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Abstract

We describe a new sequential learning scheme
called “stacked sequential learning”. Stacked se-
guential learning is a meta-learning algorithm, in
which an arbitrary base learner is augmented so
as make it aware of the labels of nearby exam-
ples. We evaluate the method on several “sequen-
tial partitioning problems”, which are characterized
by long runs of identical labels. We demonstrate
that on these problems, sequential stacking consis-
tently improves the performance of non-sequential
base learners; that sequential stacking often im-
proves performance of learners (such as CRFs)
that are designed specifically for sequential tasks;
and that a sequentially stacked maximum-entropy
learner generally outperforms CRFs.

Introduction

probabilistic learners t@equential partitioning tasks Se-

guential partitioning tasks are sequential classification task
characterized by long runs of identical labels: examples o
these tasks include document analysis, video segmentatio

and gene finding.

Motivated by some anomolous behavior observed for on
sequential learning method on a particular partitioning task
we will derive a new learning scheme callsthcked sequen-
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entropy learner generally outperforms conditional random
fields.

2 Motivation: A Hard Task for MEMMSs

To motivate the novel learning method that we will describe
below, we will first analyze the behavior of one well-known
sequential learner on a particular real-world problem. In a
recent papefCarvalho and Cohen, 20D4we evaluated a
number of sequential learning methods on the problem of rec-
ognizing the “signature” section of an email message. Each
line of an email message was represented with a set of hand-
crafted features, such as “line contains a possible phone num-
ber”, “line is blank”, etc. Each email message was repre-
sented as a vector of feature-vectors, ..., z,, wherex;
is the feature-vector representation of tkta line of the mes-
sage. A line was labeled g®sitiveif it was part of a sigha-
ture section, andegativeotherwise. The labels for a message
were represented as another vegtowherey; is the label for
line i.

The dataset contains 33,013 labeled lines from 617 email
messages. About 10% of the lines are labeled “positive”. Sig-

ature sections always fall at the end of a message, usually in

e last 10 lines. In the experiments below, the data was split
jnto a training set (of 438 sequences/emails), and a test set
with the remaining sequences, and we used the “basic” fea-

éure set from Carvalho & Cohen.

The complete dataset is represented as &'seft exam-

pIeSS = {(Xla Y1)> B (xt7 Yt)a R (X’ma Ym)}- Sequen'
tial learning is the problem of learning, from such a dataset,

tial learning. Like boosting, stacked sequential learning is tial classifieri functi h that
a meta-learning method, in which an arbitrary base learne S€duential classilier.€., a tunc lonf suc a f.(x)
roduces a vector of class labals Clearly, any ordinary

is augmented—in this case, by making the learner aware X ; ; .
the labels of nearby examples. Sequential stacking is simpla°"-Seguential learning algorithm can be used for sequential
éarning, by ignoring the sequential nature of the Hata

to implement, can be applied to virtually any base learner, :
and imposes only a constant overhead in training time: in our " the previous papeCarvalho and Cohen, 20h4ve re-

implementation, the sequentially stacked version of the basgorted results for several non-sequential and sequential learn-
learnerA trains about seven times more slowly than ers on the signature-detection problem, including a non-

In experiments on several partitioning tasks, sequentia?equentlal maximum entropy leamiferger et al, 1994

stacking consistently improves the performance of non- Specifically, one could build a dataset of non-sequential exam-

$equentlal bas.e learners. More surprisingly, sequentla_l .StaCETeS(-’L't_i, yt,:) from S, and use it to train a classifigrthat maps a
ing also often improves performance of learners specificallingle feature-vectar to a labely. One can then usg to classify
designed for sequential tasks, such as conditional randoch instance; in the vectorx = (z1,...,,) separately, ignoring
fields and discriminatively trained HMMs. Finally, on our its sequential position, and append the resulting predictjeriisto

set of benchmark problems, a sequentially stacked maximuman output vectoy.



