
Single-Pass Online Learning: Performance, Voting
Schemes and Online Feature Selection

Vitor R. Carvalhoa
aLanguage Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue,Pittsburgh, PA

vitor@cs.cmu.edu

William W. Cohena,b
bMachine Learning Department

Carnegie Mellon University
5000 Forbes Avenue,Pittsburgh, PA

wcohen@cs.cmu.edu

ABSTRACT
To learn concepts over massive data streams, it is essential
to design inference and learning methods that operate in real
time with limited memory. Online learning methods such as
perceptron or Winnow are naturally suited to stream pro-
cessing; however, in practice multiple passes over the same
training data are required to achieve accuracy comparable
to state-of-the-art batch learners. In the current work we
address the problem of training an on-line learner with a sin-
gle pass over the data. We evaluate several existing meth-
ods, and also propose a new modification of Margin Bal-
anced Winnow, which has performance comparable to lin-
ear SVM. We also explore the effect of averaging, a.k.a. vot-
ing, on online learning. Finally, we describe how the new
Modified Margin Balanced Winnow algorithm can be nat-
urally adapted to perform feature selection. This scheme
performs comparably to widely-used batch feature selection
methods like information gain or Chi-square, with the ad-
vantage of being able to select features on-the-fly. Taken
together, these techniques allow single-pass online learning
to be competitive with batch techniques, and still maintain
the advantages of on-line learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation.

Keywords
Online Learning, Averaging, Voting, Winnow

1. INTRODUCTION
Compared to batch methods, online learning methods are

often simpler to implement, faster, and require less mem-
ory. For such reasons, these techniques are natural ones to
consider for large-scale learning problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

Online learning algorithms have been traditionally trained
using several passes through the training data [3, 11, 14].
In the current work we address the problem of single-pass
online learning, i.e., online learning restricted to a single
training pass over the available data. This setting is partic-
ularly relevant when the system cannot afford several passes
throughout the training set: for instance, when dealing with
massive amounts of data, or when memory or processing re-
sources are restricted, or when data is not stored but pre-
sented in a stream.

In this paper, we experimentally compare the performance
of different online learners to traditional batch learning in
the single-pass setting, and we introduce a new online algo-
rithm — MBW or Modified Balance Winnow — that out-
performs all other single-pass online learners and achieves
results comparable to Linear SVM in several NLP tasks.

Voting (a.k.a. averaging) an online classifier is a technique
that, instead of using the best hypothesis learned so far, uses
a weighted average of all hypotheses learned during a train-
ing procedure. The averaging procedure is expected to pro-
duce more stable models, which leads to less overfitting [13].
Averaging techniques have been successfully used on the
Perceptron algorithm [14], but never in other online learners
such as Winnow, Passive-Aggressive[10] or ROMMA[16]. In
the current work, we provide a detailed performance com-
parison on how averaging affects the aforementioned online
learners when restricted to a single learning pass only. Re-
sults clearly indicate that voting improves performance of
most mistake-driven learning algorithm, including learners
to which it has not traditionally been applied.

We also propose an effective Online Feature Selection
scheme based on the “extreme” weights stored by the MBW
algorithm. Performance results indicate that this scheme
shows surprisingly good accuracies in NLP problems, being
competitive with Chi-Square or Information Gain, but
having the advantage of being able to select the most
meaningful features on-the-fly.

Below, section 2 presents different online learners, and
introduces the MBW algorithm. Section 3 presents the av-
eraging technique. Section 4 compares results and presents
the first two contributions: the impressive results of MBW in
NLP tasks, and the boost in performance obtained on non-
NLP datasets by averaging classifiers. In section 5, we in-
troduce a new MBW-based online feature selection scheme.
Finally, section 6 presents our conclusions.

2. ONLINE LEARNING
To present this method, we will first describe the general



format for mistake-driven online learning algorithms, illus-
trated in Table 1. For each new example xt presented, the
current model will make a prediction byt ∈ {−1, 1} and com-
pare it to the true class yt ∈ {−1, 1}. The prediction will be
based on the score function f , on the example xt and on the
current weight vector wi. In the case of a prediction mis-
take, the model will be updated. Different mistake-driven
algorithms differ in terms of the score function f and in the
way the weight vectors wi are updated, as we shall detail in
the next sections.

