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Abstract. People learn to read and understand various displays (e.g.,
tables on webpages and software user interfaces) every day. How do hu-
mans learn to process such displays? Can computers be efficiently taught
to understand and use such displays? In this paper, we use statistical
learning to model how humans learn to perceive visual displays. We ex-
tend an existing probabilistic context-free grammar learner to support
learning within a two-dimensional space by incorporating spatial and
temporal information. Experimental results in both synthetic domains
and real world domains show that the proposed learning algorithm is
effective in acquiring user interface layout. Furthermore, we evaluate
the effectiveness of the proposed algorithm within an intelligent tutor-
ing agent, SimStudent, by integrating the learned display representation
into the agent. Experimental results in learning complex problem solving
skills in three domains show that the learned display representation is
as good as one created by a human expert, in that skill learning using
the learned representation is as effective as using a manually created
representation.

Keywords: two-dimensional grammar learning, learning to perceive dis-
plays, intelligent agent, cognitive modeling

1 Introduction

Every day, people view and understand many novel two-dimensional (2-D) dis-
plays such as tables on webpages and software user interfaces. How do humans
learn to process such displays? As an example, Figure 1 shows a screenshot of
one interface to an intelligent tutoring system that is used to teach students how
to solve algebraic equations. The interface should be viewed as a table of three
columns, where the first two columns of each row contain the left-hand side and
right-hand side of the equation, and the third column names the skill applied.
In tutoring, students enter data row by row, a strategy which requires a correct
intuitive understanding of how the interface is organized. SimStudent [1] is a sys-
tem that uses programming-by-demonstration [2] to develop a rule-based tutor
on an arbitrary interface, and to learn effectively, it needs a similar understand-
ing of the way the interface is organized. Incorrect representation of the interface
may lead to inappropriate generalization of the acquired skill knowledge, such
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Fig. 1. The interface where SimStudent is being tutored in an equation solving domain.

as generalizing the skill for adding two numerators to adding two denominators
in fraction addition. Past instances of SimStudent have used a hand-coded hier-
archical representation of the interface, which is both time-consuming, and less
psychologically plausible. Here we consider replacing that hand-coded element
with a learned representation.

More generally, we consider using a two-dimensional variant of a probabilis-
tic context-free grammar (pCFG) to model how a user perceives the structure
of a user interface, and propose a novel 2-D pCFG learning algorithm to model
acquisition of this representation. Our learning method exploits both the spatial
layout of the interface, and temporal information about when users interact with
the interface. The alphabet of the grammar is a vocabulary of symbols repre-
senting primitive interface-element types. For example, in Figure 1, the type of
the cells in the first two columns is Expression, and the type of the last cell in
the each column is Skill. (In SimStudent, these primitive types can be learned
from prior experience.) We extend an ordinary one-dimensional (1-D) pCFG
learner [3] to acquire two-dimensional grammar rules, using a two-dimensional
probabilistic version of the Viterbi training algorithm to learn parameter weights
and a structure hypothesizer that uses spatial and temporal information to pro-
pose grammar rules.

We then integrate this two-dimensional representation learner into SimStu-
dent. SimStudent is used to model the learning of human students in tutoring
domains such as algebra. Many students learn quickly, from few examples; how-
ever, some learn more slowly. Previous work in cognitive science [4] showed that
one of the key factors that differentiates experts and novices in a field is their
different prior knowledge of world state representation. Previously, we had to
manually encode such representation, which is both time consuming and error
prone. We now extend SimStudent by replacing the hand-coded display represen-
tation with the statistically learned display representation. We demonstrate the
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proposed algorithm in tutoring systems, and for simplicity will refer to terminal
symbols in the grammar as interface element, but we emphasize that the pro-
posed algorithm should work for two-dimensional displays of other types as well.
We evaluate the proposed algorithms in both synthetic domains and real world
domains, with and without integration into SimStudent. Experimental results
show that the proposed learning algorithm is effective in acquiring user interface
layouts. The SimStudent with the proposed representation learner acquired do-
main knowledge at similar rates to a system with hand-coded knowledge. The
main contribution of this paper is to use probabilistic grammar induction to
model learning to perceive two-dimensional visual displays.

