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ABSTRACT
Many recommendation and retrieval tasks can be repre-
sented as proximity queries on a labeled directed graph,
with typed nodes representing documents, terms, and meta-
data, and labeled edges representing the relationships be-
tween them. Recent work has shown that the accuracy
of the widely-used random-walk-based proximity measures
can be improved by supervised learning - in particular, one
especially effective learning technique is based on Path-
Constrained Random Walks (PCRW), in which similarity
is defined by a learned combination of constrained random
walkers, each constrained to follow only a particular se-
quence of edge labels away from the query nodes. The
PCRW based method significantly outperformed unsuper-
vised random walk based queries, and models with learned
edge weights. Unfortunately, PCRW query systems are ex-
pensive to evaluate. In this study we evaluate the use of
approximations to the computation of the PCRW distribu-
tions, including fingerprinting, particle filtering, and trunca-
tion strategies. In experiments on several recommendation
and retrieval problems using two large scientific publications
corpora we show speedups of factors of 2 to 100 with little
loss in accuracy.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Relational Retrieval, Path-Constrained Random Walks, Learn-
ing to Rank, Filtering and Recommending
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1. INTRODUCTION
In many natural IR settings, documents are associated

with metadata (e.g., author names and citations in corpora
of technical papers or patents). A corpus of such documents
can be viewed as a labeled directed graph, with typed nodes
representing documents, terms, and metadata, and labeled
edges representing the relationships between them (e.g., “au-
thorOf”, “datePublished”, etc). This data representation
suggests the problem of relational retrieval, in which a user’s
query is a weighted set of graph nodes, and a response is
a ranked set of answer nodes ordered by some measure of
proximity to the query nodes. Traditional keyword-based
ranked retrieval of documents is a special case of this, as is
collaborative filtering.

One very common and successful set of proximity mea-
sures are based on random walks on graphs, for instance
lazy random walks [19] or personalized PageRank [6, 8] or
Random Walk with Restart [25]. However, regular graph-
walk based similarity measure is naive in the sense that the
random walker does not distinguish the importance of differ-
ent paths. Relational data is usually annotated with a rich
set of entity and relation types, and there could be many dif-
ferent relation paths by which the query entities can reach
the target entity. Naturally these paths have different im-
portance to the retrieval task. For example, in the TREC-
CHEM Prior Art Search Task, instead of directly searching
for patent with the query words, people found it much more
effective to first find papers with similar topic, then aggre-
gate these papers citations [17]. The path associated with

this strategy can be expressed as “query word
ContainedBy
−−−−−−−−−→

patent
Cite
−−−→ patent”.

In our previous work [16], we developed an effective learn-
ing technique that is based on Path-Constrained Random
Walks (PCRW), in which similarity is defined by a learned
combination of constrained random walkers, each constrained
to follow only a particular sequence of edge labels away from
the query nodes. Each of these paths can be seen as a lit-
tle expert for identifying relevant entities, and we combine
their decisions by a supervised log-linear model. The PCRW
based mode can discover (and appropriately weight) fairly
complex relation paths, like the one above.

Unfortunately, PCRW query systems are expensive to eval-
uate. The number of nodes with non-zero probability grows
very fast on a well connected graph. However, one impor-
tant fact about random walks is that, in general, we expect
that the random walk will lead to very uneven distributions
over all the entities: high probability on a few entities, usu-
ally entities of high in-degrees, and low probability on the



remainder. For example, this kind of uneven distribution
(called power law distribution) has been observed [22] on
PageRank scores of web pages; PageRank is also a type of
random walk model. As a consequence, a few nodes have a
large influence on the retrieval result, and most nodes have
very small influence, and it is plausibly acceptable to ignore,
or approximate, the weight of most nodes. In past work, a
sampling based random walk strategy has been shown to
give inaccurate estimations for low ranked nodes; in spite
of this, however, Fogaras et al. [11] showed that using a
Monte Carlo algorithm and a small number of trials is suf-
ficient to distinguish between the high, medium and low
ranked nodes accurately in Personalized PageRank scores;
as well, Chakrabarti [7] used a dynamic pruning strategy for
the calculation of Personalized Pageranks, in which weights
smaller than a threshold are pruned, and showed that this
operation has minimal effect on accuracy. Therefore, we
can expect that keeping the distribution reached by random
walks sparse may significantly reduce the amount of time
and memory spent on query execution.