Method Noise Error Min Error sages, the learned MEMM makes a false positive classifica-

ME 3.47 3.20 tion somewhere before the signature starts, and then “gets
MEMM 31.83 4.26 stuck” and marks every subsequent line as part of a signature.
CRF 117 1.17 This behavior is not consistent with previously-described lim-
MEMM  10% 2.18 2.18 itations of MEMMs. It is known that MEMMSs can represent
CRF 10% 1.85 1.84 only a proper subset of the distributions that can be repre-

sented by CRFfLafferty et al, 2001; however, this “label

as problem” does not explain why MEMMs perform worse
an non-sequential ME, since MEMMs clearly can represent
strictly more distributions that ME.

Klein and Manningl2004 also describe an “observation
(henceforth ME) and conditional random fielfisafferty ef ~ bias problem”, in which MEMMs give too little weight to
al., 2001 (henceforth CRFs). Another plausible sequen-the history features. However, in this case, relative to the
tial learning method to apply to this task ameaximum- Wweights assigned by a CRF, MEMM is seems to dioe
entropy Markov model@MEMMSs) [McCallumet al, 2004, muchweight to the history features. To verify this, we en-
also calledmaximum-entropy taggefiRatnaparkhi, 1999  couraged the MEMM to downweight the history features by
conditional Markov modeldKlein and Manning, 20C  adding noise to the training (not test) data: for each training
and recurrent sliding windowdDietterich, 2002 In this ~ email/sequence, we consider each feature-vectare x in
model, the conditional probability of a label sequence turn, and with probability 0.10, we swap with some other
given an instance sequenseis defined to bePr(y|x) = feature-vec_tomj chosen uniformly fromx. Adding this “se-
1, Pr(vilyi—1,2:). The local model Pr(y;|y;—1,z;) is  duence noise” almost doubles the error rate for CRFs, but
learned as follows. First one constructsextended dataset reduces the error rate for MEMMs. (Of course, this type of
which is a collection of non-sequential examples of thenoise does not affect non-sequential ME.) This experiment
form ((z;,y:—1),y:), where(z;,1;_1) denotes an instance Supports the hypothesis that MEMM is overweighting history
in which the original feature vector fat; is augmented by features.
adding a feature fog; ;. We will call (z;, y;—1) anextended ) ]
instance and cally;_; a history feature Note thaty; is the 3 Stacked Sequential Learning
class label for the extended example:;, yi—1), y:)- _ 3.1 Description

After constructing extended instances, one trains ar

maximum-entropy conditional model from the extended. he poor results for MEMM described above can be intu-

) . o -~ jfively explained as a mismatch between the data ustdito
dataset. Inference is done by using a Viterbi search to fin e local models of the MEMM. and the data usedestthe
the best label sequenge y

. . . model. With noise-free training data, it &waysthe case
MEMMSs have a number of nice properties. Relative they,, 4 signature line is followed by more signature lines, so

more recently-proposed CRF model, MEMMs are easy 10 iMy; js ot especially surprising that the MEMM's local model

plement, and (since no inference is done at learning time) reIIt'ends to weight this feature heavily. However, this regularity
atively quick to train. MEMMSs can also be easily general-

. ) . need not always hold for the test data, which is drawn from
ized by replacing the local model with one that uses a longep, o ictionsmade by the local model on different examples.
}tustory of k previous Iabe(ljs—l.le.,'a mr?d(\a/l' ofb'ghe forrrr: In theory, of course, this training/test mismatch is compen-

?(ﬁi‘y{)—l’ o yl—’ﬁ xé)_ﬁm | replacing tl € 'tﬁr | iear\]rc hi sated for by the Viterbi search, which is in turn driven by the
with a beam search. Such a learner scales well with the Nigs,hfigence estimates produced by the local model. However,
tory size and number of possible clasges

if the assumptions of the theory are violated (for instance,
Unfortunately, as Tabld shows, MEMMs perform ex- it ihere are high-order interactions not accounted for by the

tremely badly on the signature-detection problem, with any,yimum-entropy model), the local model’s confidence esti-
error rate many times the error rate of CRFs. In fact, onp5tes may be incorrect, leading to poor performance.
this problem, MEMMs perform much worse than the non- 14 correct the training/test mismatch, it is sufficient to

