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Abstract

The SLIF project combines text-mining and image processing to extract struc-
tured information from biomedical literature.

SLIF extracts images and their captions from published papers. The cap-
tions are automatically parsed for relevant biological entities (protein and cell
type names), while the images are classified according to their type (e.g., mi-
crograph or gel). Fluorescence microscopy images are further processed and
classified according to the depicted subcellular localization.

The results of this process can be queried online using either a user-friendly
web-interface or an XML-based web-service. As an alternative to the targeted
query paradigm, SLIF also supports browsing the collection based on latent
topic models which are derived from both the annotated text and the image
data.

The SLIF web application, as well as labeled datasets used for training sys-
tem components, is publicly available at http://slif.cbi.cmu.edu.

1. Introduction

Biomedical research results in a very high volume of information in the form
of publications. Researchers are faced with the daunting task of querying and
searching these publications to keep up with recent developments and to answer
specific questions.

In the biomedical literature, data are most often presented in the form of
images. A fluorescence micrograph image (FMI) or a gel is sometimes the key
to a whole paper. Literature retrieval systems should provide biologists with
a structured way of browsing the otherwise unstructured knowledge in a way
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Figure 1: SLIF Pipeline. This figure shows the paper processing pipeline.

that inspires them to ask questions that they never thought of before, or reach a
relevant piece of information that they would have never have explicitly searched
for.

Relevant to this goal, our team developed the first system for automated in-
formation extraction from images in biological journal articles (the “Subcellular
Location Image Finder,” or SLIF, first described in 2001 [1]). Since then, we
have reported a number of improvements to the SLIF system [2, 3, 4].

In response to the opportunity to participate in the Elsevier Grand Chal-
lenge, we have made major enhancements and additions to the system. In
part reflecting this, we rechristened SLIF as the “Structured Literature Image
Finder.” The new SLIF provides both a pipeline for extracting structured infor-
mation from papers and a web-accessible searchable database of the processed
information. Users can query the database for information appearing in cap-
tions or images, including specific words, protein names, panel types, patterns
in figures, or any combination of the above. We have also added a powerful tool
for organizing figures by topics inferred from both image and text, and have
provided a new interface that allows browsing through figures by their inferred
topics and jumping to related figures from any currently viewed figure.

2. Overview

SLIF consists of a pipeline for extracting structured information from papers
and a web application for accessing that information. The SLIF pipeline is
broken into three main sections: caption processing, image processing and latent
topic discovery, as illustrated in Figure 1.

The pipeline begins by finding all figure-caption pairs and creating database
entries for each. Each caption is then processed to identify biological entities
(names of proteins and cell lines) and these are linked to external databases.

The image processing section begins by splitting each figure into its con-
stituent panels, and then identifying the type of image contained in each panel.
The original SLIF system was trained to recognize only those panels containing
fluorescence microscope images (FMIs), but as part of the work for the Else-
vier Challenge we have extended SLIF to recognize other types of panels. The
patterns in FMIs are then described using a set of biologically relevant image
features [1], and the subcellular location depicted in each image is recognized.
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The first two sections result in panel-segmented, structurally and multi-
modally annotated figures. The last step in the pipeline is to discover a set
of latent themes that are present in the collection of papers. These themes are
called topics and serve as the basis for visualization and semantic representation.
For instance, a topic about “tumorigenesis” is expected to give high probabil-
ity to words like (“tumor”, “positive”, “h1b”) and proteins like (“Caspase”,
“Actin”) which are known to be related to tumorigenesis. Each figure in turn
is represented as a distribution over these topics, and this distribution reflects
the themes addressed in the figure. This representation serves as the basis for
various tasks like image-based retrieval, text-based retrieval, and multimodal-
based retrieval. Moreover, these discovered topics provide an overview of the
information content of the collection and structurally guide its exploration. For
instance, the user might ask for articles that have figures in which the “tumori-
genesis” topic is highly represented.

3. Database Access

The results of processing papers are stored in a searchable database and
are made available to the user through an interactive web-interface. A user
can query the database for any combination of: text within captions, proteins
extracted by protein name annotators, different properties of the image panels
(panel type or pixel resolution), or images depicting a particular subcellular
location (either inferred from the image or retrieved from a protein annotation
database). The user can also view or browse the latent topics discovered from
figures and captions.

Results can be presented at multiple levels (panel, figure, or paper level) and
the user can switch between these presentation options from within the current
results. A link is always provided to the original publication.

