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Abstract

We outline a learning framework that aims
at identifying useful contextual cues for
knowledge-based word sense disambiguation.
The usefulness of individual context words is
evaluated based on diverse lexico-statistical
and syntactic information, as well as simple
word distance. Experiments using two dif-
ferent knowledge-based methods and bench-
mark datasets show significant improvements
due to context modeling, beating the conven-
tional window-based approach.

1 Introduction

Word sense disambiguation (WSD) is a key task
of natural language processing. Unsupervised
knowledge-basedapproaches to WSD (Navigli,
2009) make use of available lexical resources rather
than rely on costly annotated data. Sense infer-
ence in this setting involves finding the word sense
that agrees most with the specified context accord-
ing to the information encoded in the knowledge
base (KB). The popular Lesk (1986) method, for
example, seeks to maximize word overlap between
the dictionary glosses associated with the context
words, and the glosses of candidate word senses.
Similar methods are used in named entity disam-
biguation and linking to a KB (Hoffart et al., 2011).

Despite the sophistication of inference models de-
veloped, little attention has been given so far to con-
text modeling for knowledge-based WSD. Context
is represented by bag-of-words, where typically all
context words are assigned equal importance (Nav-
igli, 2009; Ling et al., 2014). However, every simple

definition of context will include some unrelated or
uninformative context words. Consider this usage
of the wordchurch: “An ancient stone churchstands
amid the fields , the sound of bells cascading from
its tower”. Known senses for ‘church’ according to
Wordnet 3.0 (Fellbaum, 1998) correspond to a group
of people, service, or a building. The latter sense is
intended in this case, as one may conclude from the
context words ‘stone’, ‘stands’ or ‘tower’. We wish
to focus on such meaningful cues and avoid the mod-
eling of uninformative words (‘ancient’, ‘sound’).

In this work, a learning framework is proposed
that is aimed at identifying contextual cues that are
predictive of the target word’s sense. The useful-
ness of a candidate context word for the disambigua-
tion of the target word is evaluated based on syn-
tactic and lexico-statistical information, as well as
simple word distance. Indirect supervision is pro-
vided using noisy example labels induced automati-
cally. Importantly, explicit lexical information is not
encoded–the prediction model can thus be applied in
settings where no sense-tagged examples are avail-
able of the target word type (see also (Szarvas et al.,
2013)). Having assessed the usefulness of available
context words given the learned model, we consider
only the top scoring context words in performing
WSD.

We believe this work to be the first to perform
learning-based context selection for knowledge-
based sense disambiguation. Empirical evaluation
using two representative knowledge-based WSD
methods and different benchmark datasets indicates
on consistent improvements in performance due to
context selection using the proposed approach.



2 Learned context selection models (LCS)

We first define the WSD task. Given a word mention
w and available contextCtx, it is required to infer
the intended senses∗ ∈ S(w), whereS(w) is the
set of known senses ofw. Ctx may be a sentence, a
paragraph, or a window over words that containw.

Knowledge-based methods seek to maximize
some measure of agreement, orsimilarity, between
candidate word senses and a given context. We de-
note this asSim(), where the sense inference proce-
dure is defined as follows:

ŝ(w) = argmax
s∈S(w)

Sim(s, Ctx) (1)

Typically,Ctx is represented as a bag-of-words, and
the similarity scoreSim(s, Ctx) is additive, i.e., it
may be computed as a summation over the similarity
scores between senses and the individual context
wordscj ∈ Ctx, using the general formula:

Sim(s, Ctx) =
∑

cj∈Ctx

weight(cj)Sim(s, cj) (2)

According to this view, each context word serves as
a sense disambiguation ‘expert’. Context words are
usually assigned uniform weight, i.e.,weight(cj) =
1. Alternatively, varying weights may reflect the re-
liability, or relevancy, of context wordcj in disam-
biguating target wordw; ideally, unuseful context
information would be downweighted or discarded.

2.1 Learning

Our goal is to learn models that assess whether
a candidate context wordcj serves as a reliable
‘expert’ in predicting the sense of target word
w. We propose a distantly supervised learning
scheme. Given sense-tagged instances of the form
〈Ctx(wi)〉, we derive a dataset of context-target
word pairs 〈wi, cij〉, cij ∈ Ctx(wi). Defining
whether context workcij is useful, or reliable, with
respect to the disambiguation ofwi is not trivial,
however. In particular, words that are perceived as
relevant according to human judgment may not nec-
essarily yield the correct prediction using the infer-
ence algorithm. We consider a context word to be
reliable if it yields a correct sense prediction of the
target word, as follows:

y(wi, cij) =

{

1, if argmaxs Sim(s, cij) = s∗(wi)

0, otherwise
(3)

As the similarity measuresSim(), as well as the ref-
erence knowledge base, are imperfect, the labels as-
signed in this fashion are expected to be noisy.

