Parallelized Variational EM for Latent Dirichlet Allocati on:
An Experimental Evaluation of Speed and Scalability

Ramesh Nallapati, William Cohen and John Lafferty
Machine Learning Department
Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA

15213, USA

{nmramesh,wcohen,laffert{@cs.cmu.edu

Abstract

Statistical topic models such as the Latent Dirichlet Al-
location (LDA) have emerged as an attractive framework

to model, visualize and summarize large document collec-

tions in a completely unsupervised fashion. Considering

the enormous sizes of the modern electronic document col-

lections, it is very important that these models are fast and
scalable. In this work, we build parallel implementations
of the variational EM algorithm for LDA in a multiproces-
sor architecture as well as a distributed setting. Our ex-

02101050119

Figure 1. Graphical representation of LDA: each plates
represents repeated sampling as many times as the number
in the right-hand bottom corner of the plate.

M

e Foreachdocument=1,---, M

periments on various sized document collections indicate
that while both the implementations achieve speed-ups, the
distributed version achieves dramatic improvements i bot
speed and scalability. We also analyze the costs associated

— sample mixing proportion8, ~ Dir(-|a)
— For each position =1, - - -, Ny, sample:
* topiczg; € {1,---, K} ~ Mult(-|04)

with various stages of the EM algorithm and suggest ways
to further improve the performance.

1 Introduction

Recently, statistical topic modeling has been proposed as
a completely unsupervised method to help summarize and

visualize the contents of large document collections [1, 2]

* wordwg; € {1, Tty V} ~ MUIt(.|’62d1ﬂ)

Table 1. Generative process of LDA/ is the vocabulary
size andK is the number of topics while is the symmetric
Dirichlet parameter and3,, - - -, 3 } are the multinomial
topic parameters. The only input to the modelis the
number of topics. All the parameters can be estimated by
approximate variational techniques or Gibbs sampling.

These models use simple surface features such as word oc-

currences within documents to reveal suprisingly meaning-
ful semantic content of documents.

The basic version of this family of models is called-
tent Dirichlet Allocation(LDA)[1]. In this model, each doc-
umentd is assumed to be generated fronilacomponent
mixture model, where the mixing probabiliti®g for each
document are governed by a global Dirichlet distribution
with parameterv. Each of the wordsvg; in the document

Each of theK multinomial distributions3,, assigns a
high probability to a specific set of words that are semanti-
cally coherent. Hence these distributions over the vocabu-
lary are referred to a®picsand represent a concise sum-
mary of the contents of the document collection. A few rep-
resentative topics learnt from the AP corpus are displayed
in figure 2. Note that learning the parameters of the LDA

is generated by a repetitive process of sampling a mixturemodel is intractable in general [1]. However, approxima-

componenty; from 6, and then sampling the word itself
from a multinomial distribution over the entire vocabulary
B.,., associated with the mixture componept The gen-

tions have been proposed that allow efficient unsupervised
parameter estimation. One of them is the mean-field vari-
ational EM algorithm [1] and the other is stochastic EM

erative process and the graphical representation of LDA areGibbs sampling [2]. The former is a deterministic approxi-

shown in Figure 1 and Table 1 respectively.

mation method that results in a biased estimate, but is com-

"ARTS" "BUDGET" "CHILDREN" "EDUCATION" 0 Input' Model parameter,g a
. . s
New Million Children School 1 For each documerdte 1.---. M
Film Program Women Students ' ; ’ ’
Show Tax People Schools 2. For each tOpI(k? S 1, sy K
Music Budget Child Education FPNT
Movie Billion Years Teachers 3. Inma“zevdk = Nd/K
Play Federal Families High 4. Repeat until convergence:
Musical Year Work Public S
Best Spending Parent Teacher 5. For each position=1,---, Ny
Actor New Says Bennett [
First State Family Manigat 6. For each t0p|¢: - 1a Ty K
York Plan Welfare Namphy =)
Opera Money Men State 7. ¢dlk_ ﬁkwl eXp(’l/) (’de))
Theater Programs Percent President 8. Normallzeqsdi
Actress Government Care Elementary O
Love Congress Life Haiti 9. For each tOpI@ _Nl’ Ty K
10. Yak = 0+ Y ;Y Paik
Figure 2. Most likely words from 4 topics in LDA from 11. Return:
the AP corpus: the topic titles in quotes are not part of the Sufficient statistics matri$ where
algorithm. (Courtesy: Bleét al, [1]) Sky = Zg:dl fV:dl Ou (Wai) Daik
a-sufficient statisticsS,, where
M K K
So =D g1 2 gy (b(var) — Kp(3 oy var))

