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Abstract. Slif uses a combination of text-mining and image processing
to extract information from figures in the biomedical literature. It also
uses innovative extensions to traditional latent topic modeling to provide
new ways to traverse the literature.
Slif originally focused on fluorescence microscopy images. We have now
extended it to classify panels into more image types. We also improved
the classification into subcellular classes by building a more representa-
tive training set. To get the most out of the human labeling effort, we
used active learning to select images to label.
We developed models that take into account the structure of the docu-
ment (with panels inside figures inside papers) and the multi-modality
of the information (free and annotated text, images, information from
external databases). This has allowed us to provide new ways to navigate
a large collection of documents.
Slif provides a publicly available searchable database (http://slif.cbi.cmu.edu).

1 Introduction

Thousands of papers are published each day in the biomedical domain. Working
scientists therefore struggle to keep up with all the results that are relevant to
them. Traditional approaches to this problem have focused solely on the text
of papers. However, images are also very important as they often contain the
primary experimental result being reported. A random sampling of such figures
in the publicly available PubMed Central database reveals that in some, if not
most of the cases, a biomedical figure can provide as much information as a
normal abstract. The information-rich, highly-evolving knowledge source of the
biomedical literature calls for automated systems that would help biologists find



information quickly and satisfactorily. These systems should provide biologists
with a structured way of browsing the otherwise unstructured knowledge in a
way that would inspire them to ask questions that they never thought of before,
or reach a piece of information that they would have never considered pertinent
to start with.

Relevant to this goal, our team developed the first system for automated in-
formation extraction from images in biological journal articles (the “Subcellular
Location Image Finder,” or slif, first described in 2001 [1]). Since then, we have
reported a number of improvements to the SLIF system [2–4]. In part reflecting
this, we are rechristening slif as the “Structured Literature Image Finder.”

The new slif provides both a pipeline for extracting structured information
from papers and a web-accessible searchable database of the processed informa-
tion. Users can query the database for various information appearing in captions
or images, including specific words, protein names, panel types, patterns in fig-
ures, or any combination of the above. We have also added a powerful tool for
organizing figures by topics inferred from both image and text, and have provided
a new interface that allows browsing through figures by their inferred topics and
jumping to related figures from any currently viewed figure. We have performed
a user study where we asked users to perform typical tasks with slif and report
whether they found the tool to be useful. The great majority of responses were
very positive [5].

Since the original version of slif, we have added support for more image
types, improved classification methods, and added features based on multi-modal
latent topic modeling. Topic modeling allows for innovative user-visible features
such as “browse by topic,” retrieval of topic-similar images or figures, or inter-
active relevance feedback. Traditional latent topic approaches have had to be
adapted to the setting where documents are composed of free and annotated
text and images arranged in a structured fashion.

2 Overview

Fig. 1. Slif Pipeline. This figure shows the general pipeline through papers are pro-
cessed.



The slif processing pipeline is illustrated in Figure 1. After preprocessing,
where captions and images are extracted from documents, image and caption
processing proceed in parallel. The results of these two modules then serve as
input to the topic modeling framework.

The first step in image processing is to split the image into its panels, then
identify the type of image in each panel, and, if the panel is a fluorescence
micrograph, classify the depicted subcellular localization pattern [1]. In addition,
panel labels are identified through optical character recognition, and scale-bars
are tagged. Annotations such as white arrows are removed.

In parallel, the caption is parsed and relevant biological entities (protein
and cell types) are extracted from the caption using named entity recognition
techniques. Also, the caption is broken up into logical scopes (sub-captions,
identified by markers such as “(A)”), which will be subsequently linked to panels.

The last step in the pipeline aggregates the results of image and caption
processing by using them to infer underlying themes in the collection of papers.
These are based on the caption free text, on the annotated text (i.e., protein
and cell type names), and the image features and subcellular localization. This
results in a low-dimensional representation of the data, which is used to imple-
ment retrieval by example (“find similar papers”) or even interactive relevance
feedback navigation.

Access to the results of this pipeline is provided via a web interface or pro-
gramatically with soap queries. Results presented always link back to the full
paper for user convenience.