: : 2 _ _
sequential ma>'<|mum-entropy learner ME. modify the the extended dataset so that the true previous class
The MEMM's performance is better if one changes the,. | in an extended instande;, y;_1) is replaced by are-

threshold used to classify examples. Lettjngoe the prob-  gictedprevious clasg;_;. Below we will outline one way to
ability Pr(y; = +|z;,y;—1) as computed by MEMM, we g this.

found, for each learner, the threshalduch the rulg(y; = Assume that one is given a sample= {(x;,y:)} of size

+) < (p; > 0)] gives the lowestesterror rate. The column ,,, 5nd a sequential learning algorithsh  Previous work
labeled “Min Error” in Tablel gives this “best possible” re- o g meta-learning method callstacking[Wolpert, 1992

sult. The “Min Error” for MEMMs is much improved, but = g ggests the following scheme for constructing a sample of

Table 1: Performance of several sequential learners on th%I
signature-detection problem.

still higher than non-sequential ME. . (x,y) pairs in whichy is a vector of “predicted” class-labels
The high error occurs because on many test email megor x. First, partition S into K equal-sized disjoint sub-
setsSy,..., Sk, and learnK functions fy,..., fx, where

*We used the implementations of ME, MEMMs, and CRFs pro- . — A(S — S;). Then, construct the set
vided by Minorthird[Minorthird, 2004, with a limit of 50 optimiza- J o '
tion iterations. This limit does not substantially change the results. S ={(x¢,¥:) : y = fj(x¢) andx, € S;}



Stacked Sequential Learning. example is not simply a predicted class, but a numeric value
Parameters: a history sizeW,,, a future sizeW;, and a cross- indicating the log-odds of that class. This makes accessible

validation parametek . to f’ the confidences previously used by the Viterbi search.
Learning algorithm:Given a samplé& = {(x:, y:)}, and a sequen- .
tial learning algorithmA: 3.2 Initial results
1. Construct a sample of predictiogrs for eachx; € S as fol- ~ We applied stacked sequential learning with ME as the base
lows: learner (henceforth s-ME) to the signature-detection dataset.

We usedK = 5, W, = 1, andiW; = 0. The s-ME method
obtains an error rate of 2.63% on the signature-detection
task—less than the baseline ME method (3.20%) but still

(@) SplitS into K equal-sized disjoint subsefs, . . ., Sk
(b) Forj=1,...,K,letf; = A(S - S;)

(c) LetS = {(xs,¥:) : y+ = fi(x¢) andx¢ € S;} higher than CRFs (1.17%). However, certain extensions dra-
2. Construct an extended dataséof instancegx;, y:) by con-  matically improve performance.
verting eachx; to x; as follows:xs" = (1, ..., z;,) where For s-ME, the only impact of more “history” features is
x; = (@i, Ji—wy,, - - -, Yi+w, ) andy; is thei-th componentof  to add new features to the extended instances; hence like
¥+, the label vector paired witk; in S. MEMMSs, s-ME can efficiently handle large histories. On the
3. Return two functionsf = A(S) andf’ = A(S"). signature-detection task, increasing the history sizel toe-
duces error (slightly) to 2.38%.
Inference algorithmpgiven an instance vector: For s-ME, the extended instance feoy can include pre-
1. Lety = f(x) dicted classes not only of previous instances, but also of “fu-

ture” instances—instances that follawy in the sequence.
We explored different “window sizes” for s-ME, where a
“window size” of W means thatV,, = Wy = W, i.e., thelW
previous and¥ following predicted labels are added to each
extended instance. A value Bf = 20 reduces error rates to
Table 2:The sequential stacking meta-learning algorithm. only 0.71%, a 46% reduction from CRF’s error rate of 1.17%.
This improvement is statistically significaht.
. . . . ) Finally, stacked sequential learning can be applied to any
In other words,S pairs each; with they, associated with  |eamer—in particular, since the extended examples are se-
performing aK -fold cross-validation ory. The intent of this  quential, it can be applied any sequential learner. We evalu-
method is thag is similar to the prediction produced by #n  ated stacked sequential CRFs (henceforth s-CRFs) with vary-
|earned byA on a sizem Sample that doeS not |nCIU® |ng Window Sizes on th|s prob'em. A Va|ue W = 20