putationally efficient with well defined numerical conver- ~ Table 2. Summary of E-stepy is the Digamma function
gence criteria. The latter is a probabilistic techniquettha ~ andd,(w) = 1if w = v and0 otherwise.¢ and~ are the
asymptotically converges to an unbiased solution, but its variational parameters as defined in Eq. 1.
convergence has to be assessed in terms of stochastic con-

vergence. In this work, we use the mean-field variational
EM technique.

0. Input: Sufficient statisticss andS,,

1. Computex using Newton-Raphson withi, as input.
2. Computed = S-normalized-row-wise.
3

2 Variational EM in brief Return: Model parameterg, a.

In broad terms, the variational EM algorithm simplifies Table 3. Summary of the M-step
the problem by approximating the posterior distribution of
the hidden variables given the daf¥ 0, z|w, «, 3) by a
more tractable, conditionally independent variationatri
bution as shown below:

A pair of E and M-steps comprises a single iteration of
the EM algorithm. Each iteration of the variational EM al-
gorithm is guaranteed to increase the lower-bound on the

M Ny log-likelihood of the observed data. The iterations are ter
Q0,z]v,¢) = H {q(@dh/d) HP(Zdi|¢di)} 1) minated when the lower-bound of the observed data log-
d=1 i=1 likelihood (RHS of Eg. (2)) converges to a local maximum.

))) Interested readers may refer to [1] for more technical teetai
It can be shown using Jensen’s inequality that the log- ;¢ he algorithm.

likelihood of the observed datlg P(w|a, 3) is lower-
bounded by the sum of the expected-log-likelihood of the .
complete data with respect to the variational distribution 3 Parallelized LDA

Egllog P(w, z,0|a, 8)] and the entropy of the variational Note that for a document of length N,, each E-step
distribution (@), as shown below: takesO((N4+1)K) computations Empirical experiments
suggest that the number of variational iterations requised

log P(wla, B) = Eqllog P(w,z, 0], B)] + H(Q) (2) roughly on the order ofV,; for each document [1]. Hence,

The variational EM proceeds iteratively in two steps as the total complexity of the E-step for each iteration is o th
P y P order of M N2 K whereM is the corpus size ani¥, .

follows: In the E-step, we estimate the variational parame- . o omar .
N . is the maximum document length in the corpus. Clearly, the
ters~y and¢ by maximizing the RHS of Eq. (2) with respect
. . E-step is a computational challenge as its complexity grows
to them. Sincep, and~,, for a given documend depend ;
.) . . linearly with the collection sizel/ and quadratically with
on each other, we estimate them iteratively until the lower- :
- maximum document lengthV,,,...
bound on the log-likelihood of the document converges to a . .
. : : . The complexity of the M-step, on the other hand, is
local maximum. The algorithm for E-step is shown in Table . .
. - : O(VK) where V is the observed vocabulary size, as
2. Inthe M-step, the lower-bound is maximized with re- 4 G, \es normalizing thesufficient statisticsSy, —
spect to the parametefsanda to obtain their new values. g kv
The M-step is summarized in table 3. Lspecifically,O(N4 K) to computep, and O (K) to computey,,.

Zfi‘il Zﬁl ¢aikdy (wq;) that are already computed in the 2.40GHz processor. The processors share a RAM of size
E-step, to obtairg;, for each word and topic paiw, k). 4GB and a 512KB cache.
This is not a serious computational challenge since elemen- Our distributed implementation used a cluster with 96
tary array operations are extemely fast. The other part of nodes that share the same disk and each of which is a Linux
M-step, involving a linear time Newton-Raphson method to machine equipped with a Transmetta Efficeon TM8000
computer, is also computationally inexpensive. 1.2GHz processor with 1MB of cache and 1GB RAM.