3 Caption Processing

A typical caption (taken from [6]) from a biomedical journal article is (we have
highlighted, in bold, the pieces of information which are of interest to slif):

S1P induces relocalization of both p130Cas and MT1-MMP to pe-
ripheral actin-rich structures. (A) HUVEC were stimulated for 15 min
with 1 µM S1P and stained with polyclonal MT1-MMP [. . . ]. (B) Cells
were stimulated with S1P as described above [. . . ]. Scale bars are 10µm.

The text contains both a global portion (the first sentence) and portions
scoped to particular panels (marked by “(A)” and “(B)”), a structure which
needs to be identified. In order to understand what the image represents, slif
extracts the names of proteins present (p130Cas, MT1-MMP,. . . ), as well as
the cell line (HUVEC) using techniques described previously. Additionally, slif
extracts the length(s) of any scale bars to be associated with scale bars extracted
from the image itself.

The implementation of this module is described in greater detail elsewhere [2,
7, 4, 5].



4 Image Processing

4.1 Figure Splitting

The first step in our image processing pipeline is to divide the extracted figures
into their constituent components, since in majority of the cases (nearly in all
the cases of our interest), the figures are comprised of multiple panels to depict
similar conditions, corresponding analysis, etc. For this purpose, we employ a
figure-splitting algorithm that recursively finds constant-intensity boundary re-
gions in between panels, a method that was previously shown to perform well [1].

4.2 “Ghost” Detection

(a) Color image (b) Blue channel

Fig. 2. Example of a ghost image. Although the color image is obviously a two-channel
image (red and green), there is a strong bleed-through into the blue component.

Fmi panels are often false color images composed of related channels. How-
ever, due to treatment of the image for publication or compression artifacts, it
is common that an image that contains one or two logical colors (and is so per-
ceived by the human reader), will have signal in all 3 color channels. The extra
channel, we call a “ghost” of the signal-carrying channels. Figure 2 illustrates
this phenomenon.

To detect ghosts, we first compute the white component of the image, i.e.,
the pixel-wise minimum of the 3 channels. We then subtract this component
from each channel so that the regions with homogeneous intensities across all
channels (e.g. annotations or pointers) get suppressed. Then, for each channel,
we verify if the 95%-percentile pixel is at least 10% of the overall highest pixel
value. These two values were found empirically to reject almost all ghosts, with
a low rate of false negatives (a signal carrying channel that has less than 5%



bright pixels will be falsely rejected, but we found the rate of false positives to
be low enough to be acceptable).

4.3 Panel Type Classification

Original slif was originally designed to process only fmi panels. Recently, we
expanded the classification to other panel types, in a way similar to other recent
systems [8–10].

Panels are classified into one of six panel classes: (1) fmi, (2) gel, (3) graph or
illustration, (4) light microscopy, (5) X-ray, or (6) photograph. To build a train-
ing set for this classification problem, while minimizing labeling effort, we used
empirical risk reduction, an active learning algorithm [11]. We used a libsvm-
based classifier as the base algorithm. In order to speed up the process, at each
round, we labeled the 10 highest ranked images plus 10 randomly selected im-
ages. The process was seeded by initially labeling 50 randomly selected images.
This resulted in ca. 700 labeled images.

The previous version of slif already had a good fmi classifier, which we have
kept. Given its frequency and importance, we focused on the gel class as the next
important class. Towards this goal, we define a set of features based on whether
certain marker words appeared in the caption that would signal gels8 as well
as a set of substrings for the inverse class9. A classifier based on these boolean
features was learned using the id3 decision tree algorithm [12] with precision
on the positive class as the target function. This technique was shown, through
10 fold cross-validation, to obtain very high precision (91%) at the cost of mod-
erate recall (66%). Therefore, examples considered positive are labeled as such,
but examples considered negative are passed on to a classifier based on image
features. In addition to the features developed for fmi classification, we intro-
duce a measure of how horizontal the image is, as the fraction of variance that
remains in the image formed by the differences between horizontally adjacent
pixels:

h(I) =
var(Ii−1,j − Ii,j)

var(Ii,j)
. (1)

Gels, consisting of horizontal bars, score much lower on this measure than other
types of images. Furthermore, we used 26 Haralick texture features [13]. Images
were then classified into the six panel type classes using a support vector machine
(svm) based classifier. On this system, we obtain an overall accuracy of 61%.

