
Understanding Captions in Biomedical Publications

William W. Cohen Richard Wang Robert F. Murphy
william@wcohen.com rcwang@andrew.cmu.edu murphy@cmu.edu

CALD Dept. of Computer Science Dept. of Biological Sciences & CALD
Carnegie-Mellon University Carnegie-Mellon University Carnegie-Mellon University

Pittsburgh PA 15213 Pittsburgh PA 15213 Pittsburgh PA 15213

Abstract

From the standpoint of the automated extraction of scientific knowledge, an important
but little-studied part of scientific publications are the figures and accompanying captions.
Captions are dense in information, but also contain many extra-grammatical constructs, mak-
ing them awkward to process with standard information extraction methods. We propose a
scheme for “understanding” captions in biomedical publications by extracting and classifying
“image pointers” (references to the accompanying image). We evaluate a number of automated
methods for this task, including hand-coded methods, methods based on existing learning tech-
niques, and methods based on novel learning techniques. The best of these methods leads to
a usefully accurate tool for caption-understanding, with both recall and precision in excess of
94% on the most important single class in a combined extraction/classification task.

1 Introduction

The vast size of the biomedical literature makes it essential to summarize pertinent scientific results.
Normally this is done by creating curated databases, like the Entrez databases, SwissProt, and YPD.
However, curated databases are expensive to create and maintain; do not typically permit extensive
links to specific supporting data; do not estimate confidence of assertions; do not allow for divergence
of opinion; and do not readily permit updating or reinterpretation of previously entered information.
Information extraction (IE) methods can be used to at least partially overcome these limitations
by automatically extracting information from biomedical text [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Most previous biomedical IE systems have been applied to abstracts. Abstracts are a nat-
ural source of information, as they are readily available, and dense in information. A second
“information-dense” part of scientific publications are the figures and accompanying captions . In
most genres of scientific publication, the most important results in a paper are illustrated in non-
textual forms, such as images and graphs. Authors understand that figures occupy large amounts
of valuable page space, and are likely to be seen disproportionately by casual readers. Thus figure
captions often concisely summarize a paper’s most important results as perceived by the author.

However, applying IE to caption text is also problemmatic. Since the main purpose of caption
text is to comment on an image, captions are often littered with references to the image, and these
“image pointers” are interspersed with grammatical text in a variety of ways. This sort of extra-
grammatical structure is likely to mislead automated extraction tools that assume grammaticality
(either explicitly, by using NLP components such as part-of-speech tagging and shallow parsing, or
implicitly, by virtue of being tuned on grammatical corpora). Detecting and understanding such

1



Fig. 1. Kinase inactive Plk inhibits Golgi fragmentation by
mitotic cytosol. (A) NRK cells were grown on coverslips and
treated with 2mMthymidine for 8 to 14 h. Cells were subsequently
permeabilized with digitonin, washed with 1M KCl-containing
buffer, and incubated with either 7 mgyml interphase cytosol
(IE), 7mgyml mitotic extract (ME), or mitotic extract to which
20 mgyml kinase inactive Plk (ME + Plk-KD) was added. After
a 60-min incubation at 32C, cells were fixed and stained with
anti-mannosidase II antibody to visualize the Golgi apparatus by
fluorescence microscopy. (B) Percentage of cells with fragmented
Golgi after incubation with mitotic extract (ME) in the absence
or the presence of kinase inactive Plk (ME + Plk-KD). The his-
togram represents the average of four independent experiments.

Figure 1: A figure reproduced from the biomedical literature. The caption includes both “citation-style”
and “bullet-style” image pointers.

extra-grammatical structures would be beneficial before applying “off the shelf” IE components to
caption text.