In this study, we investigate the trade-off between infer-
ence efficiency and retrieval quality for supervised learning of
PCRW models. We compare the query execution speedups
by different strategies that help maintain sparsity of ran-
dom walk, including fingerprinting, particle filtering, and
truncation strategies. Our experiments on several recom-
mendation and retrieval tasks involving scientific publica-
tions show that appropriate sparsity strategies can improve
retrieval efficiency by up to two orders of magnitude without
noticeably effecting retrieval quality.

In the remainder of the paper, we first briefly reviews re-
lated work. We next present the path ranking algorithm,
describing first the way in which path experts are enumer-
ated, then the learning algorithm. In the next section, we
describe four strategies to maintain the sparsity of random
walks. We then analyze experimental result on several tasks
in biogenetics domain and conclude.

2. RELATED WORK
Many early approaches to the problem of retrieval on

entity-relation data graph are keyword-based database sys-
tems [2][15][6]. They are designed mainly for ad-hoc queries,
thus are not trainable for specific IR tasks. Another branch
of work is using random walk on graphs as proximity mea-
sures, notably the PageRank [21] and the Personalized PageR-
ank algorithm [12]. There have been much follow up work
in supervised learning of random walk models. Nie et al.[20]
use simulated annealing to perform local search over each
edge type, which is only applicable when the number of pa-
rameters is very small. Diligenti et al. [10] optimize rela-
tion weights using back-propagation, which has linear con-
vergence, therefore requires many iterations to reach conver-
gence. Agarwal et al. [1] applied efficient second order opti-
mization procedure with preference labels of pairs of entities;
however, instead of using real relevance data, document or-
derings generated from artificially manipulated random walk
models were used. One limitation to all these models is that
by using one parameter per edge type, these models cannot
leverage complex path features of relational data. Recently,
there has been work on systems that learn to do graph re-
trieval with richer feature sets. Minkov et al. [19] showed
that using n-grams of relation paths as reranking features
can significantly improve the retrieval quality of a random

walk based model. More recently, Minkov & Cohen[18] pro-
posed a random walk based generative learning model that
favors paths which are more likely to reach relevant entities.

In our previous study, we developed a discriminative ver-
sion of this learning technique that is based on path-constrained
random walks, in which similarity is defined by a learned
combination of constrained random walkers [16]. This PCRW
based model has shown significant improvement of retrieval
quality over the edge parameterized random walk models.
We will describe this model in detail in section 3.

The efficiency of keyword search on graph has been the
concern for many previous systems. Most of them [24][13][9]
build two-level representations of the graphs offline. Tong
et al.[25] studied fast RWR methods based on low-rank ma-
trix approximation, and graph partitioning. More recently,
Chakrabarti [7] developed the HubRank algorithm, which
precompute offline the Personalized Pagerank Vectors (PPVs)
for a small fraction of nodes, carefully chosen using query
log statistics. It is not immediately apparent how to adapt
these methods to path-constrained random-walk distance
measures; hence, in this study, we will focus on methods
for maintaining a sparse representation of random walk dis-
tributions at query time.

3. THE PCRW-BASED MODEL
For completeness, this section summarizes the PCRW learn-

ing algorithm, which we call Path Ranking Algorithm (PRA).

3.1 The Retrieval Model
One-parameter-per-edge label RWR proximity measures

are limited because the context in which an edge label ap-
pears is ignored. For example, in the reference recommen-
dation task, one of the query nodes is a year. There are
two ways in which one might use a year y to find candidate
papers to cite: (H1) find papers published in year y, or (H2)
find papers frequently cited by papers published in year y.
Intuitively, the second heuristic seems more plausible than
the first; however, a system that insists on a using a single
parameter for the“importance”of the edge label PublishedIn
cannot easily encode this intuition.

To define heuristics of this sort more precisely, let R be
a typed binary relation. We write R(e, e′) if e and e′ are
related by R, and define R(e) ≡ {e′ : R(e, e′)}. We will use
dom(R) to denote the domain type of R, and let range(R)
for its range. A relation path P is a sequence of relations
R1 . . . Rℓ. We say that a relation path is type-correct if the
domains and ranges of adjacent relations are compatible–
i.e., if ∀i : 1 < i < ℓ − 1, range(Ri) = dom(Ri+1). In this
paper we will consider only type-correct relation paths. For
a type-correct path, we define dom(R1 . . . Rℓ) ≡ dom(R1)
and range(R1 . . . Rℓ) ≡ range(Rℓ), and when we wish to
emphasize the types associated with each step in a path, we
will write the path P = R1 . . . Rℓ as

T0
R1−−→ . . .

