takes into
account the “context” from which each description was ex-
tracted; however, it accounts for context without adding
additional parameters to the similarity function, thus re-
taining many of the desirable properties of the IDF metric.
Like IDF, CX.IDF can be computed efficiently and stored
compactly; like IDF, CX.IDF can be “learned” using a sin-
gle pass over a dataset, and can be implemented easily in a
map-reduce framework, allowing simple parallel implemen-
tations, and a variant of CX.IDF that supports smoothing
with empirically derived priors can be computed nearly as
efficiently (with three map-reduce passed over the dataset).
Finally, CX.IDF requires no labeled training data—the only
additional information that is used is the source (or “con-
text”) of each object.

As validation of the metric, we performed k-nn experi-

ments with a suite of nine previously-studied classification
tasks, and CX.IDF was shown to reduce error rates by 14-
19% relative to an IDF baseline. We also performed experi-
ments in which candidate duplicated pairs were scored and
ranked by similarity, and then various prefixes of the ranked
lists were evaluated by estimating precision (or simply the
number of known errors) for pairs with known “hard” identi-
fiers. In one domain, bibliography entries, approximately 3
million candidate pairs involving over 100,000 bibliography-
entry objects were scored using IDF and two varieties of
CX.IDF: a highly efficient one-pass version that uses sim-
ple ad hoc smoothing techniques, and a three-pass version
that uses empirically tuned priors. In the second domain,
product descriptions, 60 million pairs involving 40 million
products were scored and ranked with the same metrics.

The results were qualitatively similar in both domains.
The CX.IDF methods greatly outperform the baseline IDF
method for high recall levels. In the product domain, at
ranks 20-30 million, the empirically-smoothed CX.IDF vari-
ant makes 18-57% fewer errors, and the one-pass CX.IDF
version makes more than 80% fewer errors. In the bibliog-
raphy domain, at ranks 50-200 thousand, the empirically-
smoothed CX.IDF variant makes 23-35% fewer errors than
IDF, and the one-pass CX.IDF version makes more than
65% fewer errors.

At the high-precision end of the ranking, all methods per-
form extremely well for the product domain: however, the
empirically-smoothed CX.IDF version clearly outperforms
the baseline, making 41-91% fewer errors for ranks 5-650
thousand. In the smaller bibliography domain, there is no
clear difference between the two techniques—they perform
comparably for the first 10,000 ranks. In both domains,
there is an intermediate range in which the baseline IDF is
comparable to, or even better than, either CX.IDF variant:
however, this range is relatively narrow (as can be seen in
the right-hand plots of Figure 5 and 7).

The results of this paper have evaluated context-sensitive
similarity functions in a limited way—via the ordering they
induce of pairs of instances. Further work will be needed
on how and when context-sensitive similarity functions in-
teract with methods that cluster objects based on multiple
types of similarity evidence—while some such approaches
are by design similarity-function insensitive (e.g., [3]) others
appear to be more sensitive to the function used (e.g., [13]),
and still other approaches require probabilistic properties
that CX.IDF does not possess (e.g., [18, 4]). Future work
will also be needed to evaluate how context-sensitive simi-
larity interacts with systems that directly query a database
of similarity-produced clusters (e.g., [15]), or directly query
collections of instances using similarity-based queries (e.g.,
[7]).

The results in this paper have also considered context-
sensitive similarity methods of a particular narrow type
(CX.IDF and some close variants). In particular, we have
considered only similarity functions based using an un-
ordered set of atomic features (sometimes called “term-
based” methods [9], since the features are usually tokens.)
It is not clear how to extend our approach to context-
sensitivity to edit-distance like methods (e.g., [6]) which
retain some information about feature ordering. This is
an important topic for further research, since edit-distance
based methods, while usually more expensive to compute,
are sometimes more accurate than feature-based methods



(eg,

[14, 10, 11]); it has also been shown than using order-

ing information can in some cases speed up “similarity join”
computations [23]. Recently, Moreau et al [16] extended the
Soft TFIDF similarity function [9] and formalized a family of
“robust” hybrid similarity functions that combine aspects of
edit-distance similarities and feature-based similarities; this
may be an appropriate starting point for extending context-
sensitive similarity functions.
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