
An Intelligent Authoring System with
Programming by Demonstration

 Noboru Matsuda William W. Cohen Kenneth R. Koedinger

School of Computer Science

Carnegie Mellon University

Abstract: Cognitive Tutors are known to be very effective, but with only a significant cost

of cognitive modeling and programming to build a cognitive model representing domain

principles and skills, which is written as a set of production rules. This study is building an

intelligent authoring system that helps authors build a Cognitive Tutor. The basic idea is that

instead of writing a cognitive model by hand, the authors are asked to demonstrate solutions.

A machine-learning agent, called the Simulated Student, observes the demonstrations and

induces a set of production rules that are generalizations of solutions demonstrated. An

evaluation of the Simulated Student on an example domain of algebra equation showed that

after 10 problems were demonstrated with 10 different skills (each corresponding to a pro-

duction rule), 7 production rules were learned correctly. Two other production rules were

plausible, which means that they produced correct actions, but since their conditions were

overly general, their application might be strategically redundant.

Keyword: Cognitive Tutor, intelligent authoring system, Simulated Student, inductive logic

programming, machine learning

1. Introduction

The aim of this study is building an intelligent au-

thoring system to build Cognitive Tutors, or intelligent

tutoring systems. The major challenge is an application

of programming by demonstration (PBD) in building a

computer agent that learns a cognitive model for a target

domain subject by observing demonstrations performed

by the authors.

While Cognitive Tutors are known to be very effec-

tive [1], a notorious amount of time for development and

author training is required to build a practical tutor. Es-

pecially, it requires knowledge of the subject matter, a

good understanding of the prior abilities of the students

who will use the system, and extensive programming

skills. Our solution is to construct a system in which an

author can construct a graphical user interface (GUI) for

a cognitive tutor, and then use this GUI to present exam-

ples of how the human students should solve the prob-

lems. A PBD learning system, called a Simulated Student,

will then generalize these examples and build a set of

production rules for solving problems in the task domain.

2. Building Tutors by Demonstration

Authors first build a GUI for their desired tutor. To

do this, they use the Cognitive Tutor Authoring Tools [2],

which basically are a collection of tools, including a GUI

builder, to build a Cognitive Tutor.

Next, authors need to specify all predicate symbols

and operator symbols appearing in production rules. A

predicate symbol represents a test for a specific feature.

An operator takes one or more arguments and returns a

single value. Both predicate symbols and operators are

task dependent. They may be written by advanced au-

thors.

The authors then use the GUI and solve a number

of problems just in a way that human students are sup-

posed to perform. These demonstrations would then be

fed to the Simulated Student to induce production rules

that are sufficient to replicate the demonstrations. Each

problem-solving step must be annotated in such a way

that the steps with the same production rule should have

the same name. Also, authors are required to specify all

GUI elements that are involved in a production rule.

Since every single GUI element is associated with a

unique working memory element (WME), this step is

essentially identifying the WMEs that appear in a pro-

duction rule. These GUI elements (or WMEs) are called

the focus of attention.

Each time the author demonstrates a step, the

Simulated Student induces production rules with the

learning technique described in Section 3. The resulted

production rules are then loaded to the Cognitive Tutor

with the GUI component.

After authors solve a number of problems, the

Cognitive Tutor may be ready to run, that is, the induced

production rules are capable of solving problems cor-

rectly. To test the production rules, authors enter a new

problem into the Cognitive Tutor, and let the tutor solve

it. When the tutor shows an incorrect or undesired per-

This research was supported by the Pittsburgh Science of

Learning Center funded by National Science Foundation

award No. SBE-0354420.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). An Intelligent Authoring System with

Programming by Demonstration. In Proceedings of the Japan National Conference on Information and

Systems in Education. Kanazawa, Japan.

formance, authors provide feedback by first clicking a

[Wrong] button and then entering a correct value into a

correct GUI element. This feedback then triggers a re-

finement of the incorrect production rule.

Lastly and optionally, authors may directly modify

production rules, which is written in Jess language [3], to

obtain a desired set of production rules.