This procedure is the basis of the meta-learning algorithmeduces error rates to 0.68%, a statistically significant im-
of Table2. This method begins with a sampfeand a se-  provement over s-CRFs. However, for moderately large win-

quential learning method. In the discussion below we will  dow values, there was little performance difference between
assume thatl is ME, used for sequential data. s-CRF and s-ME.

Using S, A, and cross-validation techniques, one first pairs
with eachx; € S the vectory, associated with performing 3.3 Discussion

cross-validation with ME. These predictions are then used toy graphical view of a MEMMs is shown in Part(a) of Fig-

create a datasét of extended instances, whichinthe sim- .7 \we yse the usual convention in which nodes for known

plest case, are simply vectors composed of instances of e 65 are shaded. Each node is associated with a maximum-

form (x;, i—1), whereg;_, is the(i — 1)-th label iny. entropy conditional model which defines a probability distri-
The extended example® are then used to train a model bution given its input values.

f' = A(S"). If Alis the non-sequential maximum-entropy ~ p, 4 (h) of the figure presents a similar graphical view of
learner, this step is similar to the process of building a “localy, |assifier learned by sequential stacking vilth — 1
model” for an MEMM: the difference is that the history fea- andW; = 0. Inference in this model is done in two stages:

tures added ta; are derived not from the true history of, it the middle layer is inferred from the bottom later, then

but are (gpproxmatlons of) the off-sample predictions of ary, ¢ top layer is inferred from the middle layer. The nodes in

ME cl_assmer. . , the middle layer are partly shaded to indicate that their hy-
At inference time,f” must be run on examples that have g siatus—they are considered outputs by the m@dahd

been extended by adding prediction featujesio keep the inputs by the modef’.

“test” distribution similar to the “training” distributionf will One way to interpret the hybrid layer is as a means of mak-

not be used asdthﬁ inne(;_lopp of a Vi(tjerbi(;)r beam-search, the inference more robust. If the middle-layer nodes were
process; instead, the predictiopsre produced using a non- yeateq as ordinary unobserved variables, the top-layer con-

sequential maximum-entropy modgthat is learned fron§.  iiona) model () would rely heavily on the confidence as-

The algorithm of Tablé simply generalizes this idea from gossments of the lower-layer modg.(Forcingf” treat these
ME to an arbitrary sequential learner, and from a specific his-
tory feature to a parameterized set of features. ®A two-tailed pairedt-test rejects with> 95% confidence the

In our experiments, we introduced one small but importanhull hypothesis that the difference in error rate between s-ME and
refinement: each “history featurg added to an extended CRF on arandomly selected sequerdeas a mean of zero.

2. Carry out Stej® above to produce an extended instamcée
(usingy in place ofy:).
3. Returnf’(x").
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Figure 1:Graphical views of alternative sequential-stacking schemes.

Task MEMM ME CRF s-ME s-CRF 25 — :
Alaigen 53.61 8.02 2035 6091 578 Ve MeM
Alainn 70.09 6.61 214 3.65 1.67 v
Alaix 1386 5.02 6.83 459 11.79 207 )
T/aigen 030 260 239 1.92 0.00 = '
T/ainn 136 139 0.28 000 0.28 8 15| ]
T/aix 351 125 526 0.05 4.44 § .
1/video 11.39 12.66 12.66 12.66 13.92 s
2/video 886 8.86 7.59 3.80 7.59 o wr il
mailsig 31.83 347 117 1.08 0.77 2 " .
5 < « 1
Table 3:Comparision of different sequential algorithms on a 3 ’; T
set of nine benchmark tasks. ol % L. i
0 5 10 15 20 25