Table 1: Mistake-Driven Online Learner.

1. Initialize i = 0, success counter ci = 0, model w0

2. For t = 1, 2, ..., T :

(a) Receive new example xt

(b) Predict byt = f(wi, xt), and receive true class yt

(c) If prediction was mistaken:

i. Update model wi → wi+1

ii. i = i+ 1

(d) Else: ci = ci + 1

2.1 Winnow Variants
The Positive Winnow, Balanced Winnow and Modified

Balanced Winnow algorithms are based on multiplicative
updates. For all three, we assume the incoming example xt
is a vector of positive weights, i.e., xjt ≥ 0, ∀t and ∀j. This
assumption is usually satisfied in NLP tasks, where the xjt
values are typically the frequency of a term, presence of a
feature, TFIDF value of a term, etc.

In preliminary experiments, we found that the Winnow
variants performed better if we applied an augmentation and
a normalization preprocessing step, in both learning and
testing phases. When learning, the algorithm receives a new
example xt with m features, and it initially augments the
example with an additional feature(the (m + 1)th feature),
whose value is permanently set to 1. This additional feature
is typically known as “bias” feature. After augmentation,
the algorithm then normalizes the sum of the weights of the
augmented example to 1, therefore restricting all feature
weights to 0 ≤ xjt ≤ 1.

In testing mode, the augmentation step is the same, but
there is a small modification in the normalization. Before
the normalization of the incoming instance, the algorithm
checks each feature in the instance to see if it is already
present in the current model (wi). The features not present
in the current model are then removed from the incoming
instance before the normalization takes place.

2.1.1 Balanced Winnow
The Balanced Winnow algorithm is an extension of the

Positive Winnow algorithm [17, 11]. Similar to Positive
Winnow, it is based on three parameters: a promotion pa-
rameter α > 1, a demotion parameter β, where 0 < β < 1,
and a threshold parameter θth > 0.

Let 〈xt, wi〉 denote the inner product of vectors xt and wi.
Here, the model wt is a combination of two parts: a positive
model ut and a negative model vt. The score function is
f = sign(〈xt, ui〉 − 〈xt, vi〉 − θth), and the update rule is:

For all j s.t. xjt > 0,

uji+1 =

(
uji · α , if yt > 0

uji · β , if yt < 0
and vji+1 =

(
vji · β , if yt > 0

vji · α , if yt < 0

The initial model u0 and v0 are set to the positive values
θ+

0 and θ−0 , respectively, in all dimensions. Despite their
simplicity, Positive Winnow and Balanced Winnow are able
to perform very well in different NLP tasks [3, 4, 11].

2.1.2 Modified Balanced Winnow
The Modified Balanced Winnow, henceforth MBW, is de-

tailed in Table 2. Like Balanced Winnow, MBW has a pro-
motion parameter α, a demotion parameter β and a thresh-
old parameter θth. It also uses the same decision function f
as Balanced Winnow, as well as the the same initialization.
However, there are two modifications.

The first modification is the “thick”-separator (or wide-
margin) approach [11]. The prediction is considered mis-
taken, not only when yt is different from byt, but also when
the score function multiplied by yt is smaller than the “mar-
gin” M , where M ≥ 0. More specifically, the mistake con-
dition is (yt · (〈xt, ui〉 − 〈xt, vi〉 − θth)) ≤M .

The second modification is a small change in the update
rules, such that each multiplicative correction will depend
on the particular feature weight of the incoming example.
The change is illustrated in Table 2.

Table 2: Modified Balanced Winnow (MBW).

1. Initialize i = 0, counter ci = 0, and models u0 and v0

2. For t = 1, 2, ..., T :

(a) Receive new example xt, and add “bias” feature.

(b) Normalize xt to 1.

(c) Calculate score = 〈xt, ui〉 − 〈xt, vi〉 − θth.

(d) Receive true class yt.

