
Efficient Cross-Domain Learning
of Complex Skills

Nan Li, William W. Cohen, and Kenneth R. Koedinger

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213 USA
{nli1,wcohen,koedinger}@cs.cmu.edu

Abstract. Building an intelligent agent that simulates human learn-
ing of math and science could potentially benefit both education, by
contributing to the understanding of human learning, and artificial in-
telligence, by advancing the goal of creating human-level intelligence.
However, constructing such a learning agent currently requires signifi-
cant manual encoding of prior domain knowledge; in addition to being a
poor model of human acquisition of prior knowledge, manual knowledge-
encoding is both time-consuming and error-prone. Recently, we proposed
an efficient algorithm that automatically acquires domain-specific prior
knowledge in the form of deep features. We integrate this deep feature
learner into a machine-learning agent, SimStudent. To evaluate the gen-
erality of the proposed approach and the effect of integration on prior
knowledge, we carried out a controlled simulation study in three domains,
fraction addition, equation solving, and stoichiometry, using problems
solved by human students. The results show that the integration reduces
SimStudent’s dependence over domain-specific prior knowledge, while
maintains SimStudent’s performance.

Keywords: deep feature learning, learner modeling, transfer learning

1 Introduction

Education in the 21st century will be increasingly about helping students not just
to learn content but also to become better learners. In order to achieve this goal,
we need to better understand the process of human knowledge acquisition and
how students are different in their abilities to learn. Hence, a considerable amount
of research (e.g., [6, 1, 5, 7]) has been carried out in building intelligent agents
that model human learning of math and science. Although such agents are able
to produce intelligent behavior requiring less knowledge engineering than before,
agent developers still need to encode a nontrivial amount of domain-specific prior
knowledge. Such manual encoding of prior knowledge can be time-consuming
and error-prone. Moreover, providing domain-specific prior knowledge to the
intelligent agents is less cognitively plausible, as students do not necessarily know
such prior knowledge before class. An intelligent system that models automatic



2 Li et al.

knowledge acquisition without domain-specific prior knowledge could be helpful
both in reducing the effort in knowledge engineering intelligent systems and in
advancing the cognitive science of human learning.

Previous work in cognitive science [2] showed that one of the key factors that
differentiates experts and novices in a field is that experts view the world in terms
of deep functional features (e.g., coefficient and constant in algebra, molecular
ratio in stoichiometry), while novices only view it in terms of shallow percep-
tual features (e.g., integer in an expression). We [3] have recently developed a
learning algorithm that acquires deep features automatically with only domain-
independent knowledge (e.g., what is an integer) as input. We integrate this
deep feature learning algorithm into a machine-learning agent, SimStudent [5],
to let it have this major component of human expertise acquisition. To evaluate
how deep feature learner affects learning performance as well as prior knowledge
requirement, we carried out a controlled simulation study in three math and
science domains: fraction addition, equation solving, and stoichiometry.

2 A Brief Review of SimStudent

SimStudent is a machine-learning agent that inductively learns skills to solve
problems from demonstrated solutions and from problem solving experience. In
the rest of this section, we will briefly review SimStudent. For full details, please
refer to [4]. In this paper, we will use stoichiometry as an illustrative example.
Stoichiometry is a branch of chemistry that deals with the relative quantities
of reactants and products in chemical reactions. In the stoichiometry domain,
SimStudent is asked to solve problems such as “How many moles of atomic
oxygen (O) are in 250 grams of P4O10? (Hint: the molecular weight of P4O10 is
283.88 g P4O10 / mol P4O10.)”.

During the learning process, given the current state of the problem (e.g., 1
mol COH4 has ? mol H), SimStudent first tries to propose a plan for the next
step (e.g., (bind ?element (get-substance “? mol H”)) (bind ?output (molecular-
ratio “1 mol COH4” ?element))) based on the skill knowledge it has acquired.
If it finds a plan and receives positive feedback, it continues to the next step. If
the proposed next step is incorrect, the tutor sends negative feedback to Sim-
Student and demonstrates a correct next step. Then, SimStudent attempts to
learn or modify its skill knowledge accordingly. If it has not learned enough skill
knowledge and fails to find a plan, a correct next step is directly demonstrated
to SimStudent.