Error: other learner

Figure 2: Comparision of the error rates for s-ME with the
variables a®bservedjuantities allowsf’ to develop its own  error rates of ME, MEMM, and CRFs.
model of how the;j predictions made by correlate with the
actual outputgy. This allows f’ to accept or downweight .
f's predictions, as appropriate. As suggested by the dotteft  Further Experimental Results
line in the figure, stacking conceptually creates a “firewall’4 1 Additional segmentation tasks
betweenf andf’, insulatingf’ from possible errors in confi-

dence made by. We also evaluated non-sequential ME, MEMMs, CRFs, s-

ME, and s-CRFs on several other sequential partitioning

) ) , tasks. For stacking, we usdd = 5 and a window size of
Part (q) of the figure shows a sequgntla_l stack|_ng modeJWh = W; = 5 on all problems. These were the only parame-

with a window of W, = W; = 2. To simplify the figure,  teryvalues explored in this section, and no changes were mad

only the edges that eventually lead to the ndflare shown. {4 the sequential stacking algorithm, which was developed

based on observations made from the signature-detection tas

To conclude our discussion, we note that as describedynly.

sequential stacking increases run-time of the base learning One set of tasks involved classifying lines from FAQ doc-

method by approximately a constant factoof+ 2. (To see  luments with labels like “header”, “question”, “answer”, and
this, note sequential stacking requires trainiigt 2 classi-  “trailer”. We used the features adopted by McCallemal
fiers: the classifierg,, ..., fx used in cross-validation, and | [McCallum et al,, 2004 and the three tasks (ai-general, ai-

the final classifierg andf’.) When data is plentiful but train- neural-nets, and aix) adopted by Dietterithal [Dietterich

ing time is limited, it is also possible to simply split the orig- et al, 2004. The data consists of 5-7 long sequences, each
inal datasetS into two disjoint halvesS; and.S,, and train  sequence corresponding to a single FAQ document; in total,
two classifiersf and f’ from S; and .S}, respectively (where each task contains between 8,965 aand 12,757 labeled line:
S4 is Sy, extended with the predictions produced fjy This ~ Our current implementation of sequential stacking only sup-
scheme leaves training time approximately unchanged for ports binary labels, so we considered the two labels “trailer”
linear-time base learner, and decreases training time for anyf’) and “answer” (A) as separate tasks for each FAQ, leading
base learner that requires superlinear time. to a total of six new benchmarks.



Another set of tasks were video segmentation tasks, in _Task ~ MEMM  ME CRF s-ME s-CRF
which the goal is to take a sequence of video “shots” (a Mmusic2 28.14 2140 21.40 18.5113.50
sequence of adjacent frames taken from one camera) and music5 64.97 67.00 67.00 64.46 63.45

classify them into categories such as “anchor”, “news” and

‘weather”. This dataset contains 12 sequences, each Corrgyp|e 4: Comparision of different sequential algorithms on a
sponding to a single video clip. There are a total of 418 shotsyysic classification task.

and about 700 features, which are produced by applying LDA

to a 5x5, 125-bin RGB color histogram of the central frame _

of the shot. (This data was provided by Yik-Cheung Tam and A collection of 201 popular songs was annotated by two
Ming-yu Chen.) We constructed two separate video partitionStUdents on a five-point scale: “very happy”(5), “happy”(4),

ing tasks, corresponding to the two most common labels.  neutral’(3), "sad”(2) and *very sad’(1). The Pearson’s cor-