(e) If prediction was mistaken, i.e., (score · yt) ≤M :

i. Update models. For all feature j s.t. xt > 0 :

uji+1 =

(
uji · α · (1 + xjt ) , if yt > 0

uji · β · (1− xjt ) , if yt < 0

vji+1 =

(
vji · β · (1− xjt ) , if yt > 0

vji · α · (1 + xjt ) , if yt < 0

ii. i = i+ 1

(f) Else: ci = ci + 1

2.2 Other Online Learners
Initially proposed in 1958 [21], the Perceptron learner al-

gorithm uses a very simple and effective update rule. In
spite of its simplicity, given a linearly separable training set,
the Perceptron algorithm is guaranteed to find a solution
that perfectly classifies the training set in a finite number of
iterations.

Another learner, the Relaxed Online Maximum Margin
Algorithm, or ROMMA [16], incrementally learns linear
threshold functions classify previously-presented examples
correctly with a maximum margin. ROMMA uses additive
as well as multiplicative updates.



The Passive-Aggressive algorithm [10] is also based on ad-
ditive updates of the model weights. However, the update
policy here is based on an optimization problem closely re-
lated to the one solved in Support Vector Machine tech-
niques. Passive-Aggressive has two characteristic parame-
ters: the relaxation parameter γ ≥ 0, and the insensitivity
parameter ε. In our implementation, we arbitrarily set ε = 1
and γ = 0.1 based on preliminary tests.

3. AVERAGING (A.K.A. VOTING)
The Averaging technique can be briefly described in the

following terms: instead of using the best hypothesis learned
so far, the final model will be a weighted average of all hy-
potheses learned during the training procedure. The aver-
aging procedure is expected to produce more stable models,
which leads to less overfitting [13]. For instance, an averaged
version of the Perceptron learner (a.k.a. Voted Perceptron)
is described by Freund & Schapire [14].

In the current work, we consider the final hypothesis of
the voted learners to be the average of the intermediary
hypotheses weighted by the number of correct predictions
that each hypothesis made in the learning process. More
specifically, referring to Table 1, the averaged model wa
is wa = 1

Z

P
i wi · ci, where ci is the number of correct

predictions made by the intermediary hypothesis wi, and
Z =

P
i ci is the total number of correct predictions made

during training.
Averaging can be trivially applied to any mistake-driven

online algorithm. We applied it to all learners presented pre-
viously and we refer to it using a “v-” prefix. For instance,
v-MBW and v-ROMMA refer to the voted (or averaged)
versions of Modified Balanced Winnow and ROMMA, re-
spectively.

4. EXPERIMENTS AND RESULTS

4.1 Datasets
The algorithms described above were evaluated in several

datasets, from different sources. The RequestAct dataset [9]
labels email messages as having a “Request speech act” or
not. In addition to the single word features [9], all word
sequences with a length of 2, 3, 4 or 5 tokens were extracted
and considered to be different features. The RequestAct
dataset has 70147 features and 518 examples. The Spam
dataset has 3302 examples and 118175 features. The task is
to detect spam email messages [2]. The Scam dataset has
3836 examples and 121205 features. Here we attempt to
separate “Scam” messages from the others [2]. The Reuters
dataset [15] has 11367 examples and 30765 features. We
attempt to classify the category “money” [1]. The 20news-
group dataset [18, 19] has 5000 examples and 43468 features,
and the problem is classifying newsgroups posts according
to one of the topics. The MovieReviews dataset [20] has
1400 examples and 34944 features. In this problem we try
to associate a positive or negative sentiment with a movie
review. The Webmaster dataset has 582 examples and 1406
features. The task is to classify web site update requests as
“Change” from “Add or Delete” [8].

The Signature and the ReplyTo datasets are related to
the tasks of detecting signature lines and “reply-to” lines in
email messages, respectively, using a basic set of features [5].
Both datasets have 37 features and 33013 examples.