Based on the demonstration, SimStudent learns a set of production rules as
its skill knowledge. The left side of Figure 1 shows an example of a production
rule learned by SimStudent in a readable format1. A production rule indicates
“where” to look for information in the interface, “how” to change the problem
state, and “when” to apply a rule. For example, the rule to “calculate how many
moles of H are in 1 mole of COH4” shown at the left side of Figure 1 would
be read as “given the current value (1 mol COH4) and the question (? mol H),

1 The actual production rule uses a LISP format.



Efficient Cross-Domain Learning 3

•  Original: 
•  Skill molar-ratio (e.g. 1 mol COH4 has ? mol H) 
•  Perceptual information: 

•  Current value (1 mol COH4) 
•  Question (? mol H) 

•  Precondition: 
•  The substance in question (H) is an element 

in the substance of current value (COH4) 
•  Operator sequence: 

•  Get the substance (H) in question (? mol H) 
•  Get the molecular ratio of H (4 mol H) in 

current value (1 mol COH4) 

•  Extended: 
•  Skill molar-ratio (e.g. 1 mol COH4 has ? mol H) 
•  Perceptual information: 

•  Current value (4, 1 mol COH4) 
•  Question (mol H, ? mol H) 

•  Precondition: 
•  The substance in question (H) is an element 

in the substance of current value (COH4) 
•  Operator sequence: 

•  Get the substance (H) in question (? mol H) 
•  Get the molecular ratio of H (4 mol H) in 

current value (1 mol COH4) 
•  Concatenate 4 with mol H to get the answer 

(4 mol H) 

Fig. 1. Original and extended production rules for divide in a readable format.

when the substance in question (H) is an element in the substance (COH4), then
get the substance in question (H), and compute the molecular ratio of H (4 mol
H) in COH4”.

3 A Brief Description of Integrating Deep Feature
Learning into SimStudent

To learn the “how” part in the production rules, SimStudent requires a set of
operator functions given as prior knowledge. For instance, (molecular-ratio ?val1
?val2) is an operator function. It generates the number of moles of an individual
substance that each mole of input substance has, based on molecular ratio of
input substance. There are two groups of operator functions: domain-specific
operator functions (e.g., (molecular-ratio ?val1 ?val2)) and domain-general op-
erator functions (e.g., (copy-string ?val)). Domain-specific operator functions are
more complicated skills, which human students may not know in advance.

Many of the domain-specific operator functions are extraction operators that
extract deep features from the input. In order to reduce SimStudent’s dependence
on such domain-specific operator functions, we use a deep feature learner [3] to
acquire the deep features automatically, and then extend the “where” (percep-
tual information) part to include these deep features as needed. As presented at
the right side of Figure 1, in addition to the original current value 1 mol COH4

and the question ? mol H, SimStudent automatically adds the molecular ratio of
H (4) into the perceptual information part. Then, the “how” (operator sequence)
part does not need the three domain-specific operators any more. Instead, Sim-
Student can directly concatenate the molecular ratio (4) with the rest part in
question (mol H).

Here are a few more examples to demonstrate how the extended “where” part
enables the removal of domain-specific operator functions, while maintaining effi-
cient skill knowledge acquisition. Figure 2 shows the parse trees of example input
strings acquired by the deep feature learner. The deep features are associated
with nonterminal symbols in the parse trees.

In fraction addition, one of the important operator functions in this domain
is getting the denominator of the addend (i.e., (get-denominator ?val)). Fig-
ure 2(a) shows an example parse tree for 3/5. The extended SimStudent can



4 Li et al.

/ 5

DivSign Number

Number

Fraction

M0

3

(a)

3 x

MinusSign Number

SignedNumber

Expression

Variable

(b)

mol C

Number Unit

E1

StoichInput

E0

1 O H 4

ElementNumber

E0E0

Substance

Element Element

(c)

Fig. 2. Example parse trees learned by the deep feature learner in three domains, a)
fraction addition, b) equation solving, c) stoichiometry.

directly get the denominator 5 from the non-terminal symbol Number in rule
M0 → 1.0, DivSign, Number. Then, the operator function (get-denominator
?val) is replaced by a more general operator function (copy-string ?val). An-
other important domain-specific operator function in equation solving is getting
the coefficient of some expression (i.e., (get-coefficient ?val)). With the deep
feature learner, the coefficient of an expression can be extracted by directly tak-
ing the signed number (i.e., SignedNumber) in rule Expression → 1.0, Signed-
Number, Variable. Again, the domain-specific operator function (get-coefficient
?val) is replaced by the domain-general operator function (copy-string ?val). As
mentioned before, (molecular-ratio ?val0 ?val1) is a domain-specific operator
function used in stoichiometry. Instead of programming this operator function,
after integrated with deep feature learning, the output can now be generated by
taking the “Number” in grammar rule E0 → 0.5 Element, Number, and then
concatenating with the unit mol and the individual substance “Element”. Thus,
the original operator function (molecular-ratio ?val0 ?val1) is replaced by the
domain-general operator function concatenation (i.e., (concat ?val2 ?val3)).

4 Experimental Study

To further quantitatively evaluate the amount of required prior knowledge en-
coding and the learning effectiveness of SimStudent, we carried out a controlled
simulation study in the above three domains: fraction addition, equation solving,
and stoichiometry.

Methods: We compare three versions of SimStudent: two original SimStudents
without deep feature learning, and one extended SimStudent with deep feature
learning. One of the original SimStudents is given both domain-general and
domain-specific operator functions (O+Strong Ops). The other is given only
domain-general operator functions (O+Weak Ops). The extended SimStudent is
also only given domain-general operator functions (E+Weak Ops).