Rℓ−−→ Tℓ

where T0 = dom(R1) = dom(P ), T1 = range(R1) = dom(R2)
and so on. In this notation,the two heuristics suggested
above would be written as:

H1 : year
PublishedIn

−1

−−−−−−−−−→ paper

H2 : year
PublishedIn

−1

−−−−−−−−−→ paper
Cite
−−→ paper
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Figure 1: A 2-level relation tree for a simple schema
of paper and author

This notation makes it clear that the range of each relation
path is paper, the desired type for reference recommenda-
tion. We use −1 to denote the inverse of a relation, which
is considered a different relation: for instance, PublishedIn
and PublishedIn−1 are considered as different relations.

For any relation path P = R1 . . . Rℓ and set of query en-
tities Eq ⊂ dom(P ), we define a probability distribution
hEq,P as follows. If P is the empty path, then define

hEq,P (e) =



1/|Eq |, if e ∈ Eq

0, otherwise
(1)

If P = R1 . . . Rℓ is nonempty, then let P ′ = R1 . . . Rℓ−1, and
define

hEq,P (e) =
X

e′∈range(P ′)

hEq,P ′(e′) ·
I(Rℓ(e

′, e))

|Rℓ(e′)|
, (2)

where I(R(e′, e)) is an indicator function that takes value
1 if R(e′, e) and 0 otherwise. If we assume as well that
I(R(e′, e)) = 0 when e′ is not in the domain of R, then
the definition natural extends to the case where Eq is not a
subset of dom(P ).

Given these definitions, the intuition that “heuristic H1
is less useful than H2” could be formalized as follows: for
reference recommendation queries Eq, Tq, where Eq is a set
of title words, gene-protein entities, and a year y, entities
e1 with high weight in hEq,PublishedIn−1 are not likely to
be good citations, where as entities e2 with high weight in
hEq,PublishedIn−1 .Cite are likely to be good citations. More
generally, given a set of paths P1, . . . , Pn, one could treat
these paths as features for a linear model and rank answers
e to the query Eq by

θ1hEq,P1(e) + θ2hEq,P2(e) + . . . θnhEq,Pn(e)

where the θi are appropriate weights for the paths.
In this paper, we consider learning such linear weighting

schemes over all relation paths of bounded length ℓ. For
small ℓ (e.g., ℓ ≤ 4), one can easily generate P(q, l) = {P},
the set of all type-correct relation paths with range Tq and
length ≤ l. The distributions defined by all the relation
paths can be summarized as a prefix tree (Figure 1), where
each node corresponds to a distribution hP (e) over the enti-
ties. A PRA model ranks e ∈ I(Tq) by the scoring function

s(e; θ) =
X

P∈P(q,l)

hEq,P (e)θP , (3)

In matrix form this could be written s = Aθ, where s is a
sparse column vector of scores, and θ is a column vector of
weights for the corresponding paths P . We will call A the
feature matrix, and denote the i-th row of A as Ai.

We found that, because some of the relations reflect one-
to-one mappings, there are groups of paths that give exactly

the same distribution over the target entities. For example,
the following three paths among years are actually equiva-
lent:

year
Before−1

−−−−−−→ year
Before
−−−−−→ year

Before
−−−−−→ year

year
Before
−−−−−→ year

Before−1

−−−−−−→ year
Before
−−−−−→ year

year
Before
−−−−−→ year

Before
−−−−−→ year

Before−1

−−−−−−→ year
To avoid creating these uninteresting paths, we add con-
straint to the following relations that they cannot be im-
mediately preceded by their inverse: Before, Before−1,
PublishedBy(journal), PublishedIn(year).

3.2 Parameter Estimation
There have been much previous work in supervised learn-

ing of random walk models. Nie et al.[20] use exhaustive
local search over each edge type, which is only applicable
when the number of parameters is very small. Diligenti et
al. [10] and its follow up [19] optimize weights on the rela-
tions using back-propagation, which has linear convergence,
therefore requires many iterations to reach convergence. Re-
cent work [1][8] uses more efficient second order optimization
procedure like BLMVM for numerical optimization. In this
study, we use L-BFGS [3], a second order optimization pro-
cedure used for many machine learning problems, and bino-
mial log-likelihood loss functions.