From the results of a search, users can also view the underlying papers or
the UniProt record corresponding to an extracted protein name. They can also
further refine the search results by adding more conditions. Alternatively, using
latent topics, users can structurally browse the otherwise unstructured collection
by giving relevance feedback to the system (interactively flagging certain results
as relevant) to guide the system to show the user targeted results.

We also make the results available via a web service architecture. This en-
ables other machines to consume SLIF results in automated fashion. For a set
of processed results, we publish a WSDL (Web Services Description Language)
document on the SLIF server that declares the database query procedure for
clients in a standard XML based description language. Clients can query SLIF
using an XML-based query submitted as a SOAP (Simple Object Access Pro-
tocol) message. Results are sent back a message in an XML-based format.

4. Caption Processing

The initial version of SLIF focused on finding micrographs that depicted a
particular pattern, but could not associate that pattern with a specific protein.
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The current system parses the caption for that information.
Information on the protein depicted in a given figure should be provided in

its caption, but the structure of captions can be quite complex (especially for
multipanel figures). We therefore identify the “image pointers” (e.g., (A) or
(red)) in the caption that refer to specific panel labels or panel colors in the
figure [2], dividing the caption into fragments (or “scopes”) that refer to an
individual panel, color, or the entire figure.

The next step is to match the image pointers to the panel labels found during
image processing. We correct errors in optical character recognition by using
regularities in the arrangement of the labels (if the letters A through D are
found as image pointers and if the panel labels are recognized as A,B,G and
D, then the G should be corrected to a C). The precision of the final matching
process was found to be 83% and the recall to be 74% [5].

The recognition of named entities (such as protein and cell names) in free
text is a difficult task that may be even more difficult in condensed text such as
captions. In the current version of SLIF, we have implemented two schemes for
recognizing protein names. The first uses prefix and suffix features along with
immediate context to identify candidate protein names. This approach has a
low precision but a good recall (which is useful to enable database searches
on abbreviations or synonyms that might not be present in structured protein
databases) [6]. The second approach uses exact matching to a dictionary of
names extracted from protein databases. The protein names found by this
approach can be associated with a supporting protein database entry.

5. Image Processing

In our image processing pipeline, we start by dividing the extracted figures
into their constituent components, since, in a majority of the cases, the figures
are comprised of multiple panels. For this purpose, we recursively break images
along vertical or horizontal boundary regions. We have previously shown that
the algorithm can effectively split figures with complex panel layouts [1].

SLIF was originally designed to process only FMI panels. As part of our
work for the Elsevier Challenge, we expanded the classification to other panel
types. This mirrors other systems that have appeared since the original SLIF
which include more panel types [7, 8, 9].

We have manually labeled circa 700 panels into six panel classes: (1) FMI, (2)
gel, (3) graph or illustration, (4) light microscopy, (5) X-ray, or (6) photograph
using an active learning scheme [10] to optimise our labeling effort.

We decided to focus first on creating a high-quality classifier for the gel class,
given its importance to the working scientist. Using a decision tree learning
algorithm based both on textual and image features, we obtained very high
precision (91%) at the cost of moderate recall (66%). When neither the FMI
nor the gel detector were positive, we used a general purpose image-feature
classifier for the other classes (accuracy: 69%).

Fluorescent panels are further processed to identify the depicted subcellular
localization. To provide training data for pattern classifiers, we hand-labeled
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a set of images into four different subcellular location classes: (1) nuclear, (2)
cytoplasmic, (3) punctate, and (4) other, again using active learning to select
images to label. On the 3 main classes (nuclear, cytoplasmic, and punctate),
we obtained 75% accuracy (as before, reported accuracies are estimated using
10 fold cross-validation and the classifier used was libSVM based). On the four
classes, we obtained 61% accuracy.

Panels were associated with their scopes based on the textual information
found in the panel itself and the areas surrounding the panels. Each figure
is composed of a set of panels and a set of subimages which are too small
to be panels. All of these subimages were analyzed using optical character
recognition (OCR) to identify potential image pointers. The caption of each
figure was parsed to find the set of associated image pointers. Image pointers
in subimages and in the captions were matched. Each panel was matched to
the nearest unique image pointer found in the figure using OCR. This enabled
panels to be directly associated with the textual information found in a caption
scope.

6. Topic Discovery

The goal of topic discovery is to enable the user to structurally browse the
otherwise unstructured collection. This problem is reminiscent of the actively
evolving field of multimedia information management and retrieval. However,
structurally-annotated biological figures pose a set of new challenges [11]. First,
figures can be comprised of structured multiple panels. Portions of the caption
are associated with a given panel, while other portions of the caption are shared
across all the panels and provide contextual information. Second, unlike most
associated text-image datasets, the text annotation associated with each figure
is free-form and not all of it is relevant to the graphical content of the figure.
Finally, the figure’s caption contains in addition to text, specific entities like pro-
tein names, or subcellular locations. To address these challenges, we developed
what we call a structured correspondence topic model. For a full specification
of the model, we refer the reader to [11].

