
Stacked Sequential Learning

William W. Cohen
Center for Automated Learning & Discovery

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
wcohen@cs.cmu.edu

Vitor R. Carvalho
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
vitor@cs.cmu.edu

Abstract

We describe a new sequential learning scheme
called “stacked sequential learning”. Stacked se-
quential learning is a meta-learning algorithm, in
which an arbitrary base learner is augmented so
as make it aware of the labels of nearby exam-
ples. We evaluate the method on several “sequen-
tial partitioning problems”, which are characterized
by long runs of identical labels. We demonstrate
that on these problems, sequential stacking consis-
tently improves the performance of non-sequential
base learners; that sequential stacking often im-
proves performance of learners (such as CRFs)
that are designed specifically for sequential tasks;
and that a sequentially stacked maximum-entropy
learner generally outperforms CRFs.

1 Introduction
In this paper, we will consider the application of sequential
probabilistic learners tosequential partitioning tasks. Se-
quential partitioning tasks are sequential classification tasks
characterized by long runs of identical labels: examples of
these tasks include document analysis, video segmentation,
and gene finding.

Motivated by some anomolous behavior observed for one
sequential learning method on a particular partitioning task,
we will derive a new learning scheme calledstacked sequen-
tial learning. Like boosting, stacked sequential learning is
a meta-learning method, in which an arbitrary base learner
is augmented—in this case, by making the learner aware of
the labels of nearby examples. Sequential stacking is simple
to implement, can be applied to virtually any base learner,
and imposes only a constant overhead in training time: in our
implementation, the sequentially stacked version of the base
learnerA trains about seven times more slowly thanA.

In experiments on several partitioning tasks, sequential
stacking consistently improves the performance of non-
sequential base learners. More surprisingly, sequential stack-
ing also often improves performance of learners specifically
designed for sequential tasks, such as conditional random
fields and discriminatively trained HMMs. Finally, on our
set of benchmark problems, a sequentially stacked maximum-

entropy learner generally outperforms conditional random
fields.

2 Motivation: A Hard Task for MEMMs
To motivate the novel learning method that we will describe
below, we will first analyze the behavior of one well-known
sequential learner on a particular real-world problem. In a
recent paper[Carvalho and Cohen, 2004], we evaluated a
number of sequential learning methods on the problem of rec-
ognizing the “signature” section of an email message. Each
line of an email message was represented with a set of hand-
crafted features, such as “line contains a possible phone num-
ber”, “line is blank”, etc. Each email message was repre-
sented as a vectorx of feature-vectorsx1, . . . , xn, wherexi
is the feature-vector representation of thei-th line of the mes-
sage. A line was labeled aspositiveif it was part of a signa-
ture section, andnegativeotherwise. The labels for a message
were represented as another vectory, whereyi is the label for
line i.

The dataset contains 33,013 labeled lines from 617 email
messages. About 10% of the lines are labeled “positive”. Sig-
nature sections always fall at the end of a message, usually in
the last 10 lines. In the experiments below, the data was split
into a training set (of 438 sequences/emails), and a test set
with the remaining sequences, and we used the “basic” fea-
ture set from Carvalho & Cohen.

The complete dataset is represented as a setS of exam-
plesS = {(x1,y1), . . . , (xt,yt), . . . , (xm,ym)}. Sequen-
tial learning is the problem of learning, from such a dataset,
a sequential classifier—i.e., a functionf such thatf(x)
produces a vector of class labelsy. Clearly, any ordinary
non-sequential learning algorithm can be used for sequential
learning, by ignoring the sequential nature of the data1.

In the previous paper[Carvalho and Cohen, 2004], we re-
ported results for several non-sequential and sequential learn-
ers on the signature-detection problem, including a non-
sequential maximum entropy learner[Berger et al., 1996]

1Specifically, one could build a dataset of non-sequential exam-
ples(xt,i, yt,i) from S, and use it to train a classifierg that maps a
single feature-vectorx to a labely. One can then useg to classify
each instancexi in the vectorx = 〈x1, . . . , xn〉 separately, ignoring
its sequential position, and append the resulting predictionsyi into
an output vectory.

Method Noise Error Min Error
ME 3.47 3.20
MEMM 31.83 4.26
CRF 1.17 1.17
MEMM 10% 2.18 2.18
CRF 10% 1.85 1.84

Table 1: Performance of several sequential learners on the
signature-detection problem.