A context and target word pair is represented as
a feature vector, as described below. Importantly,
we avoid the representation of explicit lexical infor-
mation, so that the learned models are applicable to
word pairs of arbitrary word types.

Given a new instance at test time, the learned
model is used to score the individual context words.
One can then assign respective non-uniform weights
to the context words (Eq. 2). Here, we take acon-
text selectionapproach–a ranking is induced over the
context words based on the predicted scores, and
only the top ranked context words are modelled in
the disambiguation process; that is, the selected con-
text words are assigned weight 1.0, and the weight
of the remaining context words is set to zero. As
discussed in Sec.3, this design choice was found to
give preferable results in preliminary experiments.

2.2 Feature Types

Various aspects may be modeled as features in
this framework, describing properties of the con-
text wordcj , as well as the relationship between the
target-context word pair〈w, cj〉. In addition to sim-
ple word distance, we encode the following syntac-
tic and lexico-statistical information.

Syntactic features.Word distance is further as-
sessed in syntactic terms, denoting the length of the
shortest dependency path linking the word pair, as
well as the length of the shortest connecting path in a
constituency parse tree (Swanson and Gordon, 2006;
Huang and Lu, 2011). It may be useful to further
encode information about the edge types that com-
prise the connecting path, as some dependency rela-
tions indicate more salient semantic relatedness than
others (Pad́o and Lapata, 2007; Minkov and Cohen,
2013). In this work, if the target and context words
are directly connected in the dependency graph, we
include a feature indicating the label of the edge.
The part-of-speech tag of the context word may pro-
vide another contextual cue (Yarowsky, 1993); dedi-
cated features indicate whethercj is tagged asnoun,
verb, adjectiveor adverb. We used the Stanford
parser (de Marneffe et al., 2006) in our experiments.

Lexico-statistical information.We use the point-
wise mutual information (PMI) measure (Turney,



2001) to assess the semantic relatedness between
the context–target word pair. In general, we expect
context words that are topically related to the target
word to be useful for its disambiguation. To com-
pute PMI, we obtained word frequencies from the
large ukWaC corpus (Ferraresi et al., 2008), consid-
ering word co-occurrences over a window of five
words. It has been indicated that highly frequent
words are generally less topical, where this aspect
is not fully captured by PMI (Han et al., 2013).
We therefore model as complimentary information
the inverse document frequency (Salton and McGill,
1983) ofcj , also computed using ukWaC. Finally, a
context word is often ambiguous by itself, where low
polysemy is correlated with topic-specificity (Han et
al., 2013). We represent the number of known senses
of the context wordcj based on WordNet.

3 Experiments

We consider two WSD methods representative of
prevalent knowledge-based approaches, comparing
against previously published results. The popular
Lesk approach (1986) mentioned before computes
Sim(s, cj) in terms of word overlap between the
glosses of the senses ofcj and the gloss ofs. There
exist multiple variants of the Lesk algorithm (Kilgar-
riff and Rosenzweig, 2000; Banerjee and Pedersen,
2003; Ponzetto and Navigli, 2010). We experiment
with Gloss vectors(GV) (Patwardhan and Pedersen,
2006). This method enriches WordNet glosses with
glosses of hypernyms and other related senses, as
well as with co-occurring words derived from raw
text. GV scores were obtained using the Word-
Net::Similarity package (Pedersen et al., 2004).

