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Abstract

Statistical topic models such as the Latent Dirichlet Al-
location (LDA) have emerged as an attractive framework to
model, visualize and summarize large document collections
in a completely unsupervised fashion. One of the limitations
of this family of models is their assumption of exchangeabil-
ity of words within documents, which results in a ‘bag-of-
words’ representation for documents as well as topics. As
a consequence, precious information that exists in the form
of correlations between words is lost in these models.

In this work, we adapt recent advances in sparse mod-
eling techniques to the problem of modeling word corre-
lations within topics and present a new algorithm called
Sparse Word Graphs. Our experiments on AP corpus re-
veal both long-distance and short-distance word correla-
tions within topics that are semantically very meaningful.
In addition, the new algorithm is highly scalable to large
collections as it captures only the most important correla-
tions in a sparse manner.

1 Introduction

In the recent past, statistical topic modeling has become
very popular as a completely unsupervised method to help
summarize and visualize the contents of large document
collections [5, 7, 9, 3, 6, 14]. These models use simple sur-
face features such as word occurrences within documents
to reveal suprisingly meaningful semantic content of docu-
ments in terms of multinomial distributions over the vocab-
ulary, known as ‘topics’ [4]. The basic version of this family
of models is calledLatent Dirichlet Allocation (LDA) [5].
Some of the topics discovered automatically by LDA from
the AP corpus are displayed in figure 1.

In the recent past, there have been several extensions to
LDA. Notable among them are the Dynamic Topic Model,
[6] which models the evolution of topic content with time;
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Figure 1. Most likely words from 4 topics in
LDA from the AP corpus: the topic titles in
quotes are not part of the algorithm. (Cour-
tesy: Blei et al, [5] )

HMM-LDA [7] in which semantic analysis of LDA is com-
bined with the syntax analysis of HMMs; Pachinko Alloca-
tion, [9] that models a hierarchy of topics; Correlated Topic
Model [3] which captures the correlations between topics
by replacing the Dirichlet prior with a logistic-normal dis-
tribution; and finally the Dirichlet Process Mixture Model
[2] which discovers the number of topicsK automatically.

Despite their additional features in comparison to LDA,
one component remains the same among all these mod-
els, namely,exchangeability of words. In other words,
word occurrences are treated conditionally independent of
each other, given their topics. In information retrieval par-
lance, this is referred to as modeling documents as “bags
of words”. In doing so, much of the valuable informa-
tion that exisits in terms of correlations between words is
lost. For example, a topic representation that simply assigns
high weight to the words ‘white’ and ‘house’, while com-
pletely ignoring the phrase ‘white-house’ may not immedi-
ately reveal to the user that the topic is about the president



of the United States. Apart from phrases, there could also
be interesting long-distance correlations that occur between
words. However, the existing topic models completely ig-
nore both phrasal as well as long-distance correlations be-
tween words. Capturing such relationships explicitly in the
model would go a long way in better visualization and sum-
marization of topics. The aim of this work is to capture such
correlations between words in topic models. We present a
new scalable algorithm calledSparse Word Graphs that ad-
dresses this problem.

The rest of the paper is organized as follows. In section
2, we present some background and the newSparse Word
Graphs algorithm that casts the word correlations problem
as that of structure learning problem in Markov Random
Fields and applies thel1 norm minimization technique to
solve the problem. Section 3 presents some of the sparse
word graphs generated for a few representative topics and
compares them with the LDA topic representation. In sec-
tion 4, we compare and contrast the new algorithm with
other word-correlation models and finally chart out direc-
tions for future work in section 5.