(henceforth ME) and conditional random fields[Lafferty et
al., 2001] (henceforth CRFs). Another plausible sequen-
tial learning method to apply to this task aremaximum-
entropy Markov models(MEMMs) [McCallumet al., 2000],
also calledmaximum-entropy taggers[Ratnaparkhi, 1999],
conditional Markov models[Klein and Manning, 2002],
and recurrent sliding windows[Dietterich, 2002]. In this
model, the conditional probability of a label sequencey
given an instance sequencex is defined to bePr(y|x) =∏
i Pr(yi|yi−1, xi). The local model Pr(yi|yi−1, xi) is

learned as follows. First one constructs anextended dataset,
which is a collection of non-sequential examples of the
form ((xi, yi−1), yi), where(xi, yi−1) denotes an instance
in which the original feature vector forxi is augmented by
adding a feature foryi−1. We will call (xi, yi−1) anextended
instance, and callyi−1 a history feature. Note thatyi is the
class label for the extended example((xi, yi−1), yi).

After constructing extended instances, one trains a
maximum-entropy conditional model from the extended
dataset. Inference is done by using a Viterbi search to find
the best label sequencey.

MEMMs have a number of nice properties. Relative the
more recently-proposed CRF model, MEMMs are easy to im-
plement, and (since no inference is done at learning time) rel-
atively quick to train. MEMMs can also be easily general-
ized by replacing the local model with one that uses a longer
“history” of k previous labels—i.e., a model of the form
Pr(yi|yi−1, . . . , yi−k, xi)—and replacing the Viterbi search
with a beam search. Such a learner scales well with the his-
tory size and number of possible classesy.

Unfortunately, as Table1 shows, MEMMs perform ex-
tremely badly on the signature-detection problem, with an
error rate many times the error rate of CRFs. In fact, on
this problem, MEMMs perform much worse than the non-
sequential maximum-entropy learner ME.2

The MEMM’s performance is better if one changes the
threshold used to classify examples. Lettingp̂i be the prob-
ability Pr(yi = +|xi, yi−1) as computed by MEMM, we
found, for each learner, the thresholdθ such the rule[(yi =
+) ⇔ (p̂i > θ)] gives the lowesttesterror rate. The column
labeled “Min Error” in Table1 gives this “best possible” re-
sult. The “Min Error” for MEMMs is much improved, but
still higher than non-sequential ME.

The high error occurs because on many test email mes-

2We used the implementations of ME, MEMMs, and CRFs pro-
vided by Minorthird[Minorthird, 2004], with a limit of 50 optimiza-
tion iterations. This limit does not substantially change the results.

sages, the learned MEMM makes a false positive classifica-
tion somewhere before the signature starts, and then “gets
stuck” and marks every subsequent line as part of a signature.
This behavior is not consistent with previously-described lim-
itations of MEMMs. It is known that MEMMs can represent
only a proper subset of the distributions that can be repre-
sented by CRFs[Lafferty et al., 2001]; however, this “label
bias problem” does not explain why MEMMs perform worse
than non-sequential ME, since MEMMs clearly can represent
strictly more distributions that ME.

Klein and Manning[2002] also describe an “observation
bias problem”, in which MEMMs give too little weight to
the history features. However, in this case, relative to the
weights assigned by a CRF, MEMM is seems to givetoo
muchweight to the history features. To verify this, we en-
couraged the MEMM to downweight the history features by
adding noise to the training (not test) data: for each training
email/sequencex, we consider each feature-vectorxi ∈ x in
turn, and with probability 0.10, we swapxi with some other
feature-vectorxj chosen uniformly fromx. Adding this “se-
quence noise” almost doubles the error rate for CRFs, but
reduces the error rate for MEMMs. (Of course, this type of
noise does not affect non-sequential ME.) This experiment
supports the hypothesis that MEMM is overweighting history
features.

3 Stacked Sequential Learning
3.1 Description
The poor results for MEMM described above can be intu-
itively explained as a mismatch between the data used totrain
the local models of the MEMM, and the data used totestthe
model. With noise-free training data, it isalways the case
that a signature line is followed by more signature lines, so
it is not especially surprising that the MEMM’s local model
tends to weight this feature heavily. However, this regularity
need not always hold for the test data, which is drawn from
predictionsmade by the local model on different examples.

