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Abstract

Statistical topic models such as the Latent Dirichlet Al-
location (LDA) have emerged as an attractive framework
to model, visualize and summarize large document collec-
tions in a completely unsupervised fashion. Considering
the enormous sizes of the modern electronic document col-
lections, it is very important that these models are fast and
scalable. In this work, we build parallel implementations
of the variational EM algorithm for LDA in a multiproces-
sor architecture as well as a distributed setting. Our ex-
periments on various sized document collections indicate
that while both the implementations achieve speed-ups, the
distributed version achieves dramatic improvements in both
speed and scalability. We also analyze the costs associated
with various stages of the EM algorithm and suggest ways
to further improve the performance.

1 Introduction

Recently, statistical topic modeling has been proposed as
a completely unsupervised method to help summarize and
visualize the contents of large document collections [1, 2].
These models use simple surface features such as word oc-
currences within documents to reveal suprisingly meaning-
ful semantic content of documents.

The basic version of this family of models is calledLa-
tent Dirichlet Allocation(LDA)[1]. In this model, each doc-
umentd is assumed to be generated from aK-component
mixture model, where the mixing probabilitiesθd for each
document are governed by a global Dirichlet distribution
with parameterα. Each of the wordswdi in the document
is generated by a repetitive process of sampling a mixture
componentzdi from θd and then sampling the word itself
from a multinomial distribution over the entire vocabulary
βzdi

, associated with the mixture componentzdi. The gen-
erative process and the graphical representation of LDA are
shown in Figure 1 and Table 1 respectively.
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Figure 1. Graphical representation of LDA: each plates
represents repeated sampling as many times as the number
in the right-hand bottom corner of the plate.

• For each documentd = 1, · · · ,M

– sample mixing proportionsθd ∼ Dir(·|α)

– For each positioni = 1, · · · , Nd, sample:

∗ topiczdi ∈ {1, · · · ,K} ∼ Mult(·|θd)

∗ wordwdi ∈ {1, · · · , V } ∼ Mult(·|βzdi
)

Table 1. Generative process of LDA:V is the vocabulary
size andK is the number of topics whileα is the symmetric
Dirichlet parameter and{β

1
, · · · ,β

K
} are the multinomial

topic parameters. The only input to the model isK, the
number of topics. All the parameters can be estimated by
approximate variational techniques or Gibbs sampling.

Each of theK multinomial distributionsβk assigns a
high probability to a specific set of words that are semanti-
cally coherent. Hence these distributions over the vocabu-
lary are referred to astopicsand represent a concise sum-
mary of the contents of the document collection. A few rep-
resentative topics learnt from the AP corpus are displayed
in figure 2. Note that learning the parameters of the LDA
model is intractable in general [1]. However, approxima-
tions have been proposed that allow efficient unsupervised
parameter estimation. One of them is the mean-field vari-
ational EM algorithm [1] and the other is stochastic EM
Gibbs sampling [2]. The former is a deterministic approxi-
mation method that results in a biased estimate, but is com-
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Figure 2. Most likely words from 4 topics in LDA from
the AP corpus: the topic titles in quotes are not part of the
algorithm. (Courtesy: Bleiet al, [1] )

putationally efficient with well defined numerical conver-
gence criteria. The latter is a probabilistic technique that
asymptotically converges to an unbiased solution, but its
convergence has to be assessed in terms of stochastic con-
vergence. In this work, we use the mean-field variational
EM technique.

2 Variational EM in brief

In broad terms, the variational EM algorithm simplifies
the problem by approximating the posterior distribution of
the hidden variables given the dataP (θ, z|w, α,β) by a
more tractable, conditionally independent variational distri-
bution as shown below:

Q(θ, z|γ,φ) =
M
∏

d=1

{

q(θd|γd)

Nd
∏

i=1

P (zdi|φdi)

}

(1)

It can be shown using Jensen’s inequality that the log-
likelihood of the observed datalogP (w|α,β) is lower-
bounded by the sum of the expected-log-likelihood of the
complete data with respect to the variational distribution
EQ[logP (w, z,θ|α,β)] and the entropy of the variational
distributionH(Q), as shown below:

logP (w|α,β) ≥ EQ[logP (w, z,θ|α,β)] +H(Q) (2)

The variational EM proceeds iteratively in two steps as
follows: In the E-step, we estimate the variational parame-
tersγ andφ by maximizing the RHS of Eq. (2) with respect
to them. Sinceφd andγd for a given documentd depend
on each other, we estimate them iteratively until the lower-
bound on the log-likelihood of the document converges to a
local maximum. The algorithm for E-step is shown in Table
2. In the M-step, the lower-bound is maximized with re-
spect to the parametersβ andα to obtain their new values.
The M-step is summarized in table 3.