The training data can be represented as D = {(q(m), r(m))},

m = 1...M , where r(m) is a binary vector. r
(m)
e = 1 if en-

tity e is relevant to the query q(m), and r
(m)
e = 0 otherwise.

Given the training data, parameter estimation can be for-
mulated as maximizing a regularized objective function

O(θ) =
X

m=1..M

o(m)(θ) − λ|θ|2/2 (4)

where λ is a regularizer, and o(m)(θ) is a per-instance objec-
tive function. In this paper we use binomial log-likelihood
(the loss function for logistic regression); however, negative
hinge loss (for SVM), negative exponential loss (for boost-
ing), and many other functions could be used instead. Bino-
mial log-likelihood has the advantage of being easy to opti-
mize, and also does not penalize outlier samples too harshly,
as exponential loss does. For a training instance (q(m), r(m)),

let A(m) be its corresponding feature matrix, R(m) be the
index set of the relevant entities, and N (m) the index set
of the irrelevant entities. In order to balance the uneven
number of positive and negative entities, we use the average
log-likelihood of positive and negative entities as the objec-
tive

o(m)(θ) =
X

i∈R(m)

ln p
(m)
i

|R(m)|
+

X

i∈N (m)

ln(1 − p
(m)
i )

|N (m)|
(5)

where p
(m)
i = p(r

(m)
i = 1; θ) = σ(θT A

(m)
i ), σ is the sigmoid

function σ(x) = exp(x)/(1 + exp(x)), and the gradient is

∂o(m)(θ)

∂θ
=

X

i∈R(m)

(1 − p
(m)
i )A

(m)
i

|R(m)|
−

X

i∈N (m)

p
(m)
i A

(m)
i

|N (m)|
. (6)

In most retrieval tasks, there are just a few positive entities
but thousands (or millions) of negative ones. Therefore us-
ing all of them in the objective function is expensive. Here
we used a simple strategy similar to stratified random sam-
pling [23]. First, we sort all the negative entities using a
PRA model without training (i.e., all feature weights are



set to 1.0). Then, entities at the k(k + 1)/2-th positions
are selected as negative samples, where k = 0, 1, 2, 3, ... This
is useful because generally, non-relevant entities which are
highly ranked by the untrained ranking function are more
important than lower ranked ones: for in-depth comparisons
of different selection strategies we refer the reader to Aslam
et al.’s work [5].

For parameter estimation of the one-weight-per-edge-label
RWR model, we use the same log-likelihood objective func-
tion and LBFGS optimization procedure as for PRA. Since
RWR can be seem as the combination of all the PCRWs
with each path having its weight set to the product of all
the edge weights along the path, we can calculate the gradi-
ent of edge weights by first calculating the gradient w.r.t. the
paths, and then applying the chain rule of derivative.

4. SPARSE RANDOM WALKS
In this section, we describe four strategies to maintain the

sparsity of random walks. They all approximate the exact
random walk distribution defined by equation (2), but with
different ways of generating or sparsifying h(e) at each step
of random walk. Each of these strategies will be used in both
parameter estimation at training time and query execution
at test time.

4.1 The Fingerprinting Strategy
Fogaras et al. [11] suggested a Monte Carlo algorithm

to approximate the distributions of personalized PageRank,
where K independent random walks are simulated starting
from the query node. The probability of a node u is ap-
proximated by the normalized count of number of times it
is visited by the random walkers, and the amount of compu-
tation can be easily controlled by varying K. The authors
showed that using only a relatively small number of ran-
dom walkers is sufficient to distinguish between the high,
medium and low ranked nodes in the fully computed Per-
sonalized PageRank scores. Although the orders of the low
ranked nodes are usually not as accurate using sampling,
it is most often the high ranked nodes that determine the
quality of retrieval.

In this study, we test the effectiveness of this sampling
strategy in the context of PCRW. The distribution hi+1(e)
at the i + 1-th step can be approximated by the normalized
count of the number of walkers visiting a node e after a one
step walk starting from their positions in the previous step
i

hi+1(e) =
#walkers visiting e

#walkers
.

4.2 Weighted Particle Filtering
One possible downside for the fingerprinting strategy is

the waste of computation when the number of walkers is
much larger than the number of links. For example, if we
start with 30k walkers from a node which only has three
outlinks, the fingerprinting strategy will draw 30k random
numbers, and assign each of the walkers to follow a specific
outlink. However, with knowledge of probabilities, we know
that it is expected to have around 10k walkers following each
of the outlinks.