In theory, of course, this training/test mismatch is compen-
sated for by the Viterbi search, which is in turn driven by the
confidence estimates produced by the local model. However,
if the assumptions of the theory are violated (for instance,
if there are high-order interactions not accounted for by the
maximum-entropy model), the local model’s confidence esti-
mates may be incorrect, leading to poor performance.

To correct the training/test mismatch, it is sufficient to
modify the the extended dataset so that the true previous class
yi−1 in an extended instance(xi, yi−1) is replaced by apre-
dictedprevious clasŝyi−1. Below we will outline one way to
do this.

Assume that one is given a sampleS = {(xt,yt)} of size
m, and a sequential learning algorithmA. Previous work
on a meta-learning method calledstacking[Wolpert, 1992]
suggests the following scheme for constructing a sample of
(x, ŷ) pairs in whichŷ is a vector of “predicted” class-labels
for x. First, partitionS into K equal-sized disjoint sub-
setsS1, . . . , SK , and learnK functionsf1, . . . , fK , where
fj = A(S − Sj). Then, construct the set

Ŝ = {(xt, ŷt) : ŷ = fj(xt) andxt ∈ Sj}

Stacked Sequential Learning.

Parameters: a history sizeWh, a future sizeWf , and a cross-
validation parameterK.

Learning algorithm:Given a sampleS = {(xt,yt)}, and a sequen-
tial learning algorithmA:

1. Construct a sample of predictionsŷt for eachxt ∈ S as fol-
lows:

(a) SplitS intoK equal-sized disjoint subsetsS1, . . . , SK
(b) Forj = 1, . . . ,K, let fj = A(S − Sj)
(c) Let Ŝ = {(xt, ŷt) : ŷt = fj(xt) andxt ∈ Sj}

2. Construct an extended datasetS′ of instances(x′t,yt) by con-
verting eachxt to x′t as follows:xt

′ = 〈x′1, . . . , x′`t〉 where
x′i = (xi, ŷi−Wh , . . . , ŷi+Wf) andŷi is thei-th component of

ŷt, the label vector paired withxt in Ŝ.

3. Return two functions:f = A(S) andf ′ = A(S′).

Inference algorithm:given an instance vectorx:

1. Let ŷ = f(x)

2. Carry out Step2 above to produce an extended instancex′

(usingŷ in place ofŷt).

3. Returnf ′(x′).

Table 2:The sequential stacking meta-learning algorithm.

In other words,Ŝ pairs eachxt with the ŷt associated with
performing aK-fold cross-validation onS. The intent of this
method is that̂y is similar to the prediction produced by anf
learned byA on a size-m sample that does not includex.

This procedure is the basis of the meta-learning algorithm
of Table2. This method begins with a sampleS and a se-
quential learning methodA. In the discussion below we will
assume thatA is ME, used for sequential data.

UsingS,A, and cross-validation techniques, one first pairs
with eachxt ∈ S the vectorŷt associated with performing
cross-validation with ME. These predictions are then used to
create a datasetS′ of extended instancesx′, which in the sim-
plest case, are simply vectors composed of instances of the
form (xi, ŷi−1), whereŷi−1 is the(i− 1)-th label inŷ.

The extended examplesS′ are then used to train a model
f ′ = A(S′). If A is the non-sequential maximum-entropy
learner, this step is similar to the process of building a “local
model” for an MEMM: the difference is that the history fea-
tures added toxi are derived not from the true history ofxi,
but are (approximations of) the off-sample predictions of an
ME classifier.

At inference time,f ′ must be run on examples that have
been extended by adding prediction featuresŷ. To keep the
“test” distribution similar to the “training” distribution,f will
not be used as the inner loop of a Viterbi or beam-search
process; instead, the predictionsŷ are produced using a non-
sequential maximum-entropy modelf that is learned fromS.
The algorithm of Table2 simply generalizes this idea from
ME to an arbitrary sequential learner, and from a specific his-
tory feature to a parameterized set of features.

In our experiments, we introduced one small but important
refinement: each “history feature”̂y added to an extended

example is not simply a predicted class, but a numeric value
indicating the log-odds of that class. This makes accessible
to f ′ the confidences previously used by the Viterbi search.

