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ABSTRACT
Previous applications of information extraction methods
to articles in biomedical journals have predominantly
been based on interpreting article text.  This often leads to
uncertainty about whether statements that are found are
attempts at reviews or summaries of data in other papers,
conjectures or opinions, or conclusions from evidence
presented in the paper at hand.  The ability to extract
information from the primary data presented in an article,
which is often in the form of images, would allow more
accurate information to be extracted.  Towards this end,
we have built a system that extracts information on one
particular aspect of biology from a combination of text
and image in journal articles.  The design and
performance of this system are described here, along with
conclusions about possible improvements in the scientific
publishing process that we have drawn from our
implementation process.

KEY WORDS
Knowledge and Information Retrieval, Multimedia
Databases, Data and Text Mining, Location Proteomics

1.  Introduction

Biomedical research has undergone a major paradigm
shift from consisting primarily of projects in which an
individual investigator studies many aspects of a single
gene, protein or process to increasingly consisting of
projects in which teams of investigators study a single
aspect of all genes, proteins or processes in a given cell
type, tissue or organism. The successful completion of
various genome projects, with their focus on obtaining the
sequence of all genes in a particular organism, led this
paradigm shift.  In general, the results from these projects
are objective (at least in the sense that the criteria for
decisions are clearly specified independently from the
data), systematic, widely useful, and well-suited to
delivery via structured databases. While remarkable
insights into a wide range of biological phenomena were
achieved before the advent of genomics (and of course
such insights continue to be achieved), results of
traditional biological research are most commonly

communicated via journal articles in which raw data,
methods, processed results and conclusions are mixed.  In
addition, the writing styles, vocabularies, and assumptions
used for interpretation vary widely from paper to paper.

Thus, there is a dramatic contrast in the ease with which
results from the two paradigms can be organized and
communicated.  This has created a critical need for
approaches that can bridge between the systematic,
structured information in biological databases and the
idiosyncratic, unstructured information in journal articles.
This is often posed as a need for automated annotation of
gene and protein sequences, but there are at least two
significant ways in which the general need differs from
the specific approaches taken to sequence annotation.
The first is that the need extends to extracting information
from literature about biological phenomena at the
molecule, cell, tissue and organism level that do not relate
directly to sequence.  The second is that most prior
annotation work has focused on extracting information
from the text in abstracts (or more rarely, journal articles),
but not from supporting published data that is often in the
form of images.

To illustrate the initial feasibility of addressing these
broader needs, we have developed a prototype system that
can extract structured information from images and text in
journal articles.  The focus of this system is on one class
of images, those produced by fluorescence microscopy,
that capture information about the distribution of proteins
and other biological macromolecules inside cells.  It
builds on our prior work demonstrating the feasibility of
fully automated recognition of the distributions
characteristic of the major structures that comprise a
eukaryotic cell.  The work to date not only provides a
usable resource for biologists, but also reveals the most
difficult challenges for building systems for other
categories of biological figures.  The work further
suggests some alterations in scientific publishing practices
that could facilitate automated interpretation without
putting undue demands on authors or interfering
significantly with the traditional appearance of articles.



2.  Automated Interpretation of Fluorescence
Microscope Images

The tens of thousands of proteins that make up eukaryotic
cells all have specific places in which they carry out their
roles.   Some proteins play structural roles by working
together to create the specialized structures and organelles
that cells require, and others orient themselves in relation
to those structures to perform specific tasks.  Knowledge
of these subcellular location patterns, and of how they
change due to disease or to alterations in the cell
environment) is critical for understanding how all of the
proteins in a cell work together and for designing disease
diagnostics and therapies.  The most common approach
used to study location patterns is to label the molecules of
a particular protein with a fluorescent probe and collect
cell images using a fluorescence microscope.
Historically, the analysis of the resulting fluorescence
micrographs has been carried out visually by biologists
trained to recognize the patterns characteristic of the
major cell structures.

As an alternative to visual analysis, our group has
designed and implemented automated systems that can
carry out this task with greater sensitivity, reproducibility
and objectivity [1-4].  The heart of each system is a set of
numerical features that captures the important aspects of
the subcellular pattern in an image without being overly
sensitive to the position, rotation and shape of each cell.
These are combined with tools to select a discriminative
subset of the features and to train a machine classifier.

Our subcellular location classifiers have been applied
primarily to collections of images that we have generated
under highly controlled conditions.  An important issue is
whether and with what modifications they can be applied
to sets of images from diverse sources.  Since journal
articles that describe subcellular location frequently
include supporting figures of microscope images, on-line
journals represent a potential source of images to test the
degree to which our approaches can be generalized.  More
significantly, the demonstrated feasibility of automated
interpretation systems for fluorescence micrographs raises
the possibility of building systems for extracting highly
structured information on subcellular location from the
combination of images and text in on-line journals.