0. Input: Model parametersβ, α
1. For each documentd ∈ 1, · · · ,M
2. For each topick ∈ 1, · · · ,K
3. Initializeγdk = Nd/K
4. Repeat until convergence:
5. For each positioni = 1, · · · , Nd

6. For each topick = 1, · · · ,K
7. φdik = βkwi

exp(ψ(γdk))
8. Normalizeφdi

9. For each topick = 1, · · · ,K

10. γdk = α+
∑Nd

i=1
φdik

11. Return:
Sufficient statistics matrixS where
Skv =

∑Nd

d=1

∑Nd

i=1
δv(wdi)φdik

α-sufficient statisticsSα where
Sα =

∑M

d=1

∑K

k=1
(ψ(γdk) −Kψ(

∑K

k=1
γdk))

Table 2. Summary of E-step:ψ is the Digamma function
andδv(w) = 1 if w = v and0 otherwise.φ andγ are the
variational parameters as defined in Eq. 1.

0. Input: Sufficient statisticsS andSα

1. Computeα using Newton-Raphson withSα as input.
2. Computeβ = S-normalized-row-wise.
3. Return: Model parametersβ, α.

Table 3. Summary of the M-step

A pair of E and M-steps comprises a single iteration of
the EM algorithm. Each iteration of the variational EM al-
gorithm is guaranteed to increase the lower-bound on the
log-likelihood of the observed data. The iterations are ter-
minated when the lower-bound of the observed data log-
likelihood (RHS of Eq. (2)) converges to a local maximum.
Interested readers may refer to [1] for more technical details
of the algorithm.

3 Parallelized LDA

Note that for a documentd of lengthNd, each E-step
takesO((Nd+1)K) computations1. Empirical experiments
suggest that the number of variational iterations requiredis
roughly on the order ofNd for each document [1]. Hence,
the total complexity of the E-step for each iteration is on the
order ofMN2

maxK whereM is the corpus size andNmax

is the maximum document length in the corpus. Clearly, the
E-step is a computational challenge as its complexity grows
linearly with the collection sizeM and quadratically with
maximum document lengthNmax.

The complexity of the M-step, on the other hand, is
O(V K) where V is the observed vocabulary size, as
it involves normalizing thesufficient statisticsSkv =

1Specifically,O(NdK) to computeφd andO(K) to computeγd.



∑M

d=1

∑Nd

i=1
φdikδv(wdi) that are already computed in the

E-step, to obtainβkv for each word and topic pair(v, k).
This is not a serious computational challenge since elemen-
tary array operations are extemely fast. The other part of
M-step, involving a linear time Newton-Raphson method to
computeα, is also computationally inexpensive.

Thus, the main computational bottleneck in the EM al-
gorithm is the E-step, making the algorithm hard to scale
to large document collections. Fortunately, there is a way
to address this issue: the variational parametersγd andφd

in each documentd are independent of those in other doc-
uments and therefore can be computed independently. In
other words, the E-step computations of the documents can
be speeded up through parallelization. This is the key fact
we use in parallelizing LDA.

3.1 Multiprocessor implementation

In a multiprocessor architecture, we have multiple CPUs
that share the same RAM. In this setting, variational EM
can be implemented efficiently using parallel threads. In
our implementation, the main program first assigns point-
ers to one unique subset of the corpus to each thread. A
single iteration of the EM algorithm proceeds as follows.
Each thread performs the E-step on its subset and returns
its sufficient statistics matrix. The main program then ag-
gregates these statistics and estimates the model parameters
in the M-step. The thread-architecture makes the memory
management efficient by allowing a single copy ofβ and
D matrices to be shared across all the threads. A detailed
step-by-step algorithm in presented in Table 4.

3.2 Distributed implementation

In the distributed setting, we have a cluster of machines
that share the same disk but do not have a shared memory.
One of the machines plays the role of amasterand the other
nodes act asworkers. In this architecture, the master node
physically splits the data intoW subsets and writes them to
disk. In each EM iteration, the worker nodes load their re-
spective data subsets and the mdeol computed in the last it-
eraion into their memories. Upon performing the E-step on
their respective subsets, they collect their sufficient statis-
tics and print them in a sparse manner onto the disk. The
master node then aggregates the outputs of all the worker
nodes. Finally, the master node performs the M-step and
prints out the new model onto the disk. This iterative pro-
cess is repeated until convergence as shown in Table 5.

4 Experimental Details

4.1 Hardware

For our multiprocessor implementation, we used a Linux
machine with 4 CPUs, each of which is an Intel Xeon

2.40GHz processor. The processors share a RAM of size
4GB and a 512KB cache.