A second motivation for wanting to “understand” the structure of captions is to leverage sys-
tems that extract information from the images in scientific publications. In previous work, we have
developed tools to automatically analyze fluorescence microscope images of cells and compute fea-
tures relating to subcellular localization [12, 13, 14]. These tools have also been applied to images
harvested from online biomedical publications [15], and we are currently extending this system to
extract assertions such as “Figure N depicts a localization of type L for protein P in cell type C”.
This requires extracting protein names and cell names from captions and determining what micro-
scope image each entity name refers to. Figures which contain multiple microscope images (the vast
majority!) this task requires caption understanding.

In this paper, we will address the question of “understanding” the structure of caption text in a
fairly general context. Our main goals are first, to detect extra-grammatical constructs in caption
text, in particular extra-grammatical insertions that refer to parts of the accompanying image; and
second, to determine what parts of the caption text are associated with which (references to) parts
of the image.

2 The Caption-Understanding Problem

2.1 Motivating examples

Figure 1 illustrates some of the key technical issues in understanding captions. In the figure the
boxed area encloses a prototypical figure harvested from a biomedical publication,1 with the ital-
icized text (“Fig. 1. Kinase inactive Plk. . . ”) being the associated caption from the reproduced
figure. The reproduced caption text contains several strings that refer to places in the accompany-
ing image: “A”, “B”, “IE”, “ME”, and “ME+Plk-KD” (the last two of which occur twice). Below
we will call these strings image pointers .

1This figure is reproduced from the article “Ras Regulates the Polarity of the Yeast Actin Cytoskeleton through
the Stress Response Pathway”, by Jackson Ho and Anthony Bretscher, Molecular Biology of the Cell Vol. 12, pp.
1541–1555, June 2001.

2



There are at least two possible end goals for caption processing. One is to convert the caption
text to ordinary grammatical text. Generally, one would like to identify and remove image-pointer
related disfluencies, and recover any formatting or structural information lost as a consequence of
the text’s appearance as a caption. In the specific case of Figure 1, this would mean replacing the
strings “(A)” and “(B)” with paragraph breaks, and removing all the other image pointers.

A second possible goal is to associate subsequences of caption text with specific image pointers
and therefore, to parts of the image. If one imagines applying an IE system that utilitizes image-
processing to Figure 1, for instance, it might be useful for the system to know that all three
microscope images are of NRK cells stained with anti-mannosidase II antibody, but that only the
panel labeled “IE” concerns interphase cytosol.

Some additional issues that arise in caption-understanding are not illustrated by Figure 1. In
Figure 1, all parenthesized expressions are image pointers, and vice-versa; however, this is not
generally the case. Captions can also contain image-pointer strings that are not grammatically
null, as in the text “Following a procedure similar to that used in (A), cells were stained for. . . ”.

2.2 Caption-understanding as extraction and classification

We decided to break down the caption-understanding task into several subtasks.
The first step is image-pointer extraction—identifying all image pointers in the caption. After

image pointers are identified, they are classified according to their linguistic function.

• Bullet-style image pointers function as compressed versions of bulleted lists. The strings “(A)”
and “(B)” in Figure 1 are bullet-style image pointers.

• NP-style image pointers are used as proper names in grammatical text. An example is the
string “(A)” in the text: “Following a procedure similar to that used in (A), . . . ”

• Citation-style image pointers are interspersed with grammatical caption text, in the same
manner that bibliography citations are interspersed with ordinary text. The remaining image
pointers in Figure 1 are citation-style.

After image-pointer classification, the scope of each image pointer is determined. The scope
of an image pointer specifies, indirectly, what text should be associated with that image pointer.
The scope of a NP-style image pointer is the set of words that (grammatically) modify the proper
noun it serves as. The scope of a bullet-style image pointer is all the text between it and the next
bullet-style image pointer. The scope of a citation-style image pointer is some sequence of tokens
around the image pointer, usually corresponding to a nearby noun phrase.

As an example, applying these rules to the caption of Figure 1 produces these results (among
others): the text “NRK cells” is associated with image pointer “A”; the text “fixed and stained
with anti-mannosidase II antibody” is associated with the image pointers “A”; and the text “mitotic
extract” is associated with “A” and the first occurence of “ME”, but not with “IE” or “ME+Plk-
KD”.