3.2 Initial results
We applied stacked sequential learning with ME as the base
learner (henceforth s-ME) to the signature-detection dataset.
We usedK = 5, Wh = 1, andWf = 0. The s-ME method
obtains an error rate of 2.63% on the signature-detection
task—less than the baseline ME method (3.20%) but still
higher than CRFs (1.17%). However, certain extensions dra-
matically improve performance.

For s-ME, the only impact of more “history” features is
to add new features to the extended instances; hence like
MEMMs, s-ME can efficiently handle large histories. On the
signature-detection task, increasing the history size to11 re-
duces error (slightly) to 2.38%.

For s-ME, the extended instance forxi can include pre-
dicted classes not only of previous instances, but also of “fu-
ture” instances—instances that followxi in the sequencex.
We explored different “window sizes” for s-ME, where a
“window size” ofW means thatWh = Wf = W , i.e., theW
previous andW following predicted labels are added to each
extended instance. A value ofW = 20 reduces error rates to
only 0.71%, a 46% reduction from CRF’s error rate of 1.17%.
This improvement is statistically significant.3

Finally, stacked sequential learning can be applied to any
learner—in particular, since the extended examples are se-
quential, it can be applied any sequential learner. We evalu-
ated stacked sequential CRFs (henceforth s-CRFs) with vary-
ing window sizes on this problem. A value ofW = 20
reduces error rates to 0.68%, a statistically significant im-
provement over s-CRFs. However, for moderately large win-
dow values, there was little performance difference between
s-CRF and s-ME.

3.3 Discussion
A graphical view of a MEMMs is shown in Part(a) of Fig-
ure1. We use the usual convention in which nodes for known
values are shaded. Each node is associated with a maximum-
entropy conditional model which defines a probability distri-
bution given its input values.

Part (b) of the figure presents a similar graphical view of
the classifier learned by sequential stacking withWh = 1
andWf = 0. Inference in this model is done in two stages:
first the middle layer is inferred from the bottom later, then
the top layer is inferred from the middle layer. The nodes in
the middle layer are partly shaded to indicate that their hy-
brid status—they are considered outputs by the modelf , and
inputs by the modelf ′.

One way to interpret the hybrid layer is as a means of mak-
ing the inference more robust. If the middle-layer nodes were
treated as ordinary unobserved variables, the top-layer con-
ditional model (f ′) would rely heavily on the confidence as-
sessments of the lower-layer model (f). Forcingf ′ treat these

3A two-tailed pairedt-test rejects with> 95% confidence the
null hypothesis that the difference in error rate between s-ME and
CRF on a randomly selected sequencex has a mean of zero.

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

^^^

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

^^^

Yi-1 Yi Yi+1

Xi-2

Yi-2

^

Yi-2

Xi+1

Yi+1

^

Yi+1

(a) MEMM (b) Sequential stacking (c) Sequential stacking,W = 2

Figure 1:Graphical views of alternative sequential-stacking schemes.

Task MEMM ME CRF s-ME s-CRF
A/aigen 53.61 8.02 20.35 6.91 5.78
A/ainn 70.09 6.61 2.14 3.65 1.67
A/aix 13.86 5.02 6.83 4.59 11.79
T/aigen 0.30 2.60 2.39 1.92 0.00
T/ainn 1.36 1.39 0.28 0.00 0.28
T/aix 3.51 1.25 5.26 0.05 4.44
1/video 11.39 12.66 12.66 12.66 13.92
2/video 8.86 8.86 7.59 3.80 7.59
mailsig 31.83 3.47 1.17 1.08 0.77

Table 3:Comparision of different sequential algorithms on a
set of nine benchmark tasks.

variables asobservedquantities allowsf ′ to develop its own
model of how thêy predictions made byf correlate with the
actual outputsy. This allowsf ′ to accept or downweight
f ’s predictions, as appropriate. As suggested by the dotted
line in the figure, stacking conceptually creates a “firewall”
betweenf andf ′, insulatingf ′ from possible errors in confi-
dence made byf .

Part (c) of the figure shows a sequential stacking model
with a window ofWh = Wf = 2. To simplify the figure,
only the edges that eventually lead to the nodeYi are shown.