The next datasets were obtained from the UCI data repos-
itory. The Adult dataset originally had 14 attributes and,
using only the training partition provided, 30162 examples.
Examples with missing attributes were discarded and the
8 nominal attributes were turned into different binary at-
tributes. The final dataset had 104 different attributes.
The Congressional dataset has 16 binary features and has
435 examples. The Credit (or Japanese Credit Screening)
dataset has 690 examples and 15 features originally. Af-
ter removing examples with missing attributes and turning
nominal attributes into different binary features, the dataset
had 46 features and 653 examples. The Ads dataset (or
Internet Advertisements) has 3279 examples and 1558 fea-
tures, mostly binary. Missing features were disregarded in
this data. The WiscBreast database represents the breast
cancer database obtained from the University of Wisconsin.
The data has 9 integer-valued features, and after removing
examples with missing attributes, a total of 683 examples
and 89 features remained. The Nursery dataset has 12960
instances and originally 8 nominal features. After turning
nominal features into different binary features, 89 features
can be found in the dataset. The task here is to distinguish
between “priority” and the other classes.

4.2 Results
In all Winnow variants, we set the promotion parameter

α = 1.5 and the demotion parameter β = 0.5. These are
the same values used in previous Winnow implementations
[3, 4]. Additionally, all Winnow variants used threshold
θth = 1.0 motivated by the fact that all incoming exam-
ples go through the normalization preprocessing step. Also
motivated by the normalization procedure, the “margin” M
was set to 1.0 in MBW.

Based on ideas from Dagan et. al. [11], the initial weights
in Positive Winnow were initialized as θ0 = 1.0, and in Bal-
anced Winnow as θ+

0 = 2.0 and θ−0 = 1.0. Similar to Bal-
anced Winnow, the MBW initial weights were θ+

0 = 2.0 and
θ−0 = 1.0.

For comparison, we added performance results of two pop-
ular learning algorithms that are typically used in batch
mode: linear SVM 1 and Naive Bayes [18]. Results were
evaluated in terms of F1 measures. F1 is the harmonic
precision-recall mean, defined as F1 = 2·Precision·Recall

Recall+Precision
.

We evaluated the general classification performance of the
algorithms in 5-fold cross-validation experiments. All algo-
rithms were trained using only a single pass through the
training data. Results are illustrated in Tables 3 and 4.

Table 3 describes the performance of five different online
methods, along with their voted versions. The first eight
datasets in Table 3 are NLP-like datasets, where the feature
space is very large and the examples are typically “sparse”,
i.e., the number of non-zero features in the examples is much
smaller than the size of the feature space. The last seven
datasets (non-NLP) in Table 3 have a much smaller feature
space and the examples are not sparse.

Median F1 values and the average rank values over the two
different types of data are also included in Table 3. The best
results for each dataset are indicated in bold. Two-tailed T-
Tests relative to MBW are indicated with the symbols *
(p ≤ 0.05) or ** (p ≤ 0.01).

In general, the non-voted Winnow variants performed bet-

1We used the LIBSVM implementation [7] with default pa-
rameters



NLP Datasets MBW PW BW PA ROMMA v-MBW v-PW v-BW v-PA v-ROMMA
RequestAct 76.7 67.0∗∗ 62.6∗∗ 68.9∗ 09.6∗∗ 67.3∗∗ 46.8∗∗ 59.0∗∗ 60.2∗∗ 5.6∗∗