Graph-based methods are also commonly used
for sense disambiguation (Mihalcea, 2005; Hughes
and Ramage, 2007). If the KB is represented as
a graph, various metrics can be applied that re-
flect structural similarity between word senses rep-
resented as graph nodes. We consider the Person-
alized PageRank (PPR) algorithm, which has been
shown to yield state-of-the-art WSD performance
(Agirre and Soroa, 2009). According to thelinearity
theorem(Jeh and Widom, 2003), PPR scores can be
computed for each of the context words separately,
and then aggregated (Eq. 2). In this case,Sim(s, cj)
equals the PPR score attributed to the node denot-

Word Target Context Pairwise acc.
types words words (PPR / GV)

Koelinget al. 41 9.6K 121K 0.32 / 0.31
Semeval‘07 35 16K 390K 0.35 / 0.33

Table 1: The experimental datasets: statistics

ing senses, having the graph walk initiated at a
uniform distribution over the various senses ofcj .
PPR scores were generated using the UKB software
(Agirre and Soroa, 2009).1

3.1 Datasets

We experiment with two benchmark datasets. The
lexical sample due to Koeling et al. (2005) includes
annotated instances of 41 selected nouns. About
300 example sentences are available per noun, re-
trieved evenly from three sources: the domain-
specificsportsandfinancesections of Reuters cor-
pus, and the general British National Corpus (BNC).
The second dataset consists of all noun examples
from the SemEval-2007 English lexical sample task
(Pradhan et al., 2007), created from another corpus–
the WSJ Treebank.

The two datasets were transformed into target-
context word pairs. For every word pair〈w, cj〉, the
scoresSim(s, cj), s ∈ S(w), were generated us-
ing GV and PPR and WordNet 3.0 as the reference
knowledge base. A context-target word pair was la-
beled as a positive example if it yielded a correct
sense prediction, or as negative otherwise (Eq. 3).
Table 1 details statistics of the original and respec-
tive word pair datasets, including the ratio of context
words labeled as positive examples–as shown, this
‘pairwise accuracy’ is low, reaching up to 0.35.

3.2 Experimental setup

We experimented with several classification
paradigms using the Weka learning suite (Hall et
al., 2009). Learning had to be robust to label noise.
We report results using Naive Bayes, due to both
its good performance and efficiency. Following
preliminary experiments, we adopted a context se-
lection approach–the learned model is used to rank
the available context words, where the top ranked
words, obtained by applying ratior, are selected as

1http://ixa2.si.ehu.es/ukb/; we used the bin file wn30+gloss,
and the PPRw2w graph walk variant.



context. We tuner using training examples. The
reported performance uses rough values ofr = 0.5
for the Koeling et al. examples, which include
individual sentences, andr = 0.2 for SemEval‘07,
where parahraphs of a few sentences are provided
as context.

3.3 Results

Table 2 shows the results of applying context se-
lection for each of the dataset and methods. As in
previous works, performance is reported in terms
of recall, defined as the ratio of correct sense pre-
dictions out of total number of target word men-
tions.2 To avoid over fitting, we performedcross
wordevaluation, predicting contexts for all instances
of each word type with a model trained using the
other word types (LCS:CW). Concretely, the Koel-
ing et al. dataset was split into 41 bins, according to
the target word type. For each word type, we gen-
erated a model using the examples of the remain-
ing (in this case, 40) word types. This cross word
evaluation procedure was applied to both datasets.
We further report the results ofcross datasetexper-
iments (LCS:CD), in which one dataset is used for
training and the other for evaluation. As baseline,
we use all of the available context words, weighting
them uniformly (“uniform” in the table).

As shown, LCS yields substantial improvements
over the “uniform” baseline. The improvement rate
for each experiment is displayed in superscript. Re-
call increased at high rates on the SemEval dataset.
This dataset is skewed, and much of these gains are
attributed to large increase in recall for two word
types, covering 27% of the examples. Improve-
ments on the balanced dataset due to Koelinget al.
were more modest, yet significant. Interestingly, im-
provement rates are higher using GV than PPR; we
conjecture that PPR predictions are biased towards
highly-connected graph nodes, being less sensitive
to the local context defined. Remarkably, the results
using cross-dataset training are comparable to or ex-
ceed the within-dataset CW results, showing gener-
ality and robustness of the proposed approach.

Table 3 further shows the results of an ablation
study, assessing the contribution of the various fea-

2Since predictions are generated for all examples, recall
equals in this case toprecision, andaccuracy.