2 Sparse Word Graphs

2.1 Background

Wainwright et al [13] showed how to estimate a sparse
graph structure of a discrete pairwise Markov Random Field
(MRF) wherein, the neighborhood of any vertex in the
graph is estimated by performing anl1-regularized logis-
tic regression on the rest of the vertices. Their algorithm is
as follows:

Let G = (V , E) with vertex setV of size |V| = p and
edge setE . Let X = (X1, · · · , Xp) be a set of binary ran-
dom variables associated with the vertices of the graph. Let
the joint probability of the random variables be given by the
Ising model as follows:

P (x|λ) = exp(
∑

s∈V

λsxs +
∑

(s,t)∈E

λstxsxt − A(λ)) (1)

where the parameters{λst}(s,t)∈E capture the correlation
between the variablesXs and Xt. A(λ) is the log-
normalizing constant of the distribution. Givenn samples
(x(1), · · · ,x(n)) such that eachx(i) ∈ {0, 1}p drawn from
an unknown distributionP (x|λ∗), the goal is to estimate
the structure of the graph, that is to estimateÊ such that
limn→∞ P (Ê = E) = 1.

The authors show that the following algorithm asymp-
totically converges to the true structure as the data sizen

increases: we maximize thel1 regularized conditional like-
lihood of each variableXs conditioned on all the other
variablesX−s. For a pairwise MRF with binary variables,

this leads to the followingl1 regularized logistic regression
problem:

λ̂s = argmax
λs

n
∑

i=1

log P (x(i)
s |x

(i)
−s, λs) − ρ‖λ−s‖1

= argmax
λs

n
∑

i=1

x(i)
s λT

s x
(i)
−s − log(1 + exp(λT

s x
(i)
−s))

−ρ‖λ−s‖1 (2)

whereλs = (λs1, · · · , λsp) are the parameters of thel1 lo-
gistic regression andx−s denotes the set of all variables
with xs replaced by1 while λ−s denotes the vectorλs with
the componentλss removed. Similar to the case of Gaus-
sian Random Fields, the estimated set of neighbors is given
by:

N̂ (s) = {t : λ̂st 6= 0} (3)

One could then define the set of edgesE as a union or an
intersection of neighborhood sets{N (s)}s∈V of all the ver-
tices. Wainwrightet al [13] showed that both definitions
would converge to the true structure asymptotically.

In the next subsection, we will cast our problem as that
of structure learning of a pairwise Markov Random field,
which allows us to apply the algorithm of Wainwrightet al
[13] described above.

2.2 Algorithm

In order to be able to define a binary pairwise MRF
structure learning problem, we first convert the topic assign-
ments generated by LDA into topic-specific binary data as
follows:

The Latent Dirichlet model assigns a topic to each word-
occurrence in a document. Given a document collection,
these latent topic assignments to all the words can be com-
puted using a variational algorithm or Gibbs sampling. The
starting point of our algorithm is the topic-assignment data
generated by LDA. In LDA, each documentd is repre-
sented as a vector of wordswd = (w1, · · · , wNd

), where
wi ∈ {1, · · · , V } is one of theV unique words in the vo-
cabulary andNd is the document length. LDA generates
corresponding topic assignment vectorzd = (z1, · · · , zNd

)
where eachzi ∈ {1, · · · , K} is one ofK topics.

First, we convert the LDA topic-assignment vectorzd to
a set ofK binary vectors{x(d)

k }K
k=1, where eachx(d)

k =

(x
(d)
k1 , · · · , x

(d)
kV ) is of lengthV as follows:

∀ k = 1, · · · , K; v = 1, · · · , V

x
(d)
kv =







1 if ∃ j ∈ {1, · · · , Nd}
s.t.wj = v andzj = k

0 otherwise
(4)

In other words, each variablex(d)
kv associated with a word

v for a topick is assigned a value of1 if the word occurs
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in the document and is assigned the topick by LDA and0
otherwise. Note that each word can occur multiple times in
a document. Technically, LDA permits a different topic as-
signment to each occurrence of the word in the document.
However it turns out that, in the maximum likelihood es-
timation setting, LDA assigns the same topic to all occur-
rences of a given word. Hence the assignment ofx