Spam 95.8 93.8∗∗ 94.4 93.1∗∗ 83.1∗∗ 95.8 94.0∗∗ 96.2 93.3∗∗ 73.3∗∗

Scam 99.9 96.5∗∗ 98.4∗∗ 99.2∗∗ 97.3∗∗ 99.8 98.4∗∗ 99.6 97.6∗∗ 95.6∗∗

Reuters 95.9 93.8∗∗ 94.0∗∗ 95.5 91.9 96.9∗∗ 95.8 96.2 96.3 90.4∗∗

20newsgroup 93.7 81.6∗∗ 86.6∗∗ 81.1∗∗ 66.9∗∗ 91.9 82.7∗∗ 87.3∗∗ 73.9∗∗ 53.7∗∗

MovieReviews 75.1 66.8∗∗ 74.5 28.8∗∗ 57.1∗∗ 77.2 63.0∗∗ 68.9∗∗ 67.5∗∗ 24.8∗∗

Webmaster 88.6 82.5 85.6 82.5 79.1∗∗ 86.7 82.0∗ 86.8 86.7 63.8∗∗

Ads 81.3 73.8∗ 72.7∗ 70.0∗∗ 19.7∗∗ 78.2 71.7∗∗ 72.2∗∗ 63.6∗∗ 17.2∗∗

Median F1 91.1 82.0 86.1 81.8 73.0 89.3 82.3 87.0 80.3 58.8
Avg. Rank 1.75 6.12 4.62 6.12 8.75 3.71 6.25 3.50 5.75 10.0

nonNLP Data.
Sig 80.2 66.4∗∗ 74.1∗ 67.0∗ 60.9∗∗ 80.3 80.2 80.3 79.6 79.6

Reply 93.4 89.9 93.2 92.0 90.0 93.5 93.6 93.6 94.2 94.2
Adult 25.0 46.7∗∗ 44.7∗∗ 13.4∗∗ 41.8∗∗ 19.6∗∗ 49.8∗∗ 49.1∗∗ 18.8∗∗ 41.0∗∗

Congress 94.2 92.5∗ 93.6 92.4 93.3∗ 96.0 94.3 95.2 94.3 92.5
Credit 72.1 79.1 74.3 46.2∗∗ 59.3∗∗ 79.7 78.1 77.3 60.0∗∗ 66.9
Wisc 96.8 96.4 96.3 97.5 96.0 97.2 96.9 96.7 97.4 95.7

Nursery 69.6 55.8∗ 69.1 72.0 68.3 69.6 80.3∗∗ 83.1∗∗ 86.3∗∗ 85.8∗∗

Median F1 80.2 79.1 74.3 72.0 68.3 80.3 80.3 83.1 86.3 85.8
Avg. Rank 5.57 7.00 6.42 7.42 8.28 3.71 3.14 3.14 4.28 5.71

Table 3: General Performance of Single-Pass Online Learners – F1 measures (%). PW=Positive Winnow,
BW=Balanced Winnow, PA=Passive-Aggressive. The symbols * and ** indicate paired t-Test statistical
significance (relative to MBW) with p ≤ 0.05 and p ≤ 0.01 levels, respectively.

SVM v-P MBW v-MBW NB
RequestAct 68.0 65.4 76.7 67.3 56.85

Spam 96.7 69.0 95.7 95.7 97.4
Scam 99.0 94.2 99.9 99.8 99.62

Reuters 96.7 96.3 95.9 96.8 85.52
20newsgroup 88.8 67.9 93.7 91.9 94.42

MovieReviews 78.5 71.4 75.1 77.1 71.85
Webmaster 88.9 88.5 88.6 86.6 77.38

Ads 80.5 58.0 81.3 78.2 52.5
Median F1 88.8 70.2 91.1 89.3 81.45
Avg. Rank 2.25 4.25 2.12 2.62 3.62
Signature 80.3 80.2 80.2 80.3 73.88
Reply-to 94.8 94.3 93.4 93.5 93.98

Adult 32.3 26.6 25.0 19.6 41.0
Congressional 96.2 95.7 94.2 95.9 91.7

Credit 80.2 59.5 72.1 79.6 66.78
WiscBreast 96.6 97.1 96.8 97.2 98.2

Nursery 87.1 86.8 57.0 69.6 84.4
Median F1 87.1 86.8 80.2 80.3 84.4
Avg. Rank 1.71 3.00 4.00 3.00 3.14

Table 4: General Performance - F1 measure (%).
NB=Naive Bayes, v-P= Voted Perceptron.

ter (higher Median F1 and lower Avg. Rank) than non-voted
Passive-Aggressive or non-voted ROMMA on both types of
datasets. Passive-Aggressive typically presented better re-
sults than ROMMA; and Balanced Winnow outperformed
Positive Winnow in almost all tests. MBW outperformed
all other online learners for NLP datasets, and also all other
non-voted learners for non-NLP datasets.