3. Learning Technique

The Simulated Students apply three different tech-

niques for the three major components of a production

rule: working memory elements (WMEs), feature tests,

and operators. Given focus of attention specified by the

author, searching WMEs and operators can be done by a

brute-force search. To search the shortest operator se-

quence, the Simulated Student utilizes the itera-

tive-deepening depth-first search.

Brute-force searching for feature tests is computa-

tionally very expensive as they can involve relationships

between WMEs. We use FOIL [4] for this task. Each

time a problem-solving step is demonstrated, the simu-

lated student generates a collection of positive and nega-

tive examples as input data for FOIL. A positive example

is generated for a corresponding production rule for the

step demonstrated, and a negative example is generated

for other production rules. Those data are accumulated

over the different problems; the number of positive and

negative examples continuously increases as more steps

are demonstrated.

4. Evaluation of Simulated Students

To evaluate a performance of the Simulated Stu-

dents, we have conducted an evaluation with algebra

equation as an example subject domain.

For the sake of efficiency, the evaluation was done

in such a way that demonstrations were provided with a

text file. The output from the Simulated Student (i.e.,

production rules) was manually examined. The evalua-

tion was run on a PC with Pentium IV 3.4GHz processor

with 1GB RAM.

We used 8 feature predicates and 13 operators as

background knowledge. In total 44 steps were demon-

strated to solve the 10 problems shown in Table 1. These

problems were solved by 10 different rules. In other

words, the Simulated Students were supposed to induce

10 production rules from 44 demonstrated steps.

When all 10 problems were demonstrated, there

were 7 production rules that were correct. Two produc-

tion rules were correct but overly general hence applica-

tion of those rules might not be strategically optimal (i.e.,

yielding redundant steps). This type of rule is called a

plausible rule. There was one rule that was wrong, mean-

ing that an application of the rule produced a wrong ac-

tion. Figure 1 shows how learning occurred over se-

quential demonstrations. The graph shows the number of

correct (“C”), plausible (“P”), and wrong (“W”) rules at

each of the problems demonstrated. It also shows a “To-

tal” number of different skills demonstrated (i.e., number

of production rules to be learned). The two plausible

production rules were introduced at Problem 8. There-

fore, there were only three opportunities for the Simu-

lated Student to observe application of those rules.

5. Conclusion

The Simulated Student learns a cognitive model

that can be easily communicated with the authors. Most

importantly, it learns not only correct generalizations, but

also incorrect ones that are consistent with those that a

human student might produce as well. Such incorrect but

plausible generalizations are often incorporated in Cog-

nitive Tutors as buggy rules, which model typical human

errors. Further study is needed to investigate the amount

of demonstrations necessary to learn stable production

rules as well as the effect of different curriculum on the

quality of learning.

Reference:

[1] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and

R. Pelletier, "Cognitive tutors: Lessons learned,"

Journal of the Learning Sciences, vol. 4, pp. 167-207,

1995.

[2] K. R. Koedinger, V. A. W. M. M. Aleven, and N.

Heffernan, "Toward a Rapid Development Environ-

ment for Cognitive Tutors," in Proceedigns of the

International Conference on Artificial Intelligence in

Education, U. Hoppe, F. Verdejo, and J. Kay, Eds.

Amsterdam: IOS Press, 2003, pp. 455-457.

[3] E. Friedman-Hill, Jess in Action: Java Rule-based

Systems. Greenwich, CT: Manning, 2003.

[4] J. R. Quinlan, "Learning Logical Definitions from

Relations," Machine Learning, vol. 5, pp. 239-266,

1990.

Figure 1: Results over sequential learning

Table 1: Problems used for the evaluation

3x = 6, 2x = 4, 4x = 12,
x – 5 = 3, x + 2 = 6,
2 = –3x + 11,
3x – 4 = 2,
2x + 3x = 3 + 7,
3x = 2x + 4,
3x – 3 = 2x + 5

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Number of problems demonstrated

N
u
m
b
e
r
o
f
 r
u
le
s
.

C

P

W

Total