3.  Subcellular Location Image Finder

Towards this end, we initially constructed a web agent,
which we termed SLIF (for Subcellular Location Image
Finder) that could find fluorescence micrographs in
articles in Pubmed Central [5].  This agent downloaded
PDF files for articles that matched a text-based query to
the Pubmed search engine.  These PDF files were
processed to find pairs of figures and captions, and then
the figures were processed to identify “panels” within

each figure. (A “panel” is an independently meaningful
part of a figure; it is common in biological journals to
create composite figures by combining related images
and/or graphs.)  Each panel was then classified as to
whether it contained a fluorescence microscope image,
and, if so, it was ranked by the degree to which matched a
specific query pattern (using a neural network trained
with images of HeLa cells labelled with antibodies against
a specific protein).  The system was evaluated by reading
the caption and examining the image for panels it
returned. For example, when a query for articles
containing the protein name “tubulin” was combined with
a neural network trained to recognize tubulin patterns,
eight of the top ten ranked patterns actually contained a
tubulin (and one was an artifact of panel segmentation
that was subsequently corrected).  The ability to use a
totally automated approach to find sets of images highly
enriched for a desired pattern was extremely encouraging.

4.  Structuring Information Extracted from
Figures and Captions

Based on the success of this initial effort, we next sought
to optimize the steps required for figure processing and to
explore extracting additional information from the
associated captions.  The initial SLIF system had been
implemented using a web search approach in which only
articles relevant to a specific query were downloaded and
processed.  To make repeated analysis and testing of our
methods simpler, we changed to a model in which a
specific large corpus of articles would be fully analyzed
and indexed.  For this purpose, we have used a collection
of over 15,000 articles from the Proceedings of the
National Academy of Sciences generously provided for
testing purposes (referred to below as the PNAS test set).
These articles were provided in an XML format in which
figures and associated captions were explicitly identified.

Fig. 1 shows an overview of the steps in the current SLIF
system, with references to publications in which they are
described in more detail.  The components that carry out
these steps have been integrated into a file-based, light-
weight blackboard system with a declarative control
system to specify the inputs and outputs of each step [6].
Each step will be briefly described below, and
improvements since the last description of the system [7]
will be described more fully.

One of these recent improvements is the addition of an
interface to an SQL database that allows the results of
analysis steps to be stored as traceable assertions.  Each
category of assertion is stored in its own table that has an
implied relationship between its entries.  This facilitates
more rapid and complex querying of the results than can
be accomplished with the blackboard system alone.  The
two highest level tables are ones that link a paper to its
source (i.e., a URL, DOI, and/or Pubmed ID) and a figure



table that has an entry for each of the figures in a given
paper.

4.1 Figure processing

Panel splitting: As discussed above and seen in the lower
path in Fig. 1, the processing of figures involves first
splitting a figure into its component panels.  For figures
composed of multiple micrographs (which usually have a
dark background with light areas showing where
fluorescence was detected), panel splitting is
straightforward.  We have described a recursive algorithm
for finding the light boundaries between micrographs
even when the panels are not arranged in a symmetric
pattern [5].  This algorithm achieved a precision of 73%
and a recall of 60% on an arbitrarily-chosen collection of
100 figures from Pubmed Central articles.  We have more
recently made some slight adjustments in the algorithm
and evaluated it again using 25 figures from articles in the
PNAS test set.  The results were a precision of 76% and a
recall of 60%.

Two factors complicate the panel splitting process in the
general case of a journal figure.  The first is the mixing of
different types of panels in the same figure, such as a
graph (with dark lines on a white background) next to a
micrograph. Our recursive algorithm that looks for nearly-
white or nearly-black horizontal or vertical regions to cut
along usually results in separation of the graph into
multiple “panels” (most often, one for the body of the
graph and one for each of the axis legends).  Since our
algorithm works well for separating micrographs from the
remainder of the figure, this is not a major problem for
SLIF but will need to be addressed in the future for more
general article processing systems. The second factor is

absence of standards for the placement of panel labels
(i.e., letters linking the panel to information in the
caption) relative to the panels themselves.  When panel
labels are contained within the panel (as is most common
for the micrographs sought by SLIF), the label remains
associated with the panel after splitting.  However, when
the labels are adjacent to the panel they are removed
during splitting, and assigning them to their associated
panel is non-trivial given the absence of conventions for
their placement.

The result of panel splitting is a set of image files for each
of the pieces of the original figure and an assertion of the
form “Figure f contains panels 1-6” stored as entries in a
panel table.  Additional entries in the panel table are
populated below.

Recognizing fluorescence micrographs: After panels
have been isolated, the next task is to recognize those that
contain fluorescence micrographs.  This is done using
gray level frequencies and a k-nearest neighbor classifier
that achieved a 100% precision and 90% recall in testing
on Pubmed Central articles [5].  The result is stored as a
Boolean field in the panel table.

Analyzing and removing panel annotations:
Fluorescence micrographs typically have three types of
annotations in their body.  The first is a label (usually a
single letter) that connects the panel to information in the
caption.  The second is a scale bar whose length is
typically defined in the caption.   The third is text or
symbols that call attention to specific locations in the
figure, usually in association with an explanation in the
caption or body text.  All of these annotations must be
removed from the image before the pattern it contains can

Figure 1. Overview of the image and text processing steps in SLIF.



be analyzed, and the first two types of labels must be
recognized and interpreted before removal.  We have
described image processing steps for finding the panel
labels and matching them with parts of the caption [7] and
for determining the panel scale (in microns per pixel) by
finding the scale bar in the figure and the length definition
in the caption [5].  The results of these steps are also
stored in the panel table.