2 Related Work

In previous work, we have developed a one-dimensional (1-D) pCFG learner
to acquire representations of 1-D strings (e.g., the parse structure of -3x), and
showed that the acquired representations yield effective learning, while reducing
the amount of knowledge engineering required in building an intelligent agent [5].
Moreover, it has been shown that with this extension, the intelligent agent be-
comes a better model of human students [6], and can be used to better under-
stand human student learning behavior [7]. In this work, we further extend the
representation learner to acquire representations in a 2-D space using a two-
dimensional variant of pCFG.

One closely related research area that also uses two-dimensional pCFGs is
learning to recognize equations (e.g., [8, 9]). Algorithms in this direction often
assume the structure of the grammar is given, and use a two-dimensional parsing
algorithm to find the most likely parse of the observed image. Our system differs
from their approaches in that we model the acquisition of the grammar structure,
and apply the technique to another domain, learning to perceive user interface.

Research on extracting structured data on the web (e.g., [10–12]) shares a
clear resemblance with our work, as it also concerns on understanding structures
embedded in a two-dimensional space. It differs from our work in that webpages
have an observable hierarchical structure in the form of their HTML parse trees,
whereas we only observe the 2-D visual displays, which have no such structural
information.

3 Problem Definition

To learn the representation of a 2-D display, we first need to formally define the
input and output of the problem.

3.1 Input

The input to the algorithm is a set of records, R = {R1, R2, ..., Rn}, associated
with examples shown on the display observed by people. Figure 1 shows one
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problem example in this algebra tutor interface. Each record, Ri (i = 1, 2, ...n),
records how and when the elements in the display are filled out by users. Thus, Ri

is a sequence of tuples, 〈Ti1, Ti2, ..., Tim〉, where each tuple, Tik (k = 1, 2, ...,m),
is associated with one display element that is used in solving the problem. The
tuples in a record are ordered by time. For example, to solve the problem, -3x+2
= 8, shown in Figure 1, the cells in the first three rows (except for the last cell of
the third row) are used. We do not assume that meta-elements such as columns
and rows are given, but we will assume that each display element occupies a
rectangular region, and that we can detect when regions are adjacent. In this
case, Ri will contain 12 tuples, 〈Ti1, Ti2, ..., Ti12〉, that correspond to the eight
cells, Cell 11, Cell 12, Cell 13, Cell 21, Cell 22, Cell 23, Cell 31, and Cell 32,
and the four buttons, done, help, <<, and >>.

Each tuple consists of seven items,

Tik = 〈type, xleft, xright, yup, ybottom, timestampstart, timestampend〉

where type is the type of the input to the display element, xleft, xright, yup,
and ybottom define the x and y coordinates of the space the element ranges over,
and timestampstart and timestampend are the start and ending time when the
display element is filled out by the user. For example, given the problem -3x+2
= 8, the tuple associated with Cell 11 is Ti1 = 〈Expression, 0, 1, 0, 1, 0, 0〉. The
timestamp of Cell 11 is 0, since both Cell 11 and Cell 21 were entered first by
the tutor as the given problem. As mentioned above, we have developed a 1-D
pCFG learner that acquires parse structures of 1-D strings. The type of the input
is the non-terminal symbol associated with the parse tree of the content. Hence,
the type of -3x+2 is Expression.

3.2 Output

Given the input, the objective of the grammar learner is to acquire a 2-D pCFG,
G, that best captures the structural layout given the training records, that is,

arg max
G

p (R | G)

under the constraint that all records share the same parse structure (i.e., layout).
We will explain this in more detail in the algorithm description section.

The output of the layout learner is a two-dimensional variant of pCFG [8],
which we define below. When used to parse a display, this grammar will generate
a tree-like hierarchical grouping of the display elements.

Two-Dimensional pCFG 2-D pCFG is an extended version of 1-D pCFG.
Each 2-D pCFG, G, is defined by a four-tuple, 〈V, E ,Rules, S〉. V is a finite set
of non-terminal symbols that can be further decomposed to other non-terminal or
terminal symbols. E is a finite set of terminal symbols, that makes up the actual
content of the “2-D sentence”. In our algebra example, the terminal symbols
of the visual display are the input types associated with the display elements
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Table 1. Part of the two-dimensional probabilistic context free grammar for the equa-
tion solving interface

Terminal symbols: Expression, Skill;
Non-terminal symbols: Table, Row, Equation, Exp, Ski
Table → 0.7, [v] Table Row
Table → 0.3, [d] Row
Row → 1.0, [h] Equation Ski
Equation → 1.0, [h] Exp Exp
Exp → 1.0, [d] Expression
Ski → 0.5, [d] Skill

(e.g., Expression, Skill). Rules is a finite set of 2-D grammar rules. S is the start
symbol.