Thus, the main computational bottleneck in the EM al-
gorithm is the E-step, making the algorithm hard to scale 4.2 Software
to large document collections. Fortunately, there is a way
to address this issue: the variational parametgrande, For our parallel LDA implementations, we used the C-
in each document are independent of those in other doc- code of Blef as the core. We extended this code to the
uments and therefore can be computed independently. Inmultiprocessor architecture usipthreads
other words, the E-step computations of the documents can The distributed implementation uses a main process

be speeded up through parallelization. This is the key factWritten in Perl that co-ordinates the worker nodes._ This
we use in parallelizing LDA. process runs on the master node and usk€onnections

to invoke the worker nodes. The worker nodes execute the
E-step (implemented in C) and signal their completion by
creating empty files on the disk, which are inspected for by
In a multiprocessor architecture, we have multiple CPUS the main process periodically. Upon signals from all the

that share the same RAM. In this setting, variational EM workers, it calls the M-step (implemented in C) at the mas-
can be implemented efficiently using parallel threads. In tgr node.

our implementation, the main program first assigns point-

ers to one unique subset of the corpus to each thread. A3 Data

single iteration of the EM algorithm proceeds as follows.

Each thread performs the E-step on its subset and returns We used a subset of tHeubMed collection consisting

its sufficient statistics matrix. The main program then ag- of about 300,000 documents as our primary dataset. We in-
gregates these statistics and estimates the model parametedexed the collection usingemuf* after stopword removal

in the M-step. The thread-architecture makes the memoryand stemming of the collection. The vocabulary of this col-

3.1 Multiprocessor implementation

management efficient by allowing a single copy®fand lection consists of about 100,000 unique words. We then
D matrices to be shared across all the threads. A detailedrandomly sampled from this primary collection to generate
step-by-step algorithm in presented in Table 4. sub-collections of various sizes. The vocabulary size lof al

these smaller collections remains the same.

3.2 Distributed implementation

In the distributed setting, we have a cluster of machines4'4 Experimental setup

that share the same disk but do not have a shared memory. In our experiments, we primarily studied the effect the
One of the machines plays the role ahasterand the other nhumber of threads (nodes) has on the runtime of the LDA
nodes act asiorkers In this architecture, the master node algorithm for various collection sizes, keeping the vocab-
physically splits the data intd” subsets and writes them to ulary sizeV fixed at nearly 100,000 and number of topics
disk. In each EM iteration, the worker nodes load their re- K fixed at 50. We also fixed the variational convergence
spective data subsets and the mdeol computed in the last itfactor at10~% and the EM convergence factat 102, In
eraion into their memories. Upon performing the E-step on the multiprocessor setting, we varied the number of threads
their respective subsets, they collect their sufficientista from 1 to 4, since we had only 4 CPUs in the hardware. In
tics and print them in a sparse manner onto the disk. Thethe distributed setting, we varied the number to nodes-start
master node then aggregates the outputs of all the workeling from 1 and reaching as high as 90.

nodes. Finally, the master node performs the M-step and For our experiments on a given sub-collection, we first
prints out the new model onto the disk. This iterative pro- ysed a randomly initialized model and ran LDA for just one
cess is repeated until convergence as shownin Table 5. EM iteration to obtain a new estimate of the model. We

2Downloadable from http://www.cs.princeton.edinlei/lda-c/

4 Experimental Details Shitp://www.ncbi.nim.nih.gov/sites/entrez?db=pubmed
4http://www.lemurproject.org
4.1 Hardware 5These factors represent the stopping criteria for the inaeiational

. . . . iterations and outer EM iterations respectively: when thgorof log-
For our multiprocessor implementation, we used a LinuX jielihood of observed data in two consecutive iterationsinaller than

machine with 4 CPUs, each of which is an Intel Xeon the factor, the iterations are terminated.