All eight of these additional tasks are similar to the _relationr [Walpole et al, 199§ was used as a measure of

signature-detection task in that they contain long runs Ofiden:z_nt_er—?nnotatorf agreelment.f Tthg_ Pearson's tcotrreﬁtlon (icoe{—
tical labels, leading to strong regularities in constructed his-/CleNt ranges from - (perfect disagreement) 1o (perfec
tory features. Error rates for the learning methods on thes greement); and the calculated inter-rater agreement between
eight tasks, in addition to the previous signature-detection "< two students was 0.643.
task, are shown in Tab@ In each case a single train/test _ 1° léarnasong classifier, we represented each song as a se-
split was used to evaluate error rates. The bold-faced entri lence of 1-s_econd long “frames”, eaqh f(ame being labeled
are the lowest error rate on a row. with the emotion forthe song that contains it. We then Igarned
We observe that MEMMs suffer extremelv hiah error ratesS€dU€Nce classifiers from these labeled sequences. Finally, to
yhig classify an unknown song, we use the sequence classifier to

on two of the new tasks (flnd|_ng answer ‘!lnes for al-g,enerallabel the frames for the song, and finally label the song with
and ai-neural-nets), suggesting that the “anomolous behathe most frequent predicted frame label
:g;:thiﬂvgg 'Eesr:%g?tu;’tiﬁ;ﬁ?ﬁ“?stmsay not be uncommon, a The “frames” are produced by extracting certain numerical
Al d 1alp ME I\/?E ) h ME i properties from a waveform representation of the song every
H S0, comparing Sf tok v(\j/el see that s- ; 'mpéoveSZOms, and then averaging over 1-second intervals. Each 1-
::e E”Of rate '”I\?thg tasl S, and leaves It r‘]mC CaFr;%e 7°”fC econd frame has as features the mean and standard deviation
-urthermore, s- as a lower error rate than CRFs 7 of ¢ each property. The numerical properties were computed
times, and_ has the same error rate once. There is only ONfsing the Marsyas toolk[Tzanetakis and Cook, 20htand
case in which MEMMs have a lower error rate than s-ME. 516 haged on the short-time Fourier transform, tonality, and
Overall, s-ME seems to be preferable to either of threecepstral coefficients.
older approaches (ME, MEMMs, and CRFS). This is made The music dataset contains 52188 frames from the 201
somewhat more apparent by the scatter plot of Figur®n  gongs, with 130 features for each frame. We looked at two
this plot, each point is placed so theaxis position is the er-  yersjons of the problem: predicting all of the five labels (mu-
ror of s-ME, and thec-axis position is the error of an earlier sic5), and predicting only “happy” versus “sad” labels (mu-
learner; thus points below the line= x are cases where s- gjc2). preliminary experiments suggested that large windows
ME outperforms another learner. (For readability, the ranggyere effective, thus we used the following parameters in the
of the z axis is truncated—it does not include the highest erexperiments:k = 2 and a window size ofV/;, = Wy =25

ror rates of MEMM.) on music5 problem, an& = 5 andW,, = W; = 25 on
Stacking also improves CRF on some problems, but thenysic2. Results are summarized in Tadle

effectis not as consistent: s-CRF improves the error rate on 5 The strength of stacking algorithms can be observed both

of 9 tasks, leaves it unchanged twice, and increases the errgy music2 and music5 tasks. Both s-CRF and s-ME outper-

rate twice. In the table, one of the two stacked learners hagrm their non-stacking counterparts, and s-ME outperforms

the lowest error rate on 8 of the 9 tasks. CRFs. Furthermore, s-CRF improves substantially over un-
Applying a one-tailed sign test, the improvement of s-ME stacked CRFs on the two-class problem, reducing the error

relative to ME is statistically significanp(> 0.98), but the  rate by more than 27%, and presents the best performance

improvement of s-CRF relative to CRF is statistically not overall.