Koelingel al. SemEval’07
GV PPR GV PPR

Uniform .389 .494 .370 .432
LCS:CW .410+5% .511+3% .469+27% .494+14%

LCS:CD .411+6% .510+3% .480+30% .507+17%

Table 2: Main results: recall performance

GV PPR
Uniform .389 .494
Lexico-statistical features:

PMI only .397+2.1% .502+1.6%

+IDF .403+3.6% .503+1.8%

+No. of senses .406+4.4% .509+3.0%

+Syntactic features:
.411+5.7% .510+3.2%

+Word distance
.410+5.4% .511+3.4%

Table 3: Feature ablation results using LCS:CW and the
Koelinget al. dataset

ture types by adding them incrementally. We found
the contribution of the lexico-statistical features to
be the largest. In particular, modeling PMI yielded
the best performance when used as a standalone fea-
ture. This means that context words that are topi-
cally related to the target word are especially use-
ful for knowledge-based WSD. Modeling IDF infor-
mation led to further gains in performance. As dis-
cussed before, the two measures are complimentary,
as common words are generally less topical. Rep-
resenting the number of senses of the context words
yielded further improvements. Overall, this combi-
nation of word features accounted for the majority of
the total gains achieved. The syntactic features had
a lesser impact, yet improved results further, mainly
using the GV method. Finally, simple word distance
was found to have little impact; similar behavior was
observed elsewhere (Hoffart et al., 2011).

In another set of experiments, we evaluated and
found LCS to be robust with respect to the ratior–
while performance using LCS varied, it improved
over the baseline across the range0 < r < 1. In
contrast, selecting equal-sized sets of context words
using the window approach was found to hurt per-
formance.

Finally, we compare our results against previous
works. Our approach outperforms the results ob-
tained by unsupervised systems on the noun por-
tion of the SemEval‘07 dataset (Patwardhan et al.,



BNC Sports Finance
Uniform PPR .491 .437 .554
LCS:CW .502+2% .464+6% .565+2%

LCS:CD .501+2% .459+5% .570+3%

Uniform GV .382 .361 .423
LCS:CW .401+5% .377+4% .450+6%

LCS:CD .400+5% .386+7% .448+6%

AL&S’09 .438 .356 .469
H&L’11 .397 - -
P&N’10 - .420 .478
R&M’12 - .465 .493

Table 4: Detailed results on the Koelinget al. dataset

2007; Mohammad et al., 2007), achieving recall
of .507 vs. .497 (a higher result obtained by Mo-
hammadet al). Table 4 presents LCS results sepa-
rately for each of the source domains of the Koeling
dataset for comparison purposes. Previous results
using PPR and uniform context weighting reported
by Agirreet al. (2009) (AL&S‘09) are substantially
lower than our baseline; we mainly attribute this to
the different version of WordNet used.3 Huang and
Lu (2011) proposed a manually-tuned syntax-based
context selection and weighting formula. They ap-
plied it in combination with the GV method, report-
ing improvement on BNC sentences only. Our base-
line result using GV was lower (.382 vs. .390), how-
ever LCS yielded better final performance (.401 vs.
.397). Compared with their work, we use learning
and model richer types of evidence; with PPR and
LCS, we report best results on the BNC sentences.
Table 4 details also recent results obtained for the
BNC and Sports portions of the dataset. Ponzetto
and Navigli (2010) (P&N‘10) enriched the WordNet
graph with additional relations projected onto the
graph from Wikipedia; the table reports their best
results using a graph centrality measure (Navigli
and Lapata, 2010). Raviv and Markovitch (2012)
(R&M‘12) reported state-of-the-art performance in
the specialized domains using Wikipedia as the ref-
erence knowledge base. Each individual context
word is represented in their work as a weighted vec-
tor of Wikipedia concepts, where sense inference is
performed by maximizing cosine similarity between
the centroid of the context vectors and a vector rep-

3They used WordNet 1.7, while we use version 3.0. Large
performance gaps due to different versions of WordNet were
reported elsewhere (Agirre and Soroa, 2009).

resentation of each word sense. Our results using
PPR and LCS exceed or roughly match their results
without using the Wikipedia resource.

4 Conclusion

We presented a learning framework that identifies
useful contextual cues for knowledge-based sense
disambiguation. The generated models are non-
lexicalized, and are therefore applicable to new
word types. Existing approaches pay little atten-
tion to context selection, or perform simplistic con-
text modeling, whereas the proposed approach ef-
fectively consolidates diverse types of evidence. In
the future, we are interested in representing addi-
tional word relatedness measures in this framework,
such as embedding-based word similarity (Wang et
al., 2015). We are further interested in creating spe-
cialized models that fit different word classes, e.g.,
of particular part-of-speech. In general, the pro-
posed approach may prove beneficial for additional
tasks that model word meaning in context, such as
lexical substitution and sense induction.
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