BOo~NoOOR~ONPEO

Input: Sparse Doc-Term Matri¥® of size(M x V'), num. topicsk, num. threads.
Randomly Initialize model parametg8sof size(K x V') anda .
Split D row-wise intoP equal sized disjoint subsef®,, - - -, Dp} each of maximum sizg[M /P] x V).
Do Until Convergence
For each threag e {1,---, P}
Initialize sufficient statistics matrig, of size(K x V) to 0.
Perform the variationd-stepfor the subseD,, as described in table 2.
returnS, andS,,, .
Aggregates = 3" | S, andS, = 30| Sa, .
PerformM-stepas described in table 3.
Return: 3, a.

Table 4. Parallelization of LDA in a multiprocessor setting

MASTER NODE |

0. Input: Sparse Doc-Term Matri® of size(M x V'), num. topicsK, num. worker nodedV.
Randomly Initialize model parametg8f size(K x V') anda.
2. Split D row-wise intolV equal sized disjoint subsef®,, - - -, Dy }
each of maximum sizgf M /W x V) and write them to disk.
3. DoUntil Convergence
Call theW worker nodes and wait until each of them finishes its job.

Read from disk and aggregéae= ZZJV:l S,andS, =YW . S, .

w=1

PerformM-stepas described in table 3 and writk « to disk.
Return: 3, a.

=

o0k

WORKER NODE W € {1,---,W}

Load Doc-Term matrixD,, into memory.

Load Model3 and« into memory.

Initialize local sufficient statistics matri,, of size(K x V') to 0.
Perform the variationdt-stepfor the subseD,, as described in table 2.
Write sparseS,, andsS,,,, to disk.

Signal Completion.

oukhwhE

Table 5. Parallelization of LDA in a distributed setting

3500 -

- = —5,000 docs
3000 25,000 docs
o 50,000 docs

2500

2000 -

1500 -

time in seconds

1000 -

500
x————fwf}—————ffff——f—f

L L
0.5 1 15

-

A .
2 25 3 35 4 45
number of parallel threads

Figure 3. Multiprocessor LDA: Runtime as a function of
number of threads

used this model as the starting point for all our runs on this
sub-collectior?. For each run, we reported the average run-
time per EM iteration instead of total run-time until conver
gencé. Run-time of each EM iteration is measured as the
sum of the average E-step times of all the worker nodes and
the M-step time at the master node. We also report error-
bars of width twice the standard deviation in our plots.

5 Results and Discussion

Figure 3 displays the average EM iteration time for the
multi-processor implementation for subcollections of 8 di
ferent sizes, as a function of number of parallel threads. No
tice that iteration time decreases monotonically as we go
from 1 to 4. However, this decrease is not linear as one
would expect. We believe this is primarily because of the
conflict between the threads in read-accessing the m@del
located in the main memory, during the E-step.

Figure 4 shows the break-up of the runtime between E
and M steps for a specific sub-collection. The plot confirms
our expectation in section 3 that E-step is the main (and
perhaps the only) bottleneck in the algorithm.

Figure 5 shows the average EM iteration time as a func-
tion of number of nodes in the distributed implementation.
In this case, we were able to achieve substantial reduc-
tion in computation time due to the larger number of nodes
available. For example, for the collection of size 50,000
documents, the multiprocessor implementation achieved
a speedup of only 1.85 from 1 to 4 threads while the

6Since the objective function of LDA is non-convex, the finalution
and the number of EM iterations required for convergenceeddp on the
starting point. Starting from the same initial point ensutieat the final
output and the amount of computation is same for all runs.

Since the number of iterations until convergence may vargsacsub-
collections, total run-time is not directly comparableass sub-collections
of different sizes.

3500 -

3000 -

2500

2000 [~

1500 -

time in seconds

1000 -

500 -

—e—total iter time

.
0.5 1 15 2 25 3
number of parallel threads

L
35 4

,
4.5

Figure 4. Multiprocessor LDA: contribution of E and M
steps to runtime for the sub-collection of size 50,000 docu-
ments. Note that the E-step time and the total iteration time
are nearly the same and hence cannot be distinguished in

the plot.