We compare MBW results to the batch learners SVM and
Naive Bayes in Table 4. This Table illustrates F1 results
along with their standard errors for SVM, Voted Perceptron
(or v-P), MBW, v-MBW and Naive Bayes (or NB) learners.
Similar to Table 3, the datasets are presented in two groups
(NLP and non-NLP) and best results are indicated in bold.

From Tables 3 and 4, it is important to observe that the
MBW learner indeed reaches impressive performance num-
bers in the NLP-like datasets, outperforming all other learn-

ers — including SVM. The MBW performance in the NLP
dataset is very encouraging, and a more detailed analysis of
the behavior of this learner on NLP datasets will be pre-
sented in Section ??.

In the non-NLP tasks, however, SVM shows much better
results than all other learners and MBW is not competitive
at all. In fact, the Voted Perceptron would probably be
the best choice for single-pass online learning in this type of
data. It is interesting that the Voted Perceptron performs so
well in non-NLP tasks and so poorly in NLP-like datasets.

In general, non-voted Winnow variants perform better
in NLP-like than in non-NLP datasets. This agrees with
the general intuition that multiplicative updates algorithms
handle well high dimensional problems with sparse target
weight vectors [11].

Table 3 also presents the overall effect of voting over the
two types of datasets. It is easy to observe that voting im-
proves the performance of all online learners for non-NLP
datasets. However, for the NLP-like datasets, the improve-
ments due to averaging are not as obvious. For instance, on
Balanced Winnow, a small improvement can be observed,
particularly when the F1 values are high. On Positive Win-
now and Passive-Aggressive, it is not clear if voting is ben-
eficial. For ROMMA, voting visibly deteriorates the per-
formance. For MBW, voting seems to causes a small per-
formance deterioration. It is not clear to the authors the
reasons why averaging does not improve performance for
NLP tasks in the single-pass setup.

In summary, voting seems to be a consistent and powerful
way to boost the overall performance of very distinct single-
pass online classifiers for non-NLP tasks. In NLP tasks,
voting does not seem to bring the same benefits. More de-
tailed experiments, learning curves and graphical analyses
can be found in [6].

5. ONLINE FEATURE SELECTION
Feature selection for NLP tasks is usually performed in



batch mode. Examples of common metrics for feature se-
lection are Information Gain and Chi-Square [12, 22]. Ex-
tending such batch feature selection techniques to the on-
line learning setting is not obvious. In the online setting
the complete feature set is not known in advance. Also,
it would be desirable to refine the model every time new
examples are presented to the learner: not only by adding
new meaningful features to the model, but also by deleting
unimportant features that were previously selected. Adapt-
ing the batch techniques to the online setting would be very
expensive, since each score of each feature would need to be
recalculated after every new example.

As previously seen, the MBW learner reaches very good
performance in NLP tasks with a single learning pass
through the training data. Here we propose a very simple
and very fast online Feature Selection scheme called Ex-
tremal Feature Selection (or EFS), based on the weights
stored by the MBW learner. The idea is to rank the feature
importance according to the difference (in absolute value)
between its positive and negative MBW weights. More
specifically, at each time t the importance score I of the
feature j is given by Ijt =

˛̨
ujt − vjt

˛̨
where ujt and vjt are the

positive and the negative model weights for feature j.
After the scores Ijt are computed, it would be expected

that the largest values correspond to the most meaning-
ful features to be selected at each time step. We would
also expect that the lowest values of Ijt correspond to the
most unimportant features, prone to be deleted from the fi-
nal model. In fact, a detailed analysis in the 20newsgroup
dataset indicated that these low score features are typical
stop words: e.g., “as”, “you”, “what”, and “they”.

In preliminary experiments, however, we observed an un-
expected effect: performance is improved by selecting not
only the highest Ijt -valued features, but also a small num-
ber of features with the lowest values. EFS uses not only
the extreme top T features, but also a small number from
the extreme bottom B. For instance, in order to select 100
features from a dataset, EFS would select 90% of these 100
features from the extreme top T and 10% from the extreme
bottom B.

