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Abstract: Cognitive Tutors are known to be very effective, but with only a significant cost 

of cognitive modeling and programming to build a cognitive model representing domain 

principles and skills, which is written as a set of production rules. This study is building an 

intelligent authoring system that helps authors build a Cognitive Tutor. The basic idea is that 

instead of writing a cognitive model by hand, the authors are asked to demonstrate solutions. 

A machine-learning agent, called the Simulated Student, observes the demonstrations and 

induces a set of production rules that are generalizations of solutions demonstrated. An 

evaluation of the Simulated Student on an example domain of algebra equation showed that 

after 10 problems were demonstrated with 10 different skills (each corresponding to a pro-

duction rule), 7 production rules were learned correctly. Two other production rules were 

plausible, which means that they produced correct actions, but since their conditions were 

overly general, their application might be strategically redundant.  
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1. Introduction 

The aim of this study is building an intelligent au-

thoring system to build Cognitive Tutors, or intelligent 

tutoring systems. The major challenge is an application 

of programming by demonstration (PBD) in building a 

computer agent that learns a cognitive model for a target 

domain subject by observing demonstrations performed 

by the authors.  

While Cognitive Tutors are known to be very effec-

tive [1], a notorious amount of time for development and 

author training is required to build a practical tutor. Es-

pecially, it requires knowledge of the subject matter, a 

good understanding of the prior abilities of the students 

who will use the system, and extensive programming 

skills. Our solution is to construct a system in which an 

author can construct a graphical user interface (GUI) for 

a cognitive tutor, and then use this GUI to present exam-

ples of how the human students should solve the prob-

lems. A PBD learning system, called a Simulated Student, 

will then generalize these examples and build a set of 

production rules for solving problems in the task domain.  

2. Building Tutors by Demonstration 

Authors first build a GUI for their desired tutor. To 

do this, they use the Cognitive Tutor Authoring Tools [2], 

which basically are a collection of tools, including a GUI 

builder, to build a Cognitive Tutor.  

Next, authors need to specify all predicate symbols 

and operator symbols appearing in production rules. A 

predicate symbol represents a test for a specific feature. 

An operator takes one or more arguments and returns a 

single value. Both predicate symbols and operators are 

task dependent. They may be written by advanced au-

thors.  

The authors then use the GUI and solve a number 

of problems just in a way that human students are sup-

posed to perform. These demonstrations would then be 

fed to the Simulated Student to induce production rules 

that are sufficient to replicate the demonstrations. Each 

problem-solving step must be annotated in such a way 

that the steps with the same production rule should have 

the same name. Also, authors are required to specify all 

GUI elements that are involved in a production rule. 

Since every single GUI element is associated with a 

unique working memory element (WME), this step is 

essentially identifying the WMEs that appear in a pro-

duction rule. These GUI elements (or WMEs) are called 

the focus of attention.  

Each time the author demonstrates a step, the 

Simulated Student induces production rules with the 

learning technique described in Section 3. The resulted 

production rules are then loaded to the Cognitive Tutor 

with the GUI component.  

After authors solve a number of problems, the 

Cognitive Tutor may be ready to run, that is, the induced 

production rules are capable of solving problems cor-

rectly. To test the production rules, authors enter a new 

problem into the Cognitive Tutor, and let the tutor solve 

it. When the tutor shows an incorrect or undesired per-
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formance, authors provide feedback by first clicking a 

[Wrong] button and then entering a correct value into a 

correct GUI element. This feedback then triggers a re-

finement of the incorrect production rule.  

Lastly and optionally, authors may directly modify 

production rules, which is written in Jess language [3], to 

obtain a desired set of production rules. 

3. Learning Technique 

The Simulated Students apply three different tech-

niques for the three major components of a production 

rule: working memory elements (WMEs), feature tests, 

and operators. Given focus of attention specified by the 

author, searching WMEs and operators can be done by a 

brute-force search.  To search the shortest operator se-

quence, the Simulated Student utilizes the itera-

tive-deepening depth-first search.  

Brute-force searching for feature tests is computa-

tionally very expensive as they can involve relationships 

between WMEs. We use FOIL [4] for this task. Each 

time a problem-solving step is demonstrated, the simu-

lated student generates a collection of positive and nega-

tive examples as input data for FOIL. A positive example 

is generated for a corresponding production rule for the 

step demonstrated, and a negative example is generated 

for other production rules.  Those data are accumulated 

over the different problems; the number of positive and 

negative examples continuously increases as more steps 

are demonstrated.  

4. Evaluation of Simulated Students 

To evaluate a performance of the Simulated Stu-

dents, we have conducted an evaluation with algebra 

equation as an example subject domain.  

For the sake of efficiency, the evaluation was done 

in such a way that demonstrations were provided with a 

text file. The output from the Simulated Student (i.e., 

production rules) was manually examined. The evalua-

tion was run on a PC with Pentium IV 3.4GHz processor 

with 1GB RAM. 

We used 8 feature predicates and 13 operators as 

background knowledge. In total 44 steps were demon-

strated to solve the 10 problems shown in Table 1. These 

problems were solved by 10 different rules. In other 

words, the Simulated Students were supposed to induce 

10 production rules from 44 demonstrated steps. 

When all 10 problems were demonstrated, there 

were 7 production rules that were correct. Two produc-

tion rules were correct but overly general hence applica-

tion of those rules might not be strategically optimal (i.e., 

yielding redundant steps). This type of rule is called a 

plausible rule. There was one rule that was wrong, mean-

ing that an application of the rule produced a wrong ac-

tion. Figure 1 shows how learning occurred over se-

quential demonstrations. The graph shows the number of 

correct (“C”), plausible (“P”), and wrong (“W”) rules at 

each of the problems demonstrated. It also shows a “To-

tal” number of different skills demonstrated (i.e., number 

of production rules to be learned). The two plausible 

production rules were introduced at Problem 8. There-

fore, there were only three opportunities for the Simu-

lated Student to observe application of those rules.  

5. Conclusion 

The Simulated Student learns a cognitive model 

that can be easily communicated with the authors. Most 

importantly, it learns not only correct generalizations, but 

also incorrect ones that are consistent with those that a 

human student might produce as well. Such incorrect but 

plausible generalizations are often incorporated in Cog-

nitive Tutors as buggy rules, which model typical human 

errors. Further study is needed to investigate the amount 

of demonstrations necessary to learn stable production 

rules as well as the effect of different curriculum on the 

quality of learning. 
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Figure 1: Results over sequential learning 

Table 1: Problems used for the evaluation 

3x = 6, 2x = 4, 4x = 12,  
x – 5 = 3, x + 2 = 6,  
2 = –3x + 11,  
3x – 4 = 2,  
2x + 3x = 3 + 7,  
3x = 2x + 4,  
3x – 3 = 2x + 5 
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