Therefore, the system proceeds through 3 classification levels: the first level
classifies the image into fmi or non-fmi using image based features; the sec-
ond level uses the textual features described above to identify gels with high-
precision; finally, if neither classifier has fired, a general purpose svm classifier,
operating on image-based features does the final classification.
8 The positive markers were: Western, Northern, Southern, blot, lane, RT (for “reverse

transcriptase”), RNA, PAGE, agarose, electrophoresis, and expression.
9 The negative markers were: bar (for bar charts), patient, CT, and MRI.



4.4 Subcellular Location Pattern Classification

Perhaps the most important task that slif supports is to extract information
based on the subcellular localization depicted in fmi panels.

To provide training data for pattern classifiers, we hand-labeled a set of im-
ages into four different subcellular location classes: (1) nuclear, (2) cytoplasmic,
(3) punctate, and (4) other, following the active learning methodology described
above for labeling panel types. The active learning loop was seeded using images
from a HeLa cell image collection that we have previously used to demonstrate
the feasibility of automated subcellular pattern classification [14].

The dataset was filtered to remove images that, once thresholded using the
methods we described previously [14], led to less than 80 above-threshold pixels,
a value which was empirically determined. This led to the rejection of 4% of
images. In classification, if an image meets the rejection criterion, it is assigned
into a special don’t know class.

We computed previously described field-level features to represent the image
patterns (field-level features do not require segmentation of images into individ-
ual cell regions). We added a new feature for the size of the median object (which
is a more robust statistic than the previously used mean object size). Experi-
ments using stepwise discriminant analysis as a feature selection algorithm [15]
showed that this was an informative feature. If the scale is inferred from the
image, then we normalize this feature value to square microns. Otherwise, we
assume a default scale of 1µm/pixel.

We also adapted the threshold adjacency statistic features (tas) from Hamil-
ton et. al [16] to a parameter-free version. The original features depended on a
manually controlled-two-step binarization of the image. For the first step, we use
the Ridler–Calvard algorithm to identify a threshold instead of a fixed thresh-
old [17]. The second binarization step involves finding those pixels that fall into
a given interval [µ−M,µ+M ], where µ is the average pixel value of the above-
threshold pixel and M is a margin (set to 30 in the original paper). We set our
margin to the standard deviation of the above threshold pixels. We call these
parameter-free tas.

On the 3 main classes (Nuclear, Cytoplasmic, and Punctate), we obtained
75% accuracy (as before, reported accuracies are estimated using 10 fold cross-
validation and the classifier used was svm). On the four classes, we obtained
61% accuracy.

4.5 Panel and Scope Association

Panels were associated with their scopes based on the textual information found
in the panel itself and the areas surrounding the panels. Each figure is composed
of a set of panels and a set of subimages which are too small to be panels. All of
these sections are analyzed using optical character recognition (ocr) to identify
potential image pointers. The caption of the figure was previously analyzed to
find the set of associated image pointers. In the most simple case, the number of
panels matches the number of image pointers discovered in the caption. In this



case, each panel is matched to the nearest unique image pointer found in the
figure using ocr. This enables panels to be directly associated with the textual
information found in the caption scope.

5 Topic Discovery

The previous modules result in panel-segmented, structurally and multi-modally
annotated figures: each figure is composed of multiple panels, and the caption
of the whole figure is parsed into scoped caption, global caption, and protein
entities. Each scoped caption is associated with a single panel and the global
caption is shared across panels and provide contextual information. Given this
organization, we would like to build a system for querying across modality and
granularity. For instance, the user might want to search for biological figures
given a query composed of key words and protein names (across-modality), or the
user might want to retrieve figures similar to a given panel (across-granularity)
or a given other figure of interest. In this section, we describe our approach to
address this problem using topic models.