The effectiveness of this idea can be seen in Figure 1.
This figure illustrates the MBW test error rate for differ-
ent numbers of features selected in the training set. More
specifically, we first trained a MBW learner on the training
set and then selected the features according to Ijt -values and
P . We then deleted the other features (non-selected) from
the MBW model and used this final model as test probe.
We used a random split of 20% of the 20newsgroup data as
the test set, and the remaining as training examples. The
quotient P = T

T+B
represents the fraction of the selected

features with high-score Ijt . For example, P = 0.7 indicates
that 70% of the features were selected from the top and 30%
from the bottom; and P = 1 indicates that no low-score fea-
tures were selected at all.

As expected, the performances in Figure 1 improve as P
increases — since selecting more high score features trans-
lates to better selection overall. This general behavior was
also observed in all other NLP datasets. However, the con-
dition P = 0.9 seems to outperform the condition P = 1,
specially for non-aggressive feature selection (i.e., when the
number of selected features is relatively large). This unex-
pected behavior was also observed in other NLP datasets
(see also Figure 2). It indicates that there is a small set

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  10  100  1000  10000  100000

E
rr

or
 R

at
e 

(o
n 

te
st

 s
et

)

Number of Features Selected (from training set)

P=0.3

P=0.5

P=0.7

P=0.9

P=1.0

Figure 1: EFS experiment on the 20newsgroup
dataset. P = T

T+B
is the fraction of selected features

using high Ijt scores.

of low score features that are very effective to the proposed
online feature selection scheme.

Similar to Figure 1, Figure 2 shows test error rates in
other datasets for different numbers of features selected in
the training set. Again, 20% of the data was used as the test
set and the quotient P = T

K
represents the fraction of the

selected features with high-score Ijt . Figure 2 also illustrates
MBW performance using two popular batch feature selec-
tion schemes: Information Gain (IG) and Chi-Square(CHI).
For these two schemes, first a new training set containing
only the selected features is created; then a MBW classifier
learns a final model using the new training set.

Figure 2 reveals that EFS with P = 0.9 has a perfor-
mance comparable to IG and CHI. In one of the experi-
ments (MovieReviews) the EFS performance was generally
better than IG or CHI in almost all feature selection ranges.
Reuters was the only dataset where the traditional methods
outperformed EFS, but only for very aggressive feature se-
lection — when only a small number of features is selected.
Additional experiments can be found in [6].

We speculate that the importance of these low score
features is related to a smoothing-like effect in the MBW
learner. Recall that MBW uses a normalization prepro-
cessing step that is susceptible to the number of non-zero
features in the incoming example, and the low-score features
are frequently found in most examples. A more detailed
investigation of this issue is a topic of future research.
Another obvious future research will be applying such
technique to other learning algorithms.

EFS results are very encouraging. The ability to perform
effective online learning and feature selection in the same
framework can largely benefit systems constrained by lim-
ited resources.

6. ANALYSIS AND CONCLUSIONS
In this work we investigated the problem of single-pass on-

line learning. This setting is particularly relevant when the
system cannot afford several passes throughout the train-
ing set—for instance, when dealing with massive amounts of
data, or when memory or processing resources are restricted.
To the best of our knowledge, this is the first comprehensive



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  10  100  1000  10000  100000

E
rr

or
 R

at
e 

(o
n 

te
st

 s
et

)

Number of Features Selected (from training set)

20newsgroup Dataset

P=0.9

P=1.0

P=IG

P=CHI

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  10  100  1000  10000  100000

E
rr

or
 R

at
e 

(o
n 

te
st

 s
et

)

Number of Features Selected (from training set)

MovieReviews Dataset

P=0.9

P=1.0

P=IG

P=CHI

Figure 2: EFS experiments: Comparison with In-
formation Gain and Chi-Square.

comparison of online learners in the single-pass setting.
We proposed a new modification of the Balanced Winnow

algorithm (MBW) that performs surprisingly well in NLP
tasks for the single-pass setting, with results comparable
and sometimes even better than SVM. We evaluated the use
of averaging (a.k.a. voting) on several online learners, and
showed that it considerably improves performance for non-
NLP tasks. Averaging techniques have been evaluated in
the past for the Perceptron algorithm, but not for Winnow,
Passive-Aggressive, ROMMA or other mistake-driven online
learners.