Each 2-D grammar rule is of the form

V → p, [direction] γ1 γ2 ...γn

where V ∈ V, p is the probability of the grammar rule used in derivations1, and
γ1, γ2, ...γn is either a sequence of terminal symbols or a sequence of non-terminal
symbols. Without loss of generality, in this case, we only consider grammar rules
that have one or two symbols at the right side of the arrow.

direction is a new field added for the 2-D grammar. It specifies the spatial
relation among its children. The value of the direction field can be d, h, or v. d is
the default value set for grammar rules that have only one child, in which case
there is no direction among the children. h (v) means the children generated by
the grammar rule should be placed horizontally (vertically) with respect to each
other. An example of a two-dimensional pCFG of the equation solving interface
is shown in Table 12. The corresponding layout is presented in Figure 2. The rows
in the table are placed vertically with respect to other rows. Thus, the direction
field in the grammar rule “Table → 0.7, [v] Table Row” is set to be v. On
the other hand, the equation should be placed horizontally with the skill cell in
the third column, so the direction field of “Row→ 1.0, [h] Equation Ski” is
h. These three direction values form the original direction value set.

Since the interface elements may not form a rectangle sometimes (e.g., the
table and the buttons in the equation solving interface), we further extend the
direction field to have two additional values pv and “ph”. pv (ph) means that
the children of the grammar rule should be placed vertically (horizontally) with
respect to each other, but the parts in the interface associated with these children
do not have to form a rectangle. As shown in Figure 2, the table in the left side
and the buttons in the right side can be placed horizontally, but do not form
a rectangle. In this case, the grammar rule should use ph instead of h as the
directional field value. These direction values are less-preferred than the original

1 The sum of the probabilities associated with rules that share the same head, V ,
equals to 1.

2 The non-terminal symbols are replaced with meaningful names here. The symbols
in the learned grammars are synthetic-generated symbols.
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Fig. 2. An example layout of the interface where SimStudent is being tutored in an
equation solving domain.

values. Grammar rules that have such direction values will only be added if no
more rules with directions d, h, or v can be found.

Layout Given the 2-D pCFG, the final output of the display representation is
a hierarchical grouping of the display elements, which we will call a layout, L.
Figure 2 shows an example layout of the equation solving interface. The left side
of the interface contains a row-ordered table, where each row is further divided
into an equation and a skill. The right side of the interface contains a list of
buttons that can be pressed by students to ask for help or to indicate when
he/she considers the problem is solved.

4 Learning Two-Dimensional Display Layout Using
Probabilistic Grammars

Now that we have formally defined the learning task, we are ready to describe the
2-D display layout learner. Recently, we have proposed a 1-D grammar learner [3],
and have shown that the 1-D grammar learner acquires knowledge more effec-
tively and runs faster than the inside-outside algorithm [13]3. Hence, we further
extend the one-dimensional grammar learner to acquire a 2-D pCFG from two-
dimensional training records.

Algorithm 1 shows the pseudo code of the 2-D display layout learner. The
learning algorithm iterates between a greedy structure hypothesizer (GSH) and a
Viterbi training phase. The GSH tries to construct non-terminal symbols as well
as grammar rules that could parse all input records, R. The set of constructed

3 rakaposhi.eas.asu.edu/nan-tist.pdf.
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Algorithm 1: 2D-Layout-Learner constructs a set of grammar rules,
Rules, from the training records, R, and a set of terminal symbols E .

Input: Record Set R, Terminal Symbol Set E
1 Rules := φ;
2 while not-all-records-have-one-layout(R, Rules) do
3 Rules := GSH(R, E , Rules);
4 Rules := Viterbi-training(R, Rules);
5 end
6 return Rules

rules are then set as the start point for the Viterbi training algorithm. Next, the
Viterbi training algorithm iteratively re-estimates the probabilities associated
with all grammar rules until convergence. If the grammar rules are not sufficient
in generating a layout in the Viterbi training algorithm, GSH is called again to
add more grammar rules. This process continues until at least one layout can be
found.