In this paper we will focus on the first two steps, of image-pointer extraction and image-pointer
classification. We will not discuss image-pointer scoping at any length. However, the scoping rules
for bullet-style image pointers are trivial to implement, and NP-style image pointers appear to be
rare. We believe that a reasonable approximation to scoping for citation-style image pointers can
be implemented by using NP-chunking techiques [16, 17].

3



Method W Precision Recall F
HandCode1 98.5 45.6 62.3
HandCode1-Filt 99.2 43.2 60.2
HandCode2 74.5 98.0 84.6
HandCode2-Filt 89.0 54.8 67.8
aBwi 1 82.9 92.8 87.6
aBwi 2 89.7 91.0 90.3
aBwi 3 90.6 83.4 86.9
NrBwi (Slipper) 3 96.09 85.17 90.3
NrBwi (Ripper)∗ 3 88.08 87.15 87.6
NrBwi (SVM) 3 100.00 75.20 85.6
NrBwi (SVM)∗ 3 69.01 78.00 73.2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400

F
-m

ea
su

re

rounds of boosting

ABWI (W=2)
HandCode2

HandCode2-Filt
HandCode1

HandCode1-Filt

W=2 W=3
Method Precision Recall F-measure Precision Recall F-measure
aBwi 89.7 91.0 90.3 90.6 83.4 86.9
aBwi/na 85.2 91.6 88.3 85.9 92.2 89.0
saBwi/na 85.7 92.9 89.2 88.6 93.8 91.1

Figure 2: Top left: precision, recall and F-measure on image pointer extraction for a number of different.
Top right: sensitivity of aBwi (W=2) to rounds of boosting T. Bottom: Performance of standard aBwi
with and without engineered features, and the symmetric version (saBwi/na) with engineered features.

3 Experimental Results

3.1 Data Collection

To evaluate approaches to caption-understanding we collected a dataset of 100 biomedical publi-
cations in PDF format. This was a random subsample of a larger set of Pubmed Central papers
previously used to evaluate a system (now called Slif2) for processing fluorescence microscope im-
ages [15]. Slif used a modified version of Pdf2Html (a public domain tool) to extract figures and
captions from PDF documents, and experiments showed this system to have high precision (98%)
and reasonable recall (77%) on this task. Using this tool, some figures were extracted from 90 of
the 100 sample papers. We randomly chose one figure from each successfully-processed paper, for a
total of 90 figures, and hand-labeled all the image pointers in the figure captions with an interactive
tool. There are a total of 562 image pointers, or an average of 6.2 per caption. All but five of the
figures contain at least one image pointer.

3.2 Hand-coded extraction methods

As a baseline, we first hand-coded some relatively simple extraction methods. Many image pointers
are single letters (like “A” and “B”) or simple variants. The HandCode1 method thus extracts as
image pointers all expressions of the form “(X)”, “(x)”, “(X-Y)”, “(x-y)”, “(X and y)” or “(x and
y)”, where “X” and “Y” (respectively “x” and “y”) indicate any uppercase (respectively lowercase)
letter. In the patterns, any number of extra spaces are also allowed around each letter. HandCode1
has high precision (98.5% on our dataset), but low recall (45.6%).

2For “Subcellular Location Image Finder.”

4



Most image pointers are parenthesized. The HandCode2 method thus extracts all paren-
thesized expressions that are (a) less than 40 characters long and (b) do not contain a nested
parenthesized expression, and also extracts all whitespace-surrounded expressions of the form “x”,
“X”, “x-y” or “X-Y” that are preceeded by one of the words “in”, “from”, or “panel”. HandCode2
has high recall (98%) but only moderate precision (74.5%) .