To conclude our discussion, we note that as described,
sequential stacking increases run-time of the base learning
method by approximately a constant factor ofK + 2. (To see
this, note sequential stacking requires trainingK + 2 classi-
fiers: the classifiersf1, . . . , fK used in cross-validation, and
the final classifiersf andf ′.) When data is plentiful but train-
ing time is limited, it is also possible to simply split the orig-
inal datasetS into two disjoint halvesS1 andS2, and train
two classifiersf andf ′ from S1 andS′2 respectively (where
S′2 is S2, extended with the predictions produced byf). This
scheme leaves training time approximately unchanged for a
linear-time base learner, and decreases training time for any
base learner that requires superlinear time.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

E
rr

or
: S

ta
ck

ed
 M

ax
en

t

Error: other learner

vs Maxent
vs MEMM

vs CRF
x=y

Figure 2: Comparision of the error rates for s-ME with the
error rates of ME, MEMM, and CRFs.

4 Further Experimental Results
4.1 Additional segmentation tasks
We also evaluated non-sequential ME, MEMMs, CRFs, s-
ME, and s-CRFs on several other sequential partitioning
tasks. For stacking, we usedK = 5 and a window size of
Wh = Wf = 5 on all problems. These were the only parame-
ter values explored in this section, and no changes were made
to the sequential stacking algorithm, which was developed
based on observations made from the signature-detection task
only.

One set of tasks involved classifying lines from FAQ doc-
uments with labels like “header”, “question”, “answer”, and
“trailer”. We used the features adopted by McCallumet al
[McCallum et al., 2000] and the three tasks (ai-general, ai-
neural-nets, and aix) adopted by Dietterichet al [Dietterich
et al., 2004]. The data consists of 5-7 long sequences, each
sequence corresponding to a single FAQ document; in total,
each task contains between 8,965 aand 12,757 labeled lines.
Our current implementation of sequential stacking only sup-
ports binary labels, so we considered the two labels “trailer”
(T) and “answer” (A) as separate tasks for each FAQ, leading
to a total of six new benchmarks.

Another set of tasks were video segmentation tasks, in
which the goal is to take a sequence of video “shots” (a
sequence of adjacent frames taken from one camera) and
classify them into categories such as “anchor”, “news” and
“weather”. This dataset contains 12 sequences, each corre-
sponding to a single video clip. There are a total of 418 shots,
and about 700 features, which are produced by applying LDA
to a 5x5, 125-bin RGB color histogram of the central frame
of the shot. (This data was provided by Yik-Cheung Tam and
Ming-yu Chen.) We constructed two separate video partition-
ing tasks, corresponding to the two most common labels.

All eight of these additional tasks are similar to the
signature-detection task in that they contain long runs of iden-
tical labels, leading to strong regularities in constructed his-
tory features. Error rates for the learning methods on these
eight tasks, in addition to the previous signature-detection
task, are shown in Table3. In each case a single train/test
split was used to evaluate error rates. The bold-faced entries
are the lowest error rate on a row.

We observe that MEMMs suffer extremely high error rates
on two of the new tasks (finding “answer” lines for ai-general
and ai-neural-nets), suggesting that the “anomolous” behav-
ior shown in signature-detection may not be uncommon, at
least in sequential partitioning tasks.

Also, comparing s-ME to ME, we see that s-ME improves
the error rate in 8 of 9 tasks, and leaves it unchanged once.
Furthermore, s-ME has a lower error rate than CRFs 7 of 9
times, and has the same error rate once. There is only one
case in which MEMMs have a lower error rate than s-ME.

Overall, s-ME seems to be preferable to either of three
older approaches (ME, MEMMs, and CRFS). This is made
somewhat more apparent by the scatter plot of Figure2. On
this plot, each point is placed so they-axis position is the er-
ror of s-ME, and thex-axis position is the error of an earlier
learner; thus points below the liney = x are cases where s-
ME outperforms another learner. (For readability, the range
of thex axis is truncated—it does not include the highest er-
ror rates of MEMM.)

Stacking also improves CRF on some problems, but the
effect is not as consistent: s-CRF improves the error rate on 5
of 9 tasks, leaves it unchanged twice, and increases the error
rate twice. In the table, one of the two stacked learners has
the lowest error rate on 8 of the 9 tasks.