15000

10000 -

time in seconds

5000 -

- v -5,000 docs
-~ 50,000 docs
100,000 docs
—— 300,000 docs

70 80 90

number of cluster nodes

Figure 5. Distributed LDA: Runtime as a function of

number of nodes

in increasing number of subsets, thereby increasing tlaé tot
* E-step read number ofS,, entries for itself. Hence the cumulative size
sool - © 7 Erstep compute of the S, files grows with increasingV’, which explains
M-step read-&-merge| . . .
the steeper increase in read-time compared to E-step. In the
latter case, the input file size, that 8f « is constant with
respect tav'.

600

—*— Total iter time

400 -

300

time in seconds

. 6 Conclusion and Future Work

200 \

1S T Our experiments demonstrate that while the multiproces-
100 . i T T sor implementation speeds up LDA, the gain is not signifi-
e cant because of the read-conflict between various threads.
% 0 2 w 4 0 e 70 8 s 0 In addition, this implementation stores the entire data in
number of cluster nodes . . L
memory, so it may not scale to large collections in its ex-
Figure 6. Distributed LDA: contribution of various com- isting form. Finally, the prohibitive costs of multiple pro
ponents to runtimefor the sub-collection of size 50,000.doc ~ C€SSOr machines also make them less desirable.
uments. The distributed implementation on the other hand, shows

tremendous promise of scalability and speed, achieving
speedup ratio of 16 or more on a document collection of
o))) o) size 300,000 documents. It scales well to large collections
distributed implementation achieved a significantly highe pecause it splits the data between its worker nodes. Itds als
speedup of 14.5 from 1 to 50 nodes. As a result, we werethe more desirable architecture due to its low costs.
able to scale-up our experiments on the distributed imple- e note that more efficient distributed implementations
mentation to larger collection sizes as shown in figure 5. 5.6 possible using sophisticated message passing pretocol
Although not clear from the plots in Figure 5, our datain- pyt we used this rudimentary disk-based interaction as a
dicates that the optimum number of nodes required for max- proof-of-concept for LDA.
imum speedup increases with the collection size. Hence it One trick to reduce the steep overhead in the M-step
is desirable to scale the cluster size as the data size grows. read-time is to split the document term matrix between the
We noticed that the run-time in the distributed setting worker nodes (in step 2 of the master node in Table 5) by
decreases monotonically until we reach an optimal numberysing a word-similarity based clustering of the documents,
of nodes and then increases steadily again (not very dis-instead of doing a random split. This would act as a natural
cernible from figure 5). In order to understand this phe- compression by reducing occurrences of any given word in
nomenon, we plotted the average run-times of various com-multiple S,, matrices, thereby reducing the disk read-access
ponents of the EM algorithm that consume most of the run- time in the M-step.
time, in figure 6. The plot shows that while the E-step com- On similar lines, one could reduce the E-step read-time
putation time (step 4 of the worker node in Table 5) goes at a worker nodev by loading only the model parameters
down with increasing number of nodes as expected, twothat are relevant to the words that occur in the correspandin
other components namely, the E-step read time (steps 1 andiocument subséb,,. These are the only model parameters

2 of the worker node in Table 5) and the M-step read time that would be used in estimating the variational parameters
(step 4 of the master node in Table 5) increase with higherin the E-step (see Table 2).

number of nodes. We believe this is due to the conflict be- Another trick to achieve scalability is not to load the en-

tween the nodes in disk read-access. tire document matrixD,,, into memory at each worker node
Notice also that the rate of increase of M-step read time v, but to read one document at a time, perform E-step on it

is higher that that of the E-step read time. Our investigatio and output its sufficient statistics to the disk, in a pipetin

revealed an additional overhead in this case, which can befashion.

explained as follows: as shown in step 4 of the master node We hope to implement these improvements as part of our

in Table 5, the master node reads files containing sparsefuture work and scale our experiments to larger collections

sufficient statisticsS,, output from all the worker nodes

w € {1,---W} and aggregates them together. Ed&th References

file is sparse, which means it contains an entry for a word

only if it occurs in the corresponding document subisgt [1] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocatio
Thus, the number of entries to be read for a given word is Journal of Machine Learning Researc 2003.
equal to the number of document subsBts it occurs in. [2] T. Griffiths and M. Steyvers. Finding scientific topicBro-

As the number of worker nodé¥ grows, each word occurs ceedings of the National Academy of Scien2e84.