Image pointers are often based around a sequence of upper- or lower-case letters from the
beginning of the alphabet. HandCode2-Filt attempts to exploit this regularity. First, all
HandCode2-generated expressions are collected and normalized by replacing X-Y constructs with
the equivalent complete sequence. (E.g., constructs like “B-F” are replaced with “B,C,D,E,F”.)
The the longest initial alphabet sequence “a,b,c,. . . ” or “A,B,C,. . . ” such that every letter in
the sequence appears in some normalized HandCode2 expression is computed. (For instance, in
Figure 1, this sequence would be “A,B”, since “C” is the first uppercase letter not appearing in
a parenthesized expression, and “a” is the first lowercase letter not appearing in a parenthesized
expression.) Finally all HandCode2 expressions not containing a letter from this longest sequence
are discarded. This filtering step improves precision, but unfortunately has a high cost in recall.

We evaluated these methods on the labeled data, and summarized the results in the first table
of Figure 2. (The HandCode1-Filt method uses the same filtering heuristic as HandCode2-
Filt to filter expressions from HandCode1.) In addition to precision and recall we also show the
F-measure (the geometric mean of recall and precision) for each method. The hand-coded methods
work only moderately well for this task: while it is easy to obtain a recall of 40-50% with very high
precision, it appears difficult to identify the remaining image pointers with high precision.

3.3 Learning methods

3.3.1 Background.

There is a substantial literature using machine learning approaches for difficult extraction problems.
One simple but successful extraction method is Boosted Wrapper Induction (Bwi) [18]. Bwi inputs
on a tokenized version of a document, annotated with a set of target strings (strings to be extracted).
From this data, Bwi learns three classifiers: the fore classifier identifies tokens that begin a target
string, the aft classifier identifies tokens that end a target string, and the length classifier identifies
lengths (i.e. 1,2,3,. . . ) that correspond to target strings. All of these classifiers output a confidence
or score. The aggregate score of the string between token i and token j is then FORE (i) ·AFT (j) ·
LENGTH (j − i) where FORE, AFT, and LENGTH are the scores of the three classifiers. The
hypothesis of Bwi is all intervals i, j where this score exceeds some threshold.

Bwi uses boosting to learn the fore and aft classifiers. Boosting builds a classifier by re-
peatedly calling a base learner with different weightings of the training set. For Bwi, the base
learner greedily searches for a rule that distinguishes the fore (or aft) tokens from the non-
fore (or non-aft) tokens, based on patterns involving the prefix (tokens preceding) and the suf-
fix (tokens including and following) an example token. For instance, the rule PREFIX=〈“.”〉,
SUFFIX=〈“(”, OneCharToken, “)”〉, would match the left parenthesis of all bullet-style image
pointers from Figures 1. In Bwi, the primitive conditions in a prefix (or suffix) pattern can test
for equality to a specific token (like “.” above) or may include certain predefined wildcard condi-
tions (like OneCharToken above). Rules are found by repeatedly adding to the prefix (or suffix)
pattern the extension of length L or less which maximizes a scoring function. The number L
determines the amount of “lookahead” used in the greedy search.

5



3.3.2 A simple learning method for extraction.

We experimented with a modified version of Bwi, which we will call aBwi.3 The main difference
is that, while Bwi’s base learner uses a token-sequence representation of a document, aBwi’s base
learner uses a feature vector representation.

aBwi is based on two main components. One component is a feature-vector learning system that
closely follows the boosting algorithm and base learner in Bwi: this is implemented using Slipper
[19], a feature-vector rule learner to which Bwi is closely related.4 The second is a tool called
Peel5, which constructs a proposition representation of a document from a certain intermediate
form.

Specifically, Peel inputs a number of of labeled substring sets , and produces a set of labeled
feature vectors. A labeled substring is a tuple 〈f, i, j, `〉 where f is a file name, i and j are character
indices into the file, and ` is a label associated with the substring of f between i and j. Empty
substrings are allowed. A labeled substring set S is simply a set of labeled substrings.