Subcellular pattern classification: As discussed above,
we have described automated systems that can recognize
major subcellular patterns.  These were restricted to
analyzing images containing single cells, but many (if not
most) micrographs in journal articles contain images of
more than one cell.  The initial version of SLIF therefore
used watershed segmentation in an attempt to segment
each panel into single cell regions.  While this worked
well for protein patterns that are distributed through most
of the cell (such as tubulin), it often failed for proteins
that are not.  Recently, we have described a subset of the
single cell features that do not require single cell
segmentation and showed that these can be used to
classify multicell images with high accuracy [8].  We
have therefore recently incorporated the multicell
classifier into SLIF.  This allows each panel to be
classified based on the major subcellular locations it
contains.  Note that this may fail if the panel actually
contains a mixture of different patterns.

4.2 Caption processing

Named entity recognition: The initial version of SLIF
focused on finding micrographs that depicted a particular
pattern, but could not associate that pattern with a specific
protein.  Information on the protein depicted in a given
figure should be provided in its caption, but the structure
of captions can be quite complex (especially for multi-
panel figures).  We therefore implemented a system for
processing captions with three goals: identifying the
“image pointers” (e.g., “(A)”) in the caption that refer to
panel labels in the figure [9], dividing the caption into
fragments (or “scopes”) that refer to an individual panel
or the entire figure, and recognizing protein and cell
names.

The next step is to match the image pointers to the panel
labels found during image processing.  The accuracy of
this matching can be reduced by errors in optical
character recognition, but we can compensate for at least
some of these errors by using regularities in the
arrangement of the labels (such as the likelihood that if
the letters A through D are found as image pointers and if
the panel labels are recognized as A,B,G and D, then the
G should be corrected to a C).  Using the PNAS test set,
the precision of the final matching process was found to
be 83% and the recall to be 74% [7].

The recognition of named entities (such as protein and
cell names) in free text is a difficult task that may be even

more difficult in condensed text such as captions.  In the
current version of SLIF, we have implemented two
schemes for recognizing protein names.  The first uses
prefix and suffix features along with immediate context to
identify candidate protein names.  This approach has a
low precision but an excellent recall (which is useful to
enable database searches on abbreviations or synonyms
that might not be present in structured protein databases).
The second approach (Kou, Murphy & Cohen, in
preparation) uses a dictionary of names extracted from
protein databases in combination with soft match learning
methods to obtain a recall and precision above 70%. The
protein names found by this approach are entered in the
protein table, along with a link to the supporting
dictionary entry.  The occurrences of the names found in
the captions are stored in the protein_in_figure table and
the protein_in_panel table, depending on the scope in
which the protein name was found.

4.3 Database searching

The SLIF database resulting from processing of a corpus
of articles with the above methods can be searched by
standard SQL queries.  We have implemented a number
of common queries using Java Server Pages (see Figure
2).  Examples include searching for figures or panels with
a specific protein name, subcellular pattern, or
microscope images with a particular spatial resolution
(pixel size in the sample plane).  Current work is focused
on generating summary reports using confidence
estimates for the various processing steps, as well as
combining the SLIF results with information from the
protein databases.

5.  Implications for Publishing Practices

The difficulties encountered (and in some cases only
partially overcome) so far during the development of
SLIF suggest a number of ways in which the publication
of electronic journal articles could be modified to
facilitate automated information extraction. These can be
implemented with no or minimal impact on the printed
journal article or electronic copies intended for human
viewing.  This can be done by incorporating them into
XML structures without having them be visible upon
normal display of the article.  The improvements include:

• Specification of the coordinates of each panel as
pixel numbers within the figure

• Specification of the type (and sub-type) of each panel
(e.g., graph, picture:micrograph, picture:gel image)

• Placement of all panel annotations in a separate
image layer

• Development of conventions for scale bar use or,
preferably, inclusion of information on microns per
pixel for each panel

• Inclusion of a URL to get an uncompressed figure



• Inclusion of scoping markup in captions to identify
which portions of the caption refer to which panels

• Inclusion of database links for named entities such as
proteins

We believe that making an appropriate automated editing
tool readily available to the scientific community would
permit the additional XML-encoded annotations
described above to be generated with minimal extra effort
by authors.

6.  Conclusion

We have described a system that extracts information on
one particular aspect of biology from a combination of
text and images in journal articles.  The system includes
methods for analyzing both images and text, and also for
associating information extracted from images with that
extracted from the accompanying caption text.  The
system can be used to find and display potentially
relevant images on the basis of text and/or image content.
It can also be used to create a structured database of
image information, which allows integration of the
information contained within structured biological
databases with the information contained in article

images–images that often provide the primary data
presented in an article.
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