Our distributed implementation used a cluster with 96
nodes that share the same disk and each of which is a Linux
machine equipped with a Transmetta Efficeon TM8000
1.2GHz processor with 1MB of cache and 1GB RAM.

4.2 Software

For our parallel LDA implementations, we used the C-
code of Blei2 as the core. We extended this code to the
multiprocessor architecture usingpthreads.

The distributed implementation uses a main process
written in Perl that co-ordinates the worker nodes. This
process runs on the master node and usesrsh connections
to invoke the worker nodes. The worker nodes execute the
E-step (implemented in C) and signal their completion by
creating empty files on the disk, which are inspected for by
the main process periodically. Upon signals from all the
workers, it calls the M-step (implemented in C) at the mas-
ter node.

4.3 Data

We used a subset of thePubMed3 collection consisting
of about 300,000 documents as our primary dataset. We in-
dexed the collection usingLemur4 after stopword removal
and stemming of the collection. The vocabulary of this col-
lection consists of about 100,000 unique words. We then
randomly sampled from this primary collection to generate
sub-collections of various sizes. The vocabulary size of all
these smaller collections remains the same.

4.4 Experimental setup

In our experiments, we primarily studied the effect the
number of threads (nodes) has on the runtime of the LDA
algorithm for various collection sizes, keeping the vocab-
ulary sizeV fixed at nearly 100,000 and number of topics
K fixed at 50. We also fixed the variational convergence
factor at10−6 and the EM convergence factor5 at 10−3. In
the multiprocessor setting, we varied the number of threads
from 1 to 4, since we had only 4 CPUs in the hardware. In
the distributed setting, we varied the number to nodes start-
ing from 1 and reaching as high as 90.

For our experiments on a given sub-collection, we first
used a randomly initialized model and ran LDA for just one
EM iteration to obtain a new estimate of the model. We

2Downloadable from http://www.cs.princeton.edu/∼blei/lda-c/
3http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
4http://www.lemurproject.org
5These factors represent the stopping criteria for the innervariational

iterations and outer EM iterations respectively: when the ratio of log-
likelihood of observed data in two consecutive iterations is smaller than
the factor, the iterations are terminated.



0. Input: Sparse Doc-Term MatrixD of size(M × V ), num. topicsK, num. threadsP .
1. Randomly Initialize model parametersβ of size(K × V ) andα .
2. SplitD row-wise intoP equal sized disjoint subsets{D1, · · · , DP } each of maximum size(⌈M/P ⌉ × V ).
3. DoUntil Convergence
4. For each threadp ∈ {1, · · · , P}
5. Initialize sufficient statistics matrixSp of size(K × V ) to 0.
6. Perform the variationalE-stepfor the subsetDp as described in table 2.
7. returnSp andSαp

.
8. AggregateS =

∑P

p=1
Sp andSα =

∑K

p=1
Sαp

.
9. PerformM-stepas described in table 3.
10. Return: β, α.

Table 4. Parallelization of LDA in a multiprocessor setting

MASTER NODE
0. Input: Sparse Doc-Term MatrixD of size(M × V ), num. topicsK, num. worker nodesW .
1. Randomly Initialize model parametersβ of size(K × V ) andα.
2. SplitD row-wise intoW equal sized disjoint subsets{D1, · · · , DW }

each of maximum size(⌈M/W ⌉ × V ) and write them to disk.
3. DoUntil Convergence

Call theW worker nodes and wait until each of them finishes its job.
4. Read from disk and aggregateS =

∑W

w=1
Sw andSα =

∑W

w=1
Sαw

.
5. PerformM-stepas described in table 3 and writeβ, α to disk.
6. Return: β, α.

WORKER NODE w ∈ {1, · · · ,W}

1. Load Doc-Term matrixDw into memory.
2. Load Modelβ andα into memory.
3. Initialize local sufficient statistics matrixSw of size(K × V ) to 0.
4. Perform the variationalE-stepfor the subsetDw as described in table 2 .
5. Write sparseSw andSαw

to disk.
6. Signal Completion.

Table 5. Parallelization of LDA in a distributed setting
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Figure 3. Multiprocessor LDA: Runtime as a function of
number of threads

used this model as the starting point for all our runs on this
sub-collection6. For each run, we reported the average run-
time per EM iteration instead of total run-time until conver-
gence7. Run-time of each EM iteration is measured as the
sum of the average E-step times of all the worker nodes and
the M-step time at the master node. We also report error-
bars of width twice the standard deviation in our plots.

5 Results and Discussion

Figure 3 displays the average EM iteration time for the
multi-processor implementation for subcollections of 3 dif-
ferent sizes, as a function of number of parallel threads. No-
tice that iteration time decreases monotonically as we go
from 1 to 4. However, this decrease is not linear as one
would expect. We believe this is primarily because of the
conflict between the threads in read-accessing the modelβ

located in the main memory, during the E-step.
Figure 4 shows the break-up of the runtime between E

and M steps for a specific sub-collection. The plot confirms
our expectation in section 3 that E-step is the main (and
perhaps the only) bottleneck in the algorithm.