One labeled substring set is designated as the example set , and the others are called fea-
ture sets . Feature sets are generated in Peel by taking each substring from the example set
in turn, and following a special feature generation program, each step of which is of the form
“emit(Si ,DIRi ,DISTi ,OPi)”, where Si is (the name of) a labeled substring set, DIRi is a direction,
DIST i is a distance, and OP i is an operation. Each emit function produces to a single feature.
To compute this feature, Peel navigates from the example substring x (using the direction and
distance parameters) to another labeled substring y, typically a feature substring, and then applies
the given operation the pair (x, y). The produces a result v, which is the value (in the feature
vector) of the feature corresponding to the emit function.

As an example, suppose that Stoken is a labeled substring set containing all tuples 〈f, i, j, T 〉 where
T is the token appearing at position i, j in f . (For instance, if f contains the caption of Figure 1, then
Stoken might contain 〈f, 1, 3, “Fig”〉, 〈f, 3, 4, “.”〉, 〈f, 5, 6, “1”〉, 〈f, 6, 7, “.”〉, 〈f, 8, 14, “Kinase”〉, . . .. Then
the program

emit(token,before,−2,label), emit(token,before,−1,label), emit(token,inside,0,label),
emit(token,after,+1,label), emit(token,after,+2,label),

would emit 〈‘cytosol’,‘.’,‘(’,‘A’,’)’〉 for the “fore” token of the first image pointer in Figure 1.
Peel currently supports the directions before, after, and inside, and the operations label (which

produces the label of the feature substring x) and distanceBB, distanceBE, distanceEB, and dis-
tanceEE (which produce the distance from the beginning of x to the beginning of y, the beginning
of x to the end of y, and so on). However, this small set of operations provides great flexibility
when combined with the ability to construct and use arbitrary labeled substring sets. For instance,
to generate features corresponding to the OneCharToken wildcard of Bwi, one could construct
a new set called isOneCharToken by copying Stoken and changing each label to “true” or “false”,
depending on token length.

Using Peel and an appropriate feature-vector learner one can construct a reasonable approxi-
mation to Bwi. In aBwi patterns must of a bounded length, which is determined by the user when
feature-vectors are constructed; in contrast, Bwi’s base learner selects pattern length dynamically
during learning. However, aBwi allows more flexibility in feature engineering (as we will discuss
below) and also makes it simple to explore different underlying learning methods.

3For “Almost BWI.”
4The learning component is implemented using the Slipper options -ag -n100 -S0 -i0.
5For “Preparing Examples for Extraction Learning.”

6



aBwi differs from Bwi in three other ways. One difference is a matter of usage: rather than
classifing tokens as fore and aft and using an aggregate score, we elected to classify the substrings
produced by HandCode2 as image-pointer or non-image pointer.6 A second difference is that the
aBwi base learner does not perform lookahead, but does allow a pattern to contain conditions about
any token in the window; in contrast Bwi’s base learner does use lookahead, but only produces
patterns based on token sequences that are contiguous and starting at the token to be classified.
A third difference is that we used a different set of wildcards than Bwi, based on our intuitions of
the caption-understanding problem.7

aBwi has two parameters, window size (W) and the number of rounds of boosting (T). Bwi
also has two parameters, lookahead (L) and rounds of boosting (T).

3.3.3 Experimental results with token-window features

Initial results for extraction. We used 10-fold cross-validation to evaluate the performance of aBwi,
initially fixing T=100 and varying the window size W. aBwi outputs a confidence on each predic-
tion, and by varying a threshold one can trade off recall for precision. Setting this threshold to
maximize F-measure for W=2 gives a recall of 89.7% and precision of 91.0%, for an F-measure of
90.3%. Using the default threshold (which minimizes error rate) gives essentially identical results.8

aBwi seems to be more sensitive to W than T. F-measure varied widely as W was varied from
1 to 10, with performance peaking at W=2 (not all results for W are shown). For W=2, T=100
seems approximately optimal, as shown in the graph accompanying Figure 2.