In each domain, the three SimStudents are trained on 12 problem sequences
over the same set of problems in different orders. Both training and testing
problems are gathered from classroom studies on human students. SimStudent



Efficient Cross-Domain Learning 5

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

 

 

E+Weak Ops

O+Strong Ops

O+Weak Ops

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

 

 

E+Weak Ops

O+Strong Ops

O+Weak Ops

(b)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

 

 

E+Weak Ops

O+Strong Ops

O+Weak Ops

(c)

Fig. 3. Learning curves of three SimStudents in three domains, a) fraction addition,
b) equation solving, c) stoichiometry.

is tutored by automatic tutors that are similar to those used by human students.
The number of training and testing problems is listed in Table 1.

Domain Name # of Training Problems # of Testing Problems

Fraction Addition 40 6
Equation Solving 24 11

Stoichiometry 16 3

Table 1. Number of training problems and testing problems presented to SimStudent.

We evaluate the performance of SimStudent with two measurements. We use
the number of domain-specific and domain-general operator functions used in
three domains to measure the amount of prior knowledge engineering needed. In
addition, we count the number of lines of Java code developed for each opera-
tor functions, and use this as a secondary measurement to assess the amount of
knowledge engineering. To assess learning effectiveness, we define a step score for
each step in the testing problem. Among all next steps proposed by SimStudent,
we count the number of next steps that are correct, and compute the step score
as the number of correct next steps proposed divided by the total number of cor-
rect steps plus the number of incorrect next steps proposed. This measurement
evaluates the quality of production rules in terms of both precision and recall.

Experimental Results: Not surprisingly, only the original SimStudent given
the strong set of operator functions (O+Strong Ops) uses domain-specific op-
erator functions. Across three domains, it requires at least as many operator
functions as the extended SimStudent without domain-specific operator func-
tions (E+Weak Ops). Moreover, since domain-specific operator functions are
not reusable across domains, the original SimStudent with domain-specific oper-
ator functions (O+Strong Ops) requires nearly twice as many operator functions
(31 vs. 17) as that of the extended SimStudent (E+Weak Ops) needed. The total
number of lines of code required for the operator functions used by the extended
SimStudent (E+Weak Ops) is 645, whereas the total number of lines of code
programmed for the original SimStudent (O+Strong Ops) is 6789, which is more
than ten times the size of the code needed by the extended SimStudent.



6 Li et al.

Learning curves of the three SimStudents are presented in Figure 3. Across
three domains, without domain-specific prior knowledge, the original SimStudent
(O+Weak Ops) is not able to achieve a step score more than 0.3. Given domain-
specific operator functions, the original SimStudent (O+Strong Ops) is able to
perform reasonably well. It obtains a step score around 0.85 in equation solving.
However, its performance is still not as good as the extended SimStudent. Given
all training problems, the extended SimStudent (E+Weak Ops) performs slightly
better than the original SimStudent with domain-specific prior knowledge in
equation solving. It (E+Weak Ops) achieves significantly (p < 0.0001) better step
scores than the original SimStudent given domain-specific operator functions
(O+Strong Ops) in two other domains. Hence, we conclude that the extended
SimStudent acquires skill knowledge, which is as or more effective than the
original SimStudent, while requiring less prior knowledge engineering.

5 Concluding Remarks

To summarize, we presented a novel approach that integrates a deep feature
leaner into a simulated student, SimStudent, and demonstrated with examples
how the integrated deep feature learner reduces prior knowledge engineering ef-
fort across three domains. We then carried out a controlled simulation study
to quantitatively measure the amount of prior knowledge engineering and the
learning efficiency, and showed that the extended SimStudent achieved better
or comparable performance than the original SimStudent, without requiring en-
coding of domain-specific prior knowledge.

References

1. Anzai, Y., Simon, H.A.: The theory of learning by doing. Psychological Review
86(2), 124–140 (1979)

2. Chi, M.T.H., Feltovich, P.J., Glaser, R.: Categorization and representation of physics
problems by experts and novices. Cognitive Science 5(2), 121–152 (June 1981)

3. Li, N., Cohen, W.W., Koedinger, K.R.: A computational model of accelerated future
learning through feature recognition. In: ITS’10. pp. 368–370 (2010)

4. Li, N., Cohen, W.W., Koedinger, K.R.: Integrating representation learning and skill
learning in a human-like intelligent agent. Tech. Rep. CMU-MLD-12-1001, Carnegie
Mellon University (January 2012)

5. Matsuda, N., Lee, A., Cohen, W.W., Koedinger, K.R.: A computational model of
how learner errors arise from weak prior knowledge. In: Proceedings of Conference
of the Cognitive Science Society (2009)

6. Neves, C.M., Anderson, J.R.: Knowledge compilation: Mechanisms for the automa-
tization of cognitive skills. pp. 57–84 (1981)

7. VanLehn, K.: Mind Bugs: The Origins of Procedural Misconceptions. MIT Press,
Cambridge, MA, USA (1990)