Topic models aim towards discovering a set of latent themes present in the
collection of papers. These themes are called topics and serve as the basis for
visualization and semantic representation. Each topic k consists of a triplet of
distributions: a multinomial distribution over words βk, a multinomial distribu-
tion of protein entities Ωk, and a gaussian distribution over every image feature
s, (µk,s, σk,s). Given these topics, a graphical model is defined that generates
figure f given these topics (see [18] for a full description). There are two main
steps involved in building our topic model: inference and learning. In learning,
given a set of figures, the goal is to learn the set of topics (βk, Ωk, {µk,s, σk,s})
that generates the collection using Bayesian inference [18]. On the other hand,
given the discovered topics and a new figure f , the goal of inference is to de-
duce the latent representation of this figure θf = (θf,1 · · · θf,k), where the com-
ponent θf,k defines how likely topic k will appear in figure f . Moreover, for
each panel p in figure f , the inference step also deduces its latent represen-
tation: θf,p = (θf,p,1 · · · θf,p,k). In addition, from the learning step, each word
w and protein entity r can also be represented as a point in the topic space:
θw = (β1,w, · · · , βk,w) and θr = (Ω1,r, · · · , Ωk,r).

This results in a unified space where each figure, panel, word and protein
entity is described using a point in this space which facilitates querying across
modality and granularity. For instance, given a query q = (w1, · · · , wn, r1, · · · , rm)
composed of a set of text words and protein entities, we can rank figures accord-
ing to this query using the query language model [19] as follows:

P (q|f) =
∏
w∈q

P (w|f)
∏
r∈q

P (r|f) =
∏
w∈q

[∑
k

θf,kβk,w

] ∏
r∈q

[ ∑
k

θf,kΩk,r

]
=

∏
w∈q

[
θf � θw

] ∏
r∈q

[
θf � θr

]
(2)



Equation 2 is a simple dot product operation between the latent representations
of each query item and the latent representation of the figure in the induced
topical space. The above measure can then be used to rank figures for retrieval.
Moreover, given a figure of interest f , other figures in the database can be ranked
based on similarity to this figure as follows:

sim(f ′|f) =
∑

k

θf,kθf ′,k = θf � θf ′ (3)

In addition to the above capabilities, the discovered topics endow the user
with a bird’s eye view over the paper collection and can serve as the basis for
visualization and structured browsing. Each topic f summarizes a theme in the
collection and can be represented to the user along three dimensions: top words
(having high values of βk,w), top proteins entities (having high values of Ωk,r),
and a set of representative panels (panels with high values of θf,p,k). Users can
decide to display all panels (figures) that are relevant to a particular topic of
interest [18, 5].

6 Discussion

We have presented a new version of slif, a system that analyses images and
their associated captions in biomedical papers.

Slif demonstrates how text-mining and image processing can intermingle to
extract information from scientific figures. Figures are broken down into their
constituent panels, which are handled separately. Panels are classified into dif-
ferent types, with the current focus on fmi and gel images. Fmis are further
processed by classifying them into their depicted subcellular location pattern.
The results of this pipeline are made available through a either a web-interface
or programmatically using soap technology.

A new addition to our system is latent topic discovery which is performed
using both text and image. This is based on extending traditional models to
handle the structure of the literature and allows us to customize these models
with domain knowledge (by integrating the subcellular localization looked up
from a database, we can see relations between papers using knowledge present
outside of them).

Our most recent human-labeling efforts (of panel types and sub-cellular loca-
tion) were performed using active learning to extract the most out of the human
effort. We plan to replicate this approach in the future for any other labeling
effort (e.g., adding a new collection of papers). Our current labeling efforts were
necessary to collect a dataset that mimicked the characteristics of the task at
hand (images from published literature) and improve on our previous use of
datasets that did not show all the variations present in real published datasets.
At the time of publication we will also make these datasets available for down-
load from the slif webpage (http://slif.cbi.cmu.edu) so that they can be used
by other system developers and for building improved pattern classifiers.
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