Here we describe a weighted particle filtering procedure
(Algorithm 1), which is an combination of exact random
walk and sampling. Conceptually, we can treat the initial

Algorithm 1 Weighted Particle Filtering

Input: distribution hi(e), relation R, threshold εmin

Output: hi+1(e)
Set hi+1(e) = 0 (should not take any time)
for each e with hi(e) 6= 0 do

sizenew = hi(e)/|R(e)|
if sizenew > εmin then

for each e′ ∈ R(e) do
hi+1(e

′)+ = sizenew

end for
else

for k=1..floor(hi(e)/εmin) do
randomly pick e′ ∈ R(e)
hi+1(e

′)+ = εmin

end for
end if

end for

30k walkers as a single particle, and at the first step of ran-
dom walk it splits into three equal-sized particles, each con-
taining 10k walkers and following a different link. If we let
the particles split to arbitrarily small sizes, then we just get
the exact probability distribution defined by equation (2)
(with proper normalization). In order to keep the distribu-
tion sparse and speedup random walk, we set a threshold
εmin on the minimum size of the particles. If a potential
split breaks a particle to particles with sizes smaller than
the threshold, we switch from exact calculation to sampling
strategy. We let the particle splits to less number of child
particles, each having the same size as the threshold εmin.
Each of these child particles randomly picks one of the out-
links to follow.

4.3 Truncation Strategies
As we explained before, random walks usually have un-

even distribution over all the entities: high probability on a
few important entities, and low probability on many noisy
entities. Therefore, we hypothesis that zeroing the weights
on the low-weight entities will not significantly affect the
random walk’s ability to identify important entities, but on
the other hand may significantly reduce the amount of time
and memory spent on random walk. Recently, Chakrabarti
[7] applied a dynamic pruning strategy to the calculation
of Personalized Pageranks, for which elements in the fin-
gerprint vectors smaller than a threshold are pruned. They
discover that this operation has a dramatic effect on keeping
the fingerprint vectors sparse, while having a minimal effect
on accuracy.

Here we test the effectiveness of this strategy in the con-
text of PCRW. At each step of the random walk, we add
a truncation step to the distribution estimated by equation
(2):

hi+1(e) = max(0, hi+1(e) − ε),

where ε is a parameter to control the harshness of trunca-
tion. This procedure also has the effect of putting more
regularization on longer paths. Since longer paths are gen-
erally reduced more harshly by this truncation procedure,
their weights need to be larger than the short paths in order
to achieve the same effect in the ranking function. We call
this approach fixed truncation.

One possible disadvantage of fixed truncation is that the



truncation parameter ε is not directly related to the spar-
sities of probability distributions. Therefore, we design an
adaptive truncation strategy called beam truncation, which
explicitly constrains the random walk to the desired sparse-
ness. The truncation step is defined as

hi+1(e) = max(0, hi+1(e) − εW (hi+1)),

where εW (hi+1) is the W -th highest probability in distribu-
tion hi+1, and W is called the width of the beam.

5. EXPERIMENT
In this section, we compare different sparsity strategies

by their retrieval qualities on several recommendation and
retrieval tasks involving scientific publications. The baseline
for these strategies is the exact calculation of random walk
distributions.

5.1 Tasks
We consider here three tasks that are well-suited to solu-

tion by typed proximity queries.
Reference (or citation) recommendation is the problem of

finding relevant citations for a new paper. The query is, as in
venue recommendation, the title terms and relevant entities
for the new paper, the current year, and the answer type is
“paper”. The desired answer is a list of papers ranked by
appropriateness as citations in the new paper. This task is
similar to the TREC-CHEM Prior Art Search Task [17], and
can also be seem as a simplified version of the context-aware
citation recommendation task [14].

Expert finding is the problem of finding a domain expert
for a particular topic. The query is again a list of terms and
relevant entities, the current year, and the answer type is
“person”. The desired answer is a list of people with exper-
tise on this topic.

Gene recommendation, considered by Arnold and Cohen
[4], is the problem of predicting, given past publishing his-
tory, which genes an author will publish about over the next
year. Here the query nodes are an author and a year, and
the answer type is “gene”. This task is an approximation to
predicting future interests.