The input to the topic modeling system is the panel-segmented, structurally
and multimodally annotated biological figures. The goal of our approach is to
discover a set of latent themes in the Elsevier paper collection. These themes are
called topics and serve as the basis for visualization and semantic representation.
Each figure, panel, and protein entity is then represented as a distribution over
these latent topics. This representation serves as the basis for various tasks like
image, text, or multimodal retrieval, and image annotation.

6.1. Structured Browsing and Relevance Feedback
Topic models endow the user with a bird’s eye view over the paper collec-

tion by displaying a set of topics that summarize the themes addressed in the
collection. If a topic interests the biologist, she can click on the browse button
to see all panels (figures) that are relevant to this topic or all papers containing
these figures.
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Moreover, if the biologist has a focused search need, the system can con-
fine the displayed topics to those topics associated with panels (figures) that
interest the biologist. For instance, assume that the biologist searched for high-
resolution, FMI panels that contain the protein MT1-MMP. The biologist can
then click the “view associated topics” link below the displayed panel. The
system will display only the topics addressed in this panel and if one of these
focused topics interest the biologist, they can then browse for more panels that
show the pattern(s) captured by this topic by clicking on the browse button
(See [11, 12] for more details).

From the results of any SLIF query, a user can mark panels (or figures) as
interesting and ask SLIF to retrieve panels (figures) similar to the marked ones.
SLIF will then rank the panels (figures) in the database based on the similarity
of their latent representations to the latent representation of the selected panels
(figures). This process can be repeated recursively to refine the search outcome
until a satisfactory result is reached.

7. User Study

We conducted a user study to validate the usability and usefulness of our
technology. A detailed description of the study is given in [12]. Here, we only
highlight the main aspects of the study.

Our target users were graduate students in the fields of biology, computa-
tional biology, and biomedical engineering. Each user was given an instruction
sheet that described a set of tasks to be performed using both SLIF and a tra-
ditional search engine (which the user was free to choose). Examples of these
tasks include searching for high-resolution images of a given protein, and papers
with images related to a subcellular location. The user was given a short overall
introduction to the goals of the project but no specific guidance on how to use
the website as to best approximate real-world conditions.

The users were asked for feedback by answering questions related to the
various tasks, as well as general feedback. Most answers were free-form in order
to elicit comments that would allow us to improve the system.

When asked “Overall, how useful did you find SLIF?,” six out of eight users
considered SLIF useful and a seventh stated that the system had “great poten-
tial” (the question was free-form and we scored answers as positive or negative).
To some extent, this mimics the results of Hearst et al. [13] who performed a
user study on the viability of using caption searching to find relevant papers
in the bioscience literature and found that “7 out of 8 [users] said they would
use a search system with this kind of feature.” Only one user found that the
alternative search engine returned better results. Half found SLIF better and
more relevant, and the other three thought the results were not directly com-
parable. Moreover, six out of the eight users said that using topic-models in
organizing the information was very useful or interesting (a sample comment
states that it was “useful in terms of depicting ‘intuitive’ relationships between
various queries”). Negative remarks centered on the fact that a normal search
engine returns more results than does SLIF, which is operating with a smaller
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collection of papers (when compared to a search engine such as Google), as well
as on particular points of the user interface (which were subsequently addressed
in a revised interface).

8. Discussion

We have presented a new version of SLIF, a system that analyses images
and their associated captions in biomedical papers. SLIF demonstrates how
text-mining and image processing can intermingle to extract information from
scientific figures. Figures are broken down into their constituent panels, which
are handled separately. Panels are classified into different types, with the current
focus on FMI and gel images, but this could be extended to other types. FMIs
are further processed by classifying them into their depicted subcellular location
pattern. The results of this pipeline are made available through a either a web-
interface or programmatically using SOAP technology.

A new addition to our system is latent topic discovery which is performed
using both text and image. This enables users to browse through a collection
of papers by looking for related topics. This includes the possibility of inter-
actively marking certain images as relevant to one’s particular interests, which
the system uses to update its estimate of the users’ interests and present them
with more targeted results.

Although it is crucial that individual components achieve good results (and
we have shown good results in our sub-tasks), good component performance is
not sufficient for a working system. SLIF is a production system which working
scientists in biomedical related fields have described as “very useful.”
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