(d)
kv in

eqn. (4) is a well-defined function.
Now we assume that each topick is associated with a

random vectorXk = (Xk1, · · · , XkV ) whose joint proba-
bility is defined under the following pairwise Markov Ran-
dom Field defined as follows:

P (xk|λk) = exp(
∑

s∈V

λksxks+
∑

(s,t)∈E

λkstxksxkt−A(λk))

(5)
where the verticesV in the MRF correspond to the words
in the vocabulary with an unknown sparse edge structure
E . The task is now to learn the sparse structureE of the
topic-specific MRF using the data{x(d)

k }M
d=1 whereM is

the number of documents in the collection. It is clear that
one can directly apply the algorithm of Wainwrightet al
[13] to this problem.

We runV l1 regularized logistic regression problems for
each topic as shown in table 1. We define the set of edges
as the union of all the neighborhoods of all vertices. As
a heuristic, we also estimate the strength of the correlation
between two words as the sum of the two parameter values
obtained from the logistic regression problems correspond-
ing to the two words, as shown in table 1. The algorithm is
also illustrated in the form of a flow chart in figure 2.

2.3 Scalability

As described above, for each topic, we runV l1 regular-
ized logistic regression problems, each of which is of size

V . Hence it appears that the complexity of the problem is
still O(V 2K). This is technically true in terms of a loose
upper-bound, but in practice, the new algorithm is very effi-
cient in terms of both computational time as well as storage
costs compared to a traditional bigram model for the fol-
lowing reasons:

1. Although the size of data vectorsx(d)
k is V , the num-

ber of non-zero components is strictly upper-bounded
by Ndmax

, the maximum document length in the col-
lection, which is typically much less thanV . Thus, the
input data to logistic regression is exteremely sparse,
making the learning very efficient.

2. A bigram model typically needs to estimate and store
KV (V − 1) parameters. The new algorithm estimates
and stores only the edge weights of the sparse struc-
ture, which needs much less computation and smaller
storage space in practice.

3. Since each of the problems is independent, it is pos-
sible to run theV problems in parallel, resulting in a
speed-up of computation.

4. Recent work by Kohet al [8] proposed a new, fast in-
terior point solution for thel1-regularized logistic re-
gression problem, which makes it very scalable and
practical for large dimensional problems.

3 Experiments

For our experiments, we used the small AP corpus1 con-
sisting ofM = 2, 246 documents andV = 10, 473 unique
words. We ran a 10 topic LDA model2 on this document
set to obtain the topic-assignment data{zd}

M
d=1. Next, for

each topic, we generated binary data{x
(d)
k }M

d=1. We filtered
out those documents for which the mixing proportion for
this topicθdk is less than0.25, to remove noisy data. The
only parameter in the algorithm is the regularization weight
ρ (see table 1) which can be used to control the degree of
sparsity: higher values ofρ will result in more sparsity. We
usedρ = 0.1 in our experiments. Then, for each topic,
we ran the fast, scalable, interior point implementation of
l1 regularized logistic regression3 [8] for each of the 10,473
words and merged the resulting sparse neighborhoods by a
union operation. On an average, it took us just about 45
minutes per topic to compute the sparse graph structure on
an Intel Xeon 1.86GHz processor with 4GB of RAM.

1Downloadable from http://www.cs.princeton.edu/∼blei/lda-
c/index.html

2We used an efficient C-implementation downloaded from
http://www.cs.princeton.edu/∼blei/lda-c/

3Downloadable from http://www.stanford.edu/∼boyd/l1 logreg



• For each topick ∈ {1, · · · , K}

– Input: LDA binary data{x(d)
k }M

d=1

– For each wordv ∈ {1, · · · , V }

∗ Computeλkv = arg maxλkv

∑M

d=1 x
(d)
kv λT

kvx
(d)
k,−v − log(1 + exp(λT

kvx
(d)
k,−v)) − ρ‖λk,−v‖1

– For each word pair(v, v′) s.t.λkvv′ 6= 0 or λkv′v 6= 0; φkvv′ = λkvv′ + λkv′v

– Return: Topic specific edge weightsφk

Table 1. Sparse Word Graphs Algorithm: λkv = (λkv1, · · · , λkvV ) is the parameter vector associated
with the l1 logistic regression problem of word v in topic k, x