Additional extraction results. An advantage of aBwi is that is possible to easily modify the
system by changing the learning component. As an experiment, we replaced the learner in aBwi
with three other learning systems: Slipper (with its default options, including mechanisms to
handle noisy data and internal cross-validation to set T); Ripper [20], and SVM Light [21]. Some
representative results are shown in Figure 2 under the method name NrBwi.9 On this problem,
none of the other learners improves over aBwi, although all outperform the hand-coded systems.

Classification results. As discussed above, for some purposes it is sufficient to simply identify
(i.e., extract) image pointers. For other tasks, however, it is necessary to classify extracted image
pointers as bullet-style, citation-style, or NP-style.

The most natural approach doing this classification is in two stages: first extraction, and then
classification. However, since the extraction is based on an underlying classifier, it is just as easy
to perform the task in one step, in which a single multi-label classifier is used to label substrings as
bullet-style, citation-style, NP-style, or “other” (where “other” indicates that a substring is not an
image pointer at all.) Figure 3 shows results obtained using this combined classification/extraction
approach, which has provided the best performance so far. All results are for aBwi with T=100,
and the best results were obtained with W=3.

6I.e., the HandCode2 substrings formed the example set, rather than using all possible fore/aft pointers as
examples. Although the general approach allows learning classifiers for fore/aft tokens as well, it was inappropriate
to use this general method here, given the performance of HandCode2.

7Specifically our wildcards are OneCharToken, isPunctuation, isAllDigits, isLowerCase, isUpperCase
and isInitialCap.

8Recall 88.4%, precision 92.0%, and F-measure 90.2%.
9For “Not Really Bwi.” Lines tagged with an asterisk are for learners with settings optimized for error rate rather

than F-measure.

7



Method Error rate
W=2 W=3 W=5

aBwi 24.6 27.5 26.7
aBwi/na 26.7 22.2 26.7
saBwi/na 24.2 18.2 22.6

Confusion matrix for saBwi/na (W=3)
Predicted

Bullet Cite NP Other
Bullet-style 191 4 0 0

Actual Citation-style 6 313 15 10
NP-style 1 5 16 1
Other 4 72 18 92

Figure 3: Left: performance of aBwi variants on simultaneous extraction and classification. Right: details
of performance of saBwi/na, the best-performing caption-understanding method.

0.14

0.16

0.18

0.2

0.22

0.24

0.26

50 100 150 200 250 300 350 400 450 500

E
rr

or

Number of examples

Image Pointer Extraction

ABWI
ABWI/NA

SABWI/NA

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

50 100 150 200 250 300 350 400 450 500

E
rr

or
Number of examples

Combined extraction/classification

ABWI
ABWI/NA

SABWI/NA

Figure 4: Performance of aBwi, aBwi/na, and saBwi/na on extraction (left) and combined classification
and extraction (right) on subsamples of the data.

3.3.4 Experimental results with additional features

An advantage of aBwi is that Peel makes it relatively easy to introduce additional features. To
explore the use of engineered features, we added two additional labeled string sets. First, the set
Ssentence was populated with empty strings indicating sentence boundaries. Second, the Sspecial string
was created for other “special” substrings that we conjectured would be useful. Specifically, Sspecial

contains a handCode1 label for any substring matching one of the patterns used in the HandCode1
method; a color label for substring corresponding to colors like “red”, “green”, etc; a measure label
for common measurements (like “mg”, “ml”, etc); a citation label for all four-digit numbers between
1980 and 2003 and the substring “et al”; and a place label for words like “top”, “bottom”, “left”,
“right”, etc. We then augmented the Bwi-emulating Peel script to output additional features
corresponding to the labels of any “special” string found inside the candidate image pointer, and
the distance to the previous sentence boundary.

The results are shown in the bottom table in Figure 2 (for extraction) and Figure 3 (for classi-
fication) under the method name aBwi/na.10 Performance was not consistently improved, and we
conjecture the reason is that while Bwi is designed to learn rules that are positively correlated with
the target strings, many of the features described above are negatively correlated. We modified the
underlying learning system to include the negation of all tests allowed previously, and also to learn
rules that reject non-target strings.11 This “symmetric” version of aBwi (in the tables, saBwi/na)
improves performance consistently over “vanilla” aBwi, and outperforms the best previous systems
on both the extraction and classification tasks.