Since an appropriate way of transferring previously acquired knowledge to
later learning process could potentially improve the learning speed, we further
designed a learning mechanism that transfers the acquired grammar with the
application frequency of each rule from previous tasks to future tasks. Due to
the limited space, we will not present the detail of this extension in this paper.

4.1 Viterbi Training

Given a set of grammar rules from the GSH step, the Viterbi training algorithm
tunes the probabilities on the grammar set, and removes unused rules.4 We
consider an iterative process. Each iteration involves two steps.

One key difference between learning the parse trees of 1-D strings and learn-
ing the GUI element layout is that the parse trees for different input contents
are different (e.g., -3x vs. 5x+6), whereas the GUI elements should always be
organized in the same way even if the input contents in the GUI elements have
changed from problem to problem. For instance, students will always perceive
the equation solving interface as multiple rows, where each row consists of an
equation along with a skill operation, no matter which problem they are given.
Therefore, instead of finding a grammar that parses the interface given specific
input, the learning algorithm should acquire one layout for the interface across
different problems. This effectively adds a constraint on the learning algorithm.

In the first step, the algorithm computes the most probable parse trees, T ,
for all training records using the current rules, under the constraint that the

4 More detailed discussion on why a Viterbi training algorithm instead of the standard
CKY is used can be found in [14], which is mainly because of overfitting.
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parse structure among these trees should be the same, that is,

T = arg max
T

p (T | R,G, S)

=
⋃

i=1,2,...n

arg max
Ti

p (Ti |Ri,G, S)

s.t. parse(T1) = parse(T2) = ... = parse(Tn) ∀ Ti ∈ T

where Ti is the parse tree with root S for record Ri given the current grammar G,
and parse(Ti) denotes the parse structure of Ti ignoring the symbols associated
with the parse nodes5

Since any subtree of a most probable parse tree is also a most probable parse
subtree, we have

p (Ti |Ri,G, Si)

= max
rule,idx



p (rule | G)× p (Ti,1 |Ri,1,G, Si,1)× p (Ti,2 |Ri,2,G, Si,2)
if rule is Si → p(rule|G), [direction] Si,1 Si,2,

p (rule | G)× p (Ti,1 |Ri,G, Si,1)
if rule is Si → p(rule|G), [direction] Si,1,

p (rule | G)
if rule is Si → p(rule|G), [direction] Ei,1, and Ei,1 ∈ E .

where rule is the rule that is used to parse the current record Ri, p (rule | G)
is the probability of rule used among all grammar rules (in all directions) that
have head Si, Ri,1 and Ri,2 are the split traces based on the direction of the
rule, direction, and the place of the split, idx, and Ti, Ti,1 and Ti,2 are the
most probable parse trees for Ri, Ri,1 and Ri,2 respectively. Using this recursive
equation, the algorithm builds the most probable parse trees in a bottom-up
fashion.

After getting the parse trees for all records, the algorithm moves on to the
second step. In this step, the algorithm updates the selection probabilities as-
sociated with the rules. For a rule with head V , the new probability of getting
chosen is simply the total number of times that rule appearing in the Viterbi
parse trees divided by the total number of times that V appears in the parse
trees, that is,

p(rulei|G) =
|rulei appearing in parse trees|
|Vi appearing in parse trees|

where rulei is of the form Vi → p, [direction], γ1, γ2, ...γn, n = 1 or 2.
After finishing the second step, the algorithm starts a new iteration until

convergence. This learning procedure is a fast approximation of expectation-
maximization, which approximates the posterior distribution of trees given pa-
rameters by the single MAP hypothesis. The output of the algorithm is an up-
dated 2-D pCFG, G, and the most probable layout of the interface. For elements

5 In the case that some record uses less elements than the other records (e.g., simpler
problems that require less steps), parse(Ti) is considered equal to parse(Tj) as long
as the parse structures of the shared elements are the same.
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Algorithm 2: GSH constructs a set of grammar rules, Rules, a set of
terminal symbols E , and from the training records, R.