Applying a one-tailed sign test, the improvement of s-ME
relative to ME is statistically significant (p > 0.98), but the
improvement of s-CRF relative to CRF is statistically not
(p > 0.92). The sign test does not consider the amounts
by which error rates are changed, however. From the fig-
ures and tables, it is clear that error rates are often lowered
substantially, and only once raised by more than a very small
proportion (for the “A/aix” benchmark with CRFs).

4.2 A sequence classification task

As a final test, we explored one additional non-trivialse-
quence classificationtask: classifying popular songs by emo-
tion. Importantly, this task was addressed after all code de-
velopment was complete: thus it is a prospective test of the
effectiveness of the sequential stacking algorithm.

Task MEMM ME CRF s-ME s-CRF
music2 28.14 21.40 21.40 18.51 13.50
music5 64.97 67.00 67.00 64.46 63.45

Table 4:Comparision of different sequential algorithms on a
music classification task.

A collection of 201 popular songs was annotated by two
students on a five-point scale: “very happy”(5), “happy”(4),
“neutral”(3), “sad”(2) and “very sad”(1). The Pearson’s cor-
relation r [Walpole et al., 1998] was used as a measure of
inter-annotator agreement. The Pearson’s correlation coef-
ficient ranges from -1 (perfect disagreement) to +1 (perfect
agreement); and the calculated inter-rater agreement between
the two students was 0.643.

To learn a song classifier, we represented each song as a se-
quence of 1-second long “frames”, each frame being labeled
with the emotion for the song that contains it. We then learned
sequence classifiers from these labeled sequences. Finally, to
classify an unknown song, we use the sequence classifier to
label the frames for the song, and finally label the song with
the most frequent predicted frame label.

The “frames” are produced by extracting certain numerical
properties from a waveform representation of the song every
20ms, and then averaging over 1-second intervals. Each 1-
second frame has as features the mean and standard deviation
of each property. The numerical properties were computed
using the Marsyas toolkit[Tzanetakis and Cook, 2000], and
are based on the short-time Fourier transform, tonality, and
cepstral coefficients.

The music dataset contains 52188 frames from the 201
songs, with 130 features for each frame. We looked at two
versions of the problem: predicting all of the five labels (mu-
sic5), and predicting only “happy” versus “sad” labels (mu-
sic2). Preliminary experiments suggested that large windows
were effective, thus we used the following parameters in the
experiments:K = 2 and a window size ofWh = Wf = 25
on music5 problem, andK = 5 andWh = Wf = 25 on
music2. Results are summarized in Table4.

The strength of stacking algorithms can be observed both
in music2 and music5 tasks. Both s-CRF and s-ME outper-
form their non-stacking counterparts, and s-ME outperforms
CRFs. Furthermore, s-CRF improves substantially over un-
stacked CRFs on the two-class problem, reducing the error
rate by more than 27%, and presents the best performance
overall.

5 Conclusions
Sequential partitioning tasks are sequential classification
tasks characterized by long runs of identical labels: exam-
ples of these tasks include document analysis, video segmen-
tation, and gene finding. In this paper, we have evaluated the
performance of certain well-studied sequential probabilistic
learners to sequential partitioning tasks. It was observed that
MEMMs sometimes obtain extremely high error rates. Er-
ror analysis suggests that this problem is neither due to “label
bias” [Lafferty et al., 2001] nor “observation bias”[Klein and
Manning, 2002], but to a mismatch between the data used to

train the MEMM’s local model, and the data on which the
MEMM’s local model is tested. In particular, since MEMMs
are trained on “true” labels and tested on “predicted” labels,
the strong correlations between adjacent labels associated se-
quential partitioning tasks can be misleading to the MEMM’s
learning method.

Motivated by these issues, we derived a novel method in
which cross-validation is used correct this mismatch. The
end result is a meta-learning scheme calledstacked sequen-
tial learning. Sequential stacking is simple to implement,
can be applied to virtually any base learner, and imposes an
constant overhead in learning time (the constant being the
number of cross-validation folds plus two). In experiments
on several partitioning tasks, sequential stacking consistently
improves the performance of two non-sequential base learn-
ers, often dramatically. On our set of benchmark problems,
sequential stacking with a maximum-entropy learner as the
base learner outperforms CRFs 7 of 9 times, and ties once.
Also, on a prospective test conducted on a completely new
task, sequential stacking improves the performance of both
CRFs and maximum-entropy learners, leading in one case to
a 27% reduction in error over conventional CRFs.