(d)
k,−v is the binary vector x

(d)
kv with x

(d)
kvv

set to 1 and λk,−v is obtained by removing the component λkvv from the vector λkv.
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Figure 3. Comparison of LDA topic represen-
tation with truncated neighborhoods of top
ranking LDA words for topic “Business”: top
ranked LDA words are bold-faced.

We present the sparse word correlation structure of two
of the topics we labeled “Business” and “War” respec-
tively in figures 3 through 6. The topic “Business” re-
sulted in 128,074 edges, while the topic “ War” has only
35,588 edges (as compared to the total 109,683,729 possi-
ble edges). Since it is practically impossible to display all
the edges in each topic, we presented two views of each
topic. In figures 3 and 5, we presented truncated neigh-
borhoods of the top ranking words in LDA. We define the
truncated neighborhood of a word as the top two edges in its
neighborhood, where the ranking is done in the descending
order of the edge-strengthφk (see table 1). In figures 4 and
6, we display the truncated neighborhoods of the top ranked
edges from the full set of edges.

It is clear from figures 3 and 5 that the Sparse Word
Graphs representation of topics is more expressive and
meaningul than the LDA representation. The Sparse Word
Graphs algorithm succeeds in not only capturing phrases
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Figure 5. Comparison of LDA topic repre-
sentation with truncated neighborhoods of
top ranking LDA words for topic “War”: top
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(such as ‘New-York’ and ‘vice-president’ in topic “Busi-
ness” and ‘United-States’ and ‘air-force’ in topic “War”),
but also semantically coherent, long distance correlations
(such as ‘inc-acquire’ and ‘pay-receive’ in “Business” and
‘Washington-American’ and ‘Iraq-Kuwait’ in “War”). We
also notice that each of the connected components in the
figures corresponds to a distinct “concept” within the topic.

The top ranking edges from the two topics and their trun-
cated neighborhoods, displayed in 4 and 6, contain mostly
phrases and full names of people. This is not surprising,
since these are the word pairs that display strongest cor-
relations within topics. This information is quite useful
as well, since a quick glance tells us who are the major
players in the respective topics. For example ‘Shearson-
Lehman’, ‘Wall-Street’, ‘Ford-Motor’ certainly play a ma-
jor role in “Business” while ‘Saudi-Arabia’, ’Saddam-
Hussein’, United-States’, ‘Ferdinand-Marcos’, ‘Contras-
Sandinista’ are all associated with one war or the other.
It is also interesting that the name of an anti-war propo-
nent such as ‘Corazon-Aquino’ has cropped up in the topic.
Also, the truncated neighbors of the top ranked edges ex-
hibit interesting and meaningful associations that are not
necessarily phrases (e.g.:‘ Wall-street-McDonnell’, ‘UAL-
Uniteds-unions’, ‘Ford-motors-Chrysler’, ‘San-Francisco-
Kohlberg’, etc. in “Business” and ’Saudi-Arabia-
Hezbollah’, ‘Saddam-Hussein-Baghdad’, ’United-States-
Washington’, ’Tariq-Aziz-minister’,etc. in “War”).

4 Discussion

4.1 Relation to other word-correlation
models

We note that there are other approaches in the past that
addressed the problem of modeling word-correlations.