10For aBwi with New Attributes.
11We used the Slipper options -au -n100 -S0 -i0 -!ns.

8



3.3.5 Additional details on performance

In Figure 4, we show the performance and aBwi, aBwi/na, and saBwi/na on the extraction
and classification tasks using subsamples of the data. All curves show error rates averaged over 20
independent trials with W=3 and T=100. For extraction, the additional features are harmfull for
aBwi but helpful for saBwi/na, especially with less training data. For classification, additional
features show mixed results for aBwi, but lead to improvement with saBwi/na. The curves also
indicate that performance on the classification task might be improved by simply collecting more
labeled data.

On the right in Figure 3, we show the full confusion matrix of the best classifier (on the cross-
validated test examples). Performance is extremely good (recall of 98% and precision of 94.6%) on
bullet-style labels, which are the ones most likely to severely impact performance. Most errors are
made by incorrectly rejecting citation-style image pointers.

4 Concluding Remarks

In many genres of scientific publication, caption text is extremely dense in information. However,
applying automated text extraction methods to caption text can be difficult. We have considered
the problem of “understanding” captions, in the sense of extracting and analyzing their extra-
grammatical structure of captions. Specifically, we proposed extracting image pointer text and
classifying it into three categories, bullet-style, citation-style, and NP-style.

In other contexts, extra-grammatical structure has proven useful for extraction and classification
[22, 23]. In the specific case of biomedical captions, there are a number of reasons for being interested
in this sort of “understanding”. Based on this analysis, one can recover the original caption text,
sans extra-grammatical insertions, which might facilitate later text processing. More importantly,
one can also associate specific parts of the caption text with specific parts of the image, by using
relatively simple scoping rules. This means textual information from captions can be used to
leverage automated understanding of the associated image—a goal of our own ongoing work in
analysis of fluorescence microscope images appearing in on-line journals [15]. The same sort of
text-image associations might also be used for other purposes, such as to facilitate content-based
image retrieval (CBIR) of scientific images.

In an experimental study with a hand-labeled corpus of figures, we evaluated a number of
extraction and classification techniques. The best-performing method is the novel extraction system
saBwi/na, which naturally extends an earlier extraction system Bwi with the ability to use features
based on arbitrary labeled substrings. Exploiting this ability we included a number of substring
features engineered specifically for the caption-understanding task. The lead to improvements in
performance over hand-coded extraction methods and competitive “off-the-shelf” learning methods.
The best system described is usefully accurate, and obtains both recall and precision in excess of 94%
on bullet-style image pointers, the most important class in the combined extraction/classification
task.

References
[1] Blaschke, C., Andrade, M. A., Ouzounis, C., and Valencia, A.: Automatic extraction of biological informa-

tion from scientific text: Protein-protein interactions. In Proceedings of the 1999 International Conference on
Intelligent Systems for Molecular Biology (ISMB-99). 1999, pp 60–67.

9



[2] Sekimizu, T., Park, H., and Tsujii, J. Identifying the interaction between genes and gene products based on
frequently seen verbs in Medline abstracts. In Genome Informatics, pp 62–71. Universal Academy Press, Inc,
1998.

[3] Pustejovsky, J., Castaño, J., Zhang, J., Kotecki, M., and Cochran, B.: Robust relational parsing over biomedical
literature: Extracting inhibit relations. In Proceedings of 2002 the Pacific Symposium on Biocomputing (PSB-
2002). 2002, pp 362–373.

[4] Thomas, J., Milward, D., Ouzounis, C., Pulman, S., and Carroll, M.: Automatic extraction of protein inter-
actions from scientific abstracts. In Proceedings of 2000 the Pacific Symposium on Biocomputing (PSB-2000).
2000, pp 538–549.