One of the more surprising results (for us) is that sequen-
tial stacking also often improves performance of conditional
random fields, a learner specifically designed for sequential
tasks. In a longer version of this paper, we conducted simi-
lar with two margin-based base learners: the non-sequential
voted perceptron algorithm (VP)[Freund and Schapire, 1998]
and a voted-perceptron based training scheme for HMMs pro-
posed by Collins (VPHMMs)[Collins, 2002], with qualita-
tively similar results.

Some initial experiments on a named entity recognition
problem suggest that sequential stacking does not improve
performance on non-partitioning problems; however, in fu-
ture work, we plan to explore this issue with more detailed
experimentation.

Acknowledgements
The authors wish to thank many friends and colleagues for
input, in particular David McAllister. We are also grateful to
Yik-Cheung Tam and Ming-yu Chen for providing the video-
segmentation data, and to Chih-yu Chao for the popular mu-
sic dataset labels. This work was supported by grants from
the Information Processing Technology Office (IPTO) of the
Defense Advanced Research Projects Agency (DARPA).

References
[Bergeret al., 1996] Adam L. Berger, Vincent J. Della

Pietra, and Stephen A. Della Pietra. A maximum entropy
approach to natural language processing.Comput. Lin-
guist., 22(1):39–71, 1996.

[Carvalho and Cohen, 2004] Vitor Carvalho and William W.
Cohen. Learning to extract signature and reply lines from
email. In Proceedings of the Conference on Email and
Anti-Spam 2004, Mountain View, California, 2004.

[Collins, 2002] Michael Collins. Discriminative training
methods for hidden markov models: Theory and experi-

ments with perceptron algorithms. InEmpirical Methods
in Natural Language Processing (EMNLP), 2002.

[Dietterichet al., 2004] Thomas G. Dietterich, Adam
Ashenfelter, and Yaroslav Bulatov. Training conditional
random fields via gradient tree boosting. InProceedings of
the 21th International Conference on Machine Learning
(ICML), 2004.

[Dietterich, 2002] Thomas G. Dietterich. Machine learning
for sequential data: A review. InStructural, Syntactic,
and Statistical Pattern Recognition, pages 15–30. Springer
Verlag, New York, 2002.

[Freund and Schapire, 1998] Yoav Freund and Robert E.
Schapire. Large margin classification using the percep-
tron algorithm. InComputational Learning Theory, pages
209–217, 1998.

[Klein and Manning, 2002] Dan Klein and Christopher D.
Manning. Conditional structure versus conditional esti-
mation in nlp models. InWorkshop on Empirical Methods
in Natural Language Processing (EMNLP), 2002.

[Lafferty et al., 2001] John Lafferty, Andrew McCallum,
and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data.
In Proceedings of the International Conference on Ma-
chine Learning (ICML-2001), Williams, MA, 2001.

[McCallumet al., 2000] Andrew McCallum, Dayne Freitag,
and Fernando Pereira. Maximum entropy markov models
for information extraction and segmentation. InProceed-
ings of the International Conference on Machine Learning
(ICML-2000), pages 591–598, Palo Alto, CA, 2000.

[Minorthird, 2004] Minorthird: Methods for identi-
fying names and ontological relations in text us-
ing heuristics for inducing regularities from data.
http://minorthird.sourceforge.net, 2004.

[Ratnaparkhi, 1999] Adwait Ratnaparkhi. Learning to parse
natural language with maximum entropy models.Machine
Learning, 34, 1999.

[Toutanovaet al., 2003] Kristina Toutanova, Dan Klein,
Christopher D. Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network.
In Proceedings of HLT-NAACL 2003, 2003.

[Tzanetakis and Cook, 2000] George Tzanetakis and Perry
Cook. MARSYAS: A Framework for Audio Analysis.Or-
ganized Sound, Cambridge University Press 4(3), 2000

[Walpoleet al., 1998] R Walpole, R. Myers and S. Myers.
Probability and Statistics for Engineers and Scientists. In
Prentice Hall, 1998.

[Wolpert, 1992] David H. Wolpert. Stacked generalization.
Neural Networks, 5:241–259, 1992.