Finally, we proposed a new online feature selection scheme
based on the new MBW algorithm. This scheme is sim-
ple, efficient, and naturally suited to the online setting. We
showed that the method is comparable to traditional batch
feature selection techniques such as information gain.

Acknowledgement
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA). Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not nec-
essarily reflect the views of the Defense Advanced Research
Projects Agency (DARPA), or the Department of Interior-

National Business Center (DOI-NBC).

7. REFERENCES
[1] E. Airoldi, W. W. Cohen, and S. E. Fienberg. Bayesian

methods for frequent terms in text: Models of contagion and
the delta square statistic. In Proceedings of the CSNA &
INTERFACE Annual Meetings, 2005.

[2] E. M. Airoldi and B. Malin. Data mining challenges for
electronic safety: The case of fraudulent intent detection in
e-mails. In Proceedings of the Workshop on Privacy and
Security Aspects of Data Mining, pages 57–66. IEEE
Computer Society, November 2004. Brighton, England.

[3] R. Bekkerman, A. McCallum, and G. Huang. Categorization of
email into folders: Benchmark experiments on enron and sri
corpora. Technical Report CIIR Technical Report IR-418,
CIIR, University of Massachusetts, Amherst, 2004.

[4] A. Blum. Empirical support for WINNOW and weighted
majority algorithms: results on a calendar scheduling domain.
In ICML, Lake Tahoe, California, 1995.

[5] V. R. Carvalho and W. W. Cohen. Learning to extract
signature and reply lines from email. In Proceedings of the
Conference on Email and Anti-Spam, Palo Alto, CA, 2004.

[6] V. R. Carvalho and W. W. Cohen. Notes on single-pass online
learning algorithms. Technical Report CMU-LTI-06-002,
Carnegie Mellon University, Language Technologies Institute,
2006. Available from http://www.cs.cmu.edu/˜vitor.

[7] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[8] W. Cohen, E. Minkov, and A. Tomasic. Learning to understand
web site update requests. In IJCAI, Edinburgh, Scotland, 2005.

[9] W. W. Cohen, V. R. Carvalho, and T. M. Mitchell. Learning to
classify email into “speech acts”. In EMNLP, pages 309–316,
Barcelona, Spain, July 2004.

[10] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer.
Online passive-aggressive algorithms. In NIPS, 2003.

[11] I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in
text categorization. In EMNLP, pages 55–63, Aug 1997.

[12] G. Forman. An extensive empirical study of feature selection
metrics for text classification. Journal of Machine Learning
Research, 3:1289–1305, 2003.

[13] Y. Freund, Y. Mansour, and R. E. Schapire. Why averaging
classifiers can protect against overfitting. In Proceedings of the
Eighth International Workshop on Artificial Intelligence and
Statistics, 2001.

[14] Y. Freund and R. E. Schapire. Large margin classification using
the perceptron algorithm. Machine Learning, 37(3):277–296,
1999.

[15] D. D. Lewis and M. Ringuette. A comparison of two learning
algorithms for text categorization. In Proceedings of
SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, pages 81–93, Las Vegas, US, 1994.

[16] Y. Li and P. M. Long. The relaxed online maximum margin
algorithm. In Machine Learning, volume 46, pages 361–387,
2002.

[17] N. Littlestone. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
2(4), 1988.

[18] T. Mitchell. Machine Learning. Mcgraw-Hill, 1997.

[19] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text
classification from labeled and unlabeled documents using EM.
Machine Learning, 39((2/3)):1–32, 2000.

[20] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment
classification using machine learning techniques. In EMNLP,
2002.

[21] F. Rosenblatt. The perceptron: A probabilistic model for
information storage and organization in the brain. In
Psychological Review, volume 4, pages 386–407, 1958.

[22] Y. Yang and J. O. Pedersen. A comparative study on feature
selection in text categorization. In ICML, pages 412–420, 1997.