(p > 0.92). The sign test does not consider the amounts

by which error rates are changed, however. From the fig5 Conclusions

ures and tables, it is clear that error rates are often lowered

substantially, and only once raised by more than a very smafp€duential partitioning tasks are sequential classification
proportion (for the “Alaix” benchmark with CRFs). tasks charactenzeq by long runs of |dent|cal Iabels. exam-
ples of these tasks include document analysis, video segmen-

tation, and gene finding. In this paper, we have evaluated the
performance of certain well-studied sequential probabilistic
As a final test, we explored one additional non-trivéa-  learners to sequential partitioning tasks. It was observed that
guence classificatiotask: classifying popular songs by emo- MEMMs sometimes obtain extremely high error rates. Er-
tion. Importantly, this task was addressed after all code deror analysis suggests that this problem is neither due to “label
velopment was complete: thus it is a prospective test of théias”[Lafferty et al, 2001 nor “observation bias[Klein and
effectiveness of the sequential stacking algorithm. Manning, 2002, but to a mismatch between the data used to

4.2 A sequence classification task



train the MEMM'’s local model, and the data on which the  ments with perceptron algorithms. Empirical Methods
MEMM’s local model is tested. In particular, since MEMMs  in Natural Language Processing (EMNLP2002.

are trained on “true” labels and tested on “predicted” 'abeIS[Dietterichet al, 2004 Thomas G. Dietterich, Adam
the strong correlations between adjacent labels associated se- s ghenfelter ,and Yaroslav Bulatov. Training ,conditional

quential partitioning tasks can be misleading to the MEMM's . 4om fields via gradient tree boosting Aroceedings of

Iearniqg method. ) ) . the 21th International Conference on Machine Learning
Motivated by these issues, we derived a novel method in (ICML), 2004.

which cross-validation is used correct this mismatch. Th(i ) ) ) : , .
end result is a meta-learning scheme cafieatked sequen- LDietterich, 2002 Thomas G. Dietterich. Machine learning
tial learning. Sequential stacking is simple to implement, for sequential data: A review. Itructural, Syntactic,
can be applied to virtually any base learner, and imposes an and Statistical Pattern Recognitioppages 15-30. Springer
constant overhead in learning time (the constant being the Verlag, New York, 2002.

number of cross-validation folds plus two). In experiments[Freund and Schapire, 199&oav Freund and Robert E.
on several partitioning tasks, sequential stacking consistently Schapire. Large margin classification using the percep-
improves the performance of two non-sequential base learn- tron algorithm. InComputational Learning Theorpages
ers, often dramatically. On our set of benchmark problems, 209-217, 1998.

sequential stacking with a maximum-entropy learner as thgKIein and Manning, 2002 Dan Klein and Christopher D.
base learner outperforms CRFs 7 of 9 times, and ties once. yyonning * Conditional structure versus conditional esti-

Also, on a prospective test conducted on a completely new mation in nlp models. IWorkshop on Empirical Methods
task, sequentlgl stacking improves the perforrr_]ance of both in Natural Language Processing (EMNLR002.
CRFs and maximum-entropy learners, leading in one case to
a 27% reduction in error over conventional CRFs. [Lafferty et al, 200] John Lafferty, Andrew McCallum,
One of the more surprising results (for us) is that sequen- an_d Fernando Pereira. Co_ndmonal ran_dom fields: Proba-
tial stacking also often improves performance of conditional  Pilistic models for segmenting and labeling sequence data.
random fields, a learner specifically designed for sequential N Proceedings of the International Conference on Ma-
tasks. In a longer version of this paper, we conducted simi- chine Learning (ICML-2001)Williams, MA, 2001.
lar with two margin-based base learners: the non-sequentigMcCallumet al, 200d Andrew McCallum, Dayne Freitag,
voted perceptron algorithm (VH5reund and Schapire, 1598 and Fernando Pereira. Maximum entropy markov models
and a voted-perceptron based training scheme for HMMs pro- for information extraction and segmentation. Rroceed-

posed by Collins (VPHMMSs]JCollins, 2002, with qualita- ings of the International Conference on Machine Learning
tively similar results. (ICML-2000) pages 591-598, Palo Alto, CA, 2000.

Some initial experiments on a named entity recognition Minorthird, 2004 Minorthird: Methods for identi-
problem suggest that sequential stacking does not improJe i :

fying names and ontological relations in text us-
ing heuristics for inducing regularities from data.
http://minorthird.sourceforge.net, 2004.
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