[5] Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., and Mostafa, J.: Detecting gene relations from medline
abstracts. In Pacific Symposium on Biocomputing. 2001, pp 483–496.

[6] Humphreys, K., Demetriou, G., and Gaizauskas, R.: Two applications of information extraction to biologi-
cal science journal articles: Enzyme interactions and protein structures. In Proceedings of 2000 the Pacific
Symposium on Biocomputing (PSB-2000). 2000, pp 502–513.

[7] Fukuda, K., Tsunoda, T., Tamura, A., and Takagi, T.: Toward information extraction: Identifying protein
names from biological papers. In Proceedings of 1998 the Pacific Symposium on Biocomputing (PSB-1998).
1998, pp 707–718.

[8] Rindflesch, T., Tanabe, L., Weinstein, J. N., and Hunter, L.: Edgar: Extraction of drugs, genes and relations
from the biomedical literature. In Proceedings of 2000 the Pacific Symposium on Biocomputing (PSB-2000).
2000, pp 514–525.

[9] Bunescu, R., Ge, R., Mooney, R. J., Marcotte, E., and Ramani, A. K. Extracting gene
and protein names from biomedical abstracts. Unpublished Technical Note, Available from
http://www.cs.utexas.edu/users/ml/publication/ie.html, 2002.

[10] Craven, M. and Kumlien, J.: Constructing biological knowledge bases by extracting information from text
sources. In Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology (ISMB-
99). AAAI Press, 1999, pp 77–86.

[11] Stapley, B., Kelley, L., and Sternberg, M.: Predicting the sub-cellular location of proteins from text using
support vector machines. In Proceedings of the 2002 Pacific Symposium on Biocomputing. 2002, pp 374–385.

[12] Boland, M. V. and Murphy, R. F.: A neural network classifier capable of recognizing the patterns of all major
subcellular structures in fluorescence microscope images of hela cells. Bioinformatics. 17: 1213–1223, 2001.

[13] Velliste, M. and Murphy, R. F.: Automated determination of protein subcellular locations from 3d fluorescence
microscope images. In Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging (ISBI-
2002). 2002, pp 867–870.

[14] Murphy, R. F., Velliste, M., and Porreca, G.: Robust classification of subcellular location patterns in fluorescence
microscope images. In Proceedings of the 2002 IEEE International Workshop on Neural Networks for Signal
Processing. 2002, pp 67–76.

[15] Murphy, R. F., Velliste, M., and Porreca, G.: Searching online journals for fluorescence microscope images
depicting protein subcellular location patterns. In Proceedings of the 2nd IEEE International Symposium on
Bio-informatics and Biomedical Engineering (BIBE-2001). 2001, pp 119–128.

[16] R., A. A., C., R. T., and C., B. A.: Exploiting a large thesaurus for information retrieval. In Proceedings of
RIAO 94. 1994, pp 197–216.

[17] Daelemans, W., Buchholz, S., and Veenstra, J.: Memory-based shallow parsing. In Proceedings of the EACL’99
workshop on Computational Natural Language Learning (CoNLL-99). Bergen, Norway, 1999.

[18] Freitag, D. and Kushmeric, N.: Boosted wrapper induction. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-2000). Austin, TX, 2000.

[19] Cohen, W. W. and Singer, Y.: A simple, fast, and effective rule learner. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99). Orlando, FL, 1999.

[20] Cohen, W. W.: Fast effective rule induction. In Machine Learning: Proceedings of the Twelfth International
Conference. Lake Tahoe, California, Morgan Kaufmann, 1995.

[21] Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer, 2002.

[22] Blei, D. M., Bagnell, J. A., and McCallum, A. K.: Learning with scope, with application to information
extraction and classification. In Proceedings of UAI-2002. Edmonton, Alberta, 2002.

[23] Cohen, W. W.: Improving a page classifier with anchor extraction and link analysis. In Advances in Neural
Processing Systems 15. Vancouver, British Columbia, 2002.

10