Figure 5 shows the average EM iteration time as a func-
tion of number of nodes in the distributed implementation.
In this case, we were able to achieve substantial reduc-
tion in computation time due to the larger number of nodes
available. For example, for the collection of size 50,000
documents, the multiprocessor implementation achieved
a speedup of only 1.85 from 1 to 4 threads while the

6Since the objective function of LDA is non-convex, the final solution
and the number of EM iterations required for convergence depends on the
starting point. Starting from the same initial point ensures that the final
output and the amount of computation is same for all runs.

7Since the number of iterations until convergence may vary across sub-
collections, total run-time is not directly comparable across sub-collections
of different sizes.
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Figure 4. Multiprocessor LDA: contribution of E and M
steps to runtime for the sub-collection of size 50,000 docu-
ments. Note that the E-step time and the total iteration time
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the plot.
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distributed implementation achieved a significantly higher
speedup of 14.5 from 1 to 50 nodes. As a result, we were
able to scale-up our experiments on the distributed imple-
mentation to larger collection sizes as shown in figure 5.

Although not clear from the plots in Figure 5, our data in-
dicates that the optimum number of nodes required for max-
imum speedup increases with the collection size. Hence it
is desirable to scale the cluster size as the data size grows.

We noticed that the run-time in the distributed setting
decreases monotonically until we reach an optimal number
of nodes and then increases steadily again (not very dis-
cernible from figure 5). In order to understand this phe-
nomenon, we plotted the average run-times of various com-
ponents of the EM algorithm that consume most of the run-
time, in figure 6. The plot shows that while the E-step com-
putation time (step 4 of the worker node in Table 5) goes
down with increasing number of nodes as expected, two
other components namely, the E-step read time (steps 1 and
2 of the worker node in Table 5) and the M-step read time
(step 4 of the master node in Table 5) increase with higher
number of nodes. We believe this is due to the conflict be-
tween the nodes in disk read-access.

Notice also that the rate of increase of M-step read time
is higher that that of the E-step read time. Our investigation
revealed an additional overhead in this case, which can be
explained as follows: as shown in step 4 of the master node
in Table 5, the master node reads files containing sparse
sufficient statisticsSw output from all the worker nodes
w ∈ {1, · · ·W} and aggregates them together. EachSw

file is sparse, which means it contains an entry for a wordv
only if it occurs in the corresponding document subsetDw.
Thus, the number of entries to be read for a given word is
equal to the number of document subsetsDw it occurs in.
As the number of worker nodesW grows, each word occurs

in increasing number of subsets, thereby increasing the total
number ofSw entries for itself. Hence the cumulative size
of the Sw files grows with increasingW , which explains
the steeper increase in read-time compared to E-step. In the
latter case, the input file size, that ofβ, α is constant with
respect toW .

6 Conclusion and Future Work

Our experiments demonstrate that while the multiproces-
sor implementation speeds up LDA, the gain is not signifi-
cant because of the read-conflict between various threads.
In addition, this implementation stores the entire data in
memory, so it may not scale to large collections in its ex-
isting form. Finally, the prohibitive costs of multiple pro-
cessor machines also make them less desirable.

The distributed implementation on the other hand, shows
tremendous promise of scalability and speed, achieving
speedup ratio of 16 or more on a document collection of
size 300,000 documents. It scales well to large collections
because it splits the data between its worker nodes. It is also
the more desirable architecture due to its low costs.

We note that more efficient distributed implementations
are possible using sophisticated message passing protocols,
but we used this rudimentary disk-based interaction as a
proof-of-concept for LDA.

One trick to reduce the steep overhead in the M-step
read-time is to split the document term matrix between the
worker nodes (in step 2 of the master node in Table 5) by
using a word-similarity based clustering of the documents,
instead of doing a random split. This would act as a natural
compression by reducing occurrences of any given word in
multipleSw matrices, thereby reducing the disk read-access
time in the M-step.

On similar lines, one could reduce the E-step read-time
at a worker nodew by loading only the model parameters
that are relevant to the words that occur in the corresponding
document subsetDw. These are the only model parameters
that would be used in estimating the variational parameters
in the E-step (see Table 2).

Another trick to achieve scalability is not to load the en-
tire document matrixDw into memory at each worker node
w, but to read one document at a time, perform E-step on it
and output its sufficient statistics to the disk, in a pipelined
fashion.

We hope to implement these improvements as part of our
future work and scale our experiments to larger collections.
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