The first task is encountered in preparing a new paper,
and the second in finding reviewers, or new collaborators.
To evaluate performance on these tasks, we will compare
the ranked list from a query associated with a paper to the
actual metadata associated with the paper: specifically, we
will compare the actual citations to the recommended cita-
tions. Perhaps more speculatively, we will also compare the
authors of a paper to the experts recommended by the query
based on the title and related-entity set for the paper. In
each case the predictions will be made using a graph that
does not contain the actual paper in question—see the next
subsection for details.

5.2 Datasets
We created two publication data sets (Yeast and Fly) in

the biological domain. Paper content and metadata infor-
mation are crawled from two resources: PubMed1 is a free
on-line archive of over 18 million biological abstracts for pa-
pers published since 1948; PubMed Central (PMC)2 contains
full-text and references to over one million of these papers.

1www.ncbi.nlm.nih.gov/pubmed
2www.ncbi.nlm.nih.gov/pmc
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Figure 2 shows the schema of the yeast corpus. We
extracted gene mentions from the Saccharomyces Genome
Database(SGD)3 , which is a database of various types of
information concerning the yeast organism Saccharomyces
cerevisiae, including about 48K papers, each annotated with
the genes it mentions. The title words are filtered by a
stop word list of size 429. The Authorship relations are
further distinguish into three sub-types: any author, first
author, and last author. We extracted gene-gene relations
from Gene Ontology (GO)4, which is a large ontology de-
scribing the properties of and relationships between various
biological entities across numerous organisms.

Figure 3 shows the schema of the fly corpus. It is ex-
tracted from Flymine5, which is an integrated database for
Drosophila and Anopheles genomics, and contains about
127K papers tagged with genes and proteins. The schema
is similar to that of the yeast data, except for a new en-
tity type Protein6, and several relations among genes. The
Downstream and Upstream relations connect a gene to its
two neighbors on the DNA strand.

Each paper can be used to simulate a query and rel-
evance judgements for any of the three above mentioned
tasks. However, we need to prevent the system from using
information obtained later than the query’s date. There-
fore, we define a time variant graph in which each edge is
tagged with a time stamp (year). During random walk for
a query generated from a particular paper, we only consider
edges that are earlier than that paper’s publication date.
As shown by Table 1, for each task on any of the two cor-
pora, we randomly hold out 2000 queries for development,
and another 2000 queries for testing. We evaluate models by
Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR).

5.3 Main Results
In order to investigate the trade-off between speedup of

3www.yeastgenome.org
4www.geneontology.org
5www.flymine.org
6In yeast, there is a nearly one-to-one relationship between
genes and proteins, as most genes are transcribed to a unique
protein; in flies, alternative splicing means that a gene can
be transcribed to several different proteins.



Table 1: Corpus statistics
Graph Size No. Query

paper node edge train dev test
Yeast 48K 164K 2.8M 2K 2K 2K
Fly 127K 770K 3.5M 2K 2K 2K

query execution and retrieval quality, we vary for each spar-
sity method its sparsity parameter— from the most ineffi-
cient to the most efficient setting— and see how the retrieval
speed and quality are affected. We provide three baselines as
references to the quality of retrieval: exact but unsupervised
RWR (uniform weight 1.0), exact RWR, and exact PCRW.
For supervised models we fix the regularization parameter
λ to 0.001.

Figure 4 compares the speedup of query execution verses
MAP for different sparsity strategies. From left to right we
order the tasks in increasing order of random walk complex-
ity. The average single query execution times range from
0.15 seconds to 2.7 seconds when using exact calculation
of PCRW. We can see that all four strategies manage to
speedup query execution to certain extend without signifi-
cantly sacrifice the quality of retrieval. The strategies are
relatively more effective on complex tasks like gene recom-
mendation and reference recommendation.
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Figure 5: Compare sparsity and model weights of
fixed and beam truncation for the reference recom-
mendation task on Yeast data. (a) the number of
nodes with non-zero probability for each relation
path (averaged over all training queries). (b) the
learned weight for each relation path