Most notable among them is the Hyperspace Analog to
Language (HAL) model [11, 10]. This technique models

correlation between a pair of words as a weighted count
of the number of times they co-occur within a window of
fixed length. The weight of each co-occurrence is given
by the inverse of the number of words between them. The
model enforces sparsity by not considering word pairs that
never co-occur within the window length in the entire col-
lection. In [10], the authors show that this algorithm can
be implemented on document collections with vocabulary
as large as 70,000 words. Our work is very similar to the
HAL algorithm in spirit, but the main difference is the fol-
lowing: HAL unearthsglobal correlations between words,
while Sparse Word Graphs can capture topic-specific,se-
mantic word correlations. For example, the words ‘bank’
and ‘river’ may exhibit high correlation in the topic of “Ge-
ography” but will exhibit almost no correlations in “Busi-
ness” (‘bank’ is a common word in “Business” but ‘river’
is not). HAL does not recognize this distinction, butSparse
Word Graphs can. Note thatSparse Word Graphs can ap-
proximately produce HAL output by using document binary
vectors as input instead of the LDA topic-assignments data.

Another technique that is similar in spirit to our work is
the popular idea of query expansion in information retrieval
[1]. In this approach, the original short query from the user
is first issued to the database to fetch top ranking docu-
ments. Words that highly co-occur with the query words
in these documents are returned as candidates for query ex-
pansion. When the original short query is replaced by the
new expanded query and re-issued to the system, the per-
formance typically improves significantly. One can think of
this approach as adynamic version of Sparse Word Graphs,
in which the neighborhood of query words in the query-
specific topic graph are generated as the output. However,
query expansion is not a document summarization tool as it
requires the queries (topics) to be pre-specified.

Wordnet4 is another effort at constructing a semantic net-
work of words. However, this is a completely human super-
vised effort, and as such is not directly related to our com-
pletely unsupervised algorithm.

4.2 Applications of Sparse Word Graphs

Our experiments demonstrated that the algorithm cap-
tures both short distance correlations such as bigrams and
phrases as well as semantically meaningful long distance
correlations in topics. Therefore this algorithm serves asa
better visualization and summarization tool for document
collections than LDA.

The algorithm could also be used for word sense disam-
biguation. Given a word such as ‘bank’, one could identify
its different senses in terms of its neighborhoods in various
topics such as “Geography”, “Business”,etc. Some prelim-
inary work on this idea using the LDA model already shows

4http://wordnet.princeton.edu/



promise [12].
Another related application is query expansion: this

technique can sometimes be misled by polysemous5 words.
One could useSparse Word Graphs as an intermediate step
to disambiguate the query as follows. Using the same run-
ning example, if the user types the query ‘bank’, then the
query-expansion algorithm could first specify the neigbor-
hoods of ‘bank’ from different topics. The user could pick
one of neighborhoods, which could then be used to expand
the query unambiguously and perform a second retrieval.
Alternatively, the system could exploit the session contex-
tual information to automatically pick the right topic and
then expand the query based on its neighborhood in the
topic.

5 Conclusions and Future Work

We have presented a new algorithm that combines LDA
with sparse structural learning methods to successfully cap-
ture short and long distance within-topic correlations be-
tween words. The algorithm is highly scalable to large col-
lections. For an interested data-mining practitioner, effi-
cient implementations of its components (LDA andl1 reg-
ularized logistic regression: URLs displayed in section 3 in
the paper) are readily available.

We however note that, our algorithm is not a unified
probabilistic model for capturing within-topic word correla-
tions. Building a comprehensive topic model for this prob-
lem is a very challenging and complex problem, since these
correlations are not explicitly observed (unlike in a model
like HAL), but contained within latent variables called top-
ics. Hence, in this work, we simplified the problem by using
a two-step process of running LDA first and then using its
output in learning the structure of the sparse MRF for each
topic. We believe that our work is a significant first step to-
wards solving this challenging problem of modeling sparse
word correlations in the topic modeling framework.

As part of our future work, we hope to be able to con-
struct a unified statistical topic model that addresses this
problem. We also intend to evaluate the efficacy of this al-
gorithm on specific tasks such as word-sense disambigua-
tion and query-expansion for information retrieval.
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