The two truncation strategies (fixed and beam truncation)
have relatively limited ability to speedup query execution
(ranging from 2- to 10-fold). This is because, at each step of
random walk, they need to calculate the full distribution be-
fore truncation. When the truncation is harsh, on the other
hand, it is likely to produce empty distributions, which are
useless for retrieval. Fixed truncation generally has slightly
better retrieval quality than beam truncation. After close in-
spection, we found that although fixed and beam truncation
can produce random walk distribution with the same spar-
sity when their parameters are properly set, fixed truncation
has an extra effect of demoting longer paths. Since random
walks of longer paths are reduced more harshly by this trun-
cation procedure, their weights need to be larger than the
short paths in order to achieve the same effect in the rank-
ing function. The beam truncation on the other hand might
not truncate the distribution at all if the number of non-zero
nodes is smaller than the beam size, which is very likely to
happen in the first few steps of random walk. This is evident
in Figure 5, where we compare sparsity and learned weights

for fixed and beam truncation. Parameters are set so as both
strategies give 2.7-fold speedup over the exact random walk
baseline. However, fixed truncation has statistically signifi-
cantly better performance (MRR=0.407, MAP=0.205) than
beam truncation (MRR=0.398, MAP=0.200). We can see
that although the sparsities of these two strategies corre-
lates with each other very well, the learnt weights of fixed
truncations are generally much smaller than that of beam
truncation. This is because that the absolute values of the
probabilities produced by fixed truncation are smaller than
that of beam truncation. The path weights of fixed trun-
cation need to be larger than those of beam truncation in
order to achieve the same effect to ranking. Therefore, fixed
truncation has the effect of putting heavier regularization on
the weights of longer paths.

The two sampling based strategies (fingerprinting and par-
ticle filtering) have relatively larger speedups (ranging from
10- to 100-fold on various tasks). For plot in Figure 4, we
mark the number of random walkers and the maximum num-
ber of particles (estimated by 1/εmin) at the points where
retrieval quality starts to drop fast. We can see that, com-
pared to fingerprinting, particle filtering is almost always
2- to 4-fold faster. This is what we have expected, since
particle filtering can potentially represent a large number of
walkers with a small number of particles during the first few
steps of random walk. Overall, we can see that around 1k to
10k particles (or random walkers) are enough for producing
good retrieval quality.

Furthermore, particle filtering almost always produces bet-
ter retrieval quality than fingerprinting. This is a result of
the fact that although both strategies rely on sampling to
estimate the exact distribution, particle filtering will have
lower variance than fingerprinting. For example, imagine
a node with only two outlinks, and let the two strategies
each have two particles (minimum particle size 0.5) and two
walkers respectively. Fingerprinting has a high chance (0.5)
to put all probability mass to only one of the outlinks. Par-
ticle filtering, on the other hand, will always assign equal
probability 0.5 to both of the links.

More interestingly, in many cases applying the sparsity
strategies not only speeds up the query execution but also
produces better retrieval quality (in four out of six tasks). It
is not immediately evident whether this is because that the
sparsity strategies produce distributions that concentrated
on important nodes or because that they produce models
with better weighting of the relation paths. In Figure 6a
we fix retrieval model to either the one trained with exact
PCRW or the one with particle filtering. Then we apply
particle filtering during test time and vary εmin. We can
see that when the model is fixed, particle filtering does not
improve retrieval quality. However, the model trained with
particle filtering still performs better than the one trained
with exact PCRW. This result indicates that training with
particle filtering PCRW can produce better models than ex-
act PCRW.

Figure 6b shows the density of each relation path (i.e.,
the number of nodes with non-zero probability). We can
see that for those paths with dense distribution (density >
1000) under exact PCRW, particle filtering effectively re-
duces densities to a few hundreds. Figure 6c further shows
that, in the model trained with exact PCRW, most of the
high density paths have positive weights, and their weights
are significantly dropped in the corresponding model trained
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Figure 4: Speedup vs. MAP for different strategies on the yeast (upper row) and fly (lower row) data. T0

is the average query execution time using exact PCRW. l is the maximum length of random walk paths. So
points are marked with the number of random walkers or the maximum number of particles (estimated by
1/εmin). The points marked with § have improvements over exact PCRW that are statistically significant at
p<0.00001 using paired s-test.

with particle filtering. Therefore, we can see that the spar-
sity strategies have the effect of putting higher regularization
on the paths with dense distributions, which turns out to be
useful in producing good retrieval models.

6. CONCLUSION
In this study, we evaluate the use of approximations to

the computation of the path-constrained random-walk dis-
tributions. We compared fingerprinting, particle filtering,
and truncation strategies. In experiments on several recom-
mendation and retrieval problems using two large scientific
publication corpora, we show speedups of factors of 2 to 100
with little loss in retrieval accuracy. More interestingly, we
found that in many cases moderately applying the sparsity
strategies not only speeds up the query execution but also
produces better retrieval quality.
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