Input: Record Set R, Terminal Symbol Set E , Grammar Rule Set Rules
1 if is-empty-set(Rules) then
2 Rules := generate-terminal-grammar-rules(E);
3 end
4 while not-all-records-are-parsable(R, Rules) do
5 if has-recursive-structure(R) then
6 rule := generate-recursive-rule(R);
7 else
8 rule := generate-most-frequent-non-added-rule(R);
9 end

10 Rules := Rules + rule;
11 R := update-record-set-with-rule(R, rule, Rules); // First, update the

record set using rule; second, update the record set using all

acquired Rules
12 end
13 Rules = initialize-probabilities(Rules);
14 return Rules

that have never been used in the training examples, the acquired layout will not
include them in it as there is no information for them in the record. But the
acquired grammar may be able to generalize to those elements. For example,
if the acquired grammar learns a recursive rule across rows, it will be able to
generalize to more rows than the training records have reached.

The complexity of the Viterbi training phase is O(|iter| × |R| × |Rulesnt| ×
|maxRi.length|!), where |iter| is the number of iterations, |R| is the number of
records, |Rulesnt| is the number of rules that reduce to non-terminal symbols,
|maxRi.length| is the length of the longest record. In practice, since the number
of rules generated by GSH is small, and we cache previously calculated parse
trees in memory, as we will see in the experiment section, all learning tasks are
completed within a reasonable amount of time.

4.2 Greedy Structure Hypothesizer (GSH)

As with the standard Viterbi training algorithm, the output of the algorithm
converges toward only a local optimum. It often requires more iterations to
converge if the starting point is not good. Moreover, since the complexity of
the Viterbi training phase increases as the number of grammar rules increases,
we designed a greedy structure hypothesizer (GSH) that greedily adds gram-
mar rules for frequently observed “adjacent” symbol pairs. Note that instead of
building a structure learner from scratch, we extend an existing one [3] to accom-
modate the 2-D space. Extending other learning mechanisms is also possible. To
formally define adjacency, let’s first define two terms, temporally adjacent, and
horizontally (vertically) adjacent.
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Definition 1 Two tuples, Ti1 and Ti2, are temporally adjacent, iff the two tu-
ples’ time intervals overlap, i.e.

[Ti1.timestampstart, Ti1.timestampstart) ∩
[Ti2.timestampstart, Ti2.timestampstart) 6= ∅

Definition 2 Two tuples, Ti1 and Ti2, are horizontally adjacent, iff the spaces
taken up by the two tuples are horizontally next to each other, and form a rect-
angle, i.e.

Ti1.xright = Ti2.xleft or Ti2.xright = Ti1.xleft

Ti1.yup = Ti2.yup

Ti1.ybottom = Ti2.ybottom

Definition 3 Two tuples, Ti1 and Ti2, are vertically adjacent, iff the spaces took
up by the two tuples are vertically next to each other, and form a rectangle, i.e.

Ti1.ybottom = Ti2.yup or Ti2.ybottom = Ti1.yup

Ti1.xleft = Ti2.xright

Ti1.xright = Ti2.xleft

Now, we can define what is a 2D-mergeable pair.

Definition 4 Two tuples, Ti1 and Ti2, are 2D-mergeable, iff the two tuples are
both temporally adjacent and horizontally (vertically) adjacent.

The structure hypothesizer learns grammar rules in a bottom-up fashion. The
pseudo code of the structure hypothesizer is shown in Algorithm 2. The grammar
rule set, Rules, is initialized to contain rules associated with terminal symbols,
when GSH is called for the first time. Then the algorithm detects whether there
are recursive structures embedded in the records (e.g., Row,Row, ...Row) , and
learns a recursive rule for it if finds one (e.g., Table→ 0.7, [v] Table Row).
If the algorithm fails to find recursive structures, it starts to search for the
2D-mergeable pair (e.g., 〈Equation,Ski〉) that appears in the record set most
frequently, and constructs a grammar rule (e.g., Row→ 1.0, [h] Equation Ski)
for that 2D-mergeable pair. The direction field value is set based on whether the
2D-mergeable pairs are horizontally or vertically adjacent. If the Viterbi training
phase cannot find a layout based on these rules, less frequent pairs are added
later. When there is no more pair that is 2D-mergeable, it is possible that some
training record has not been fully parsed, since some symbol pairs that are
horizontally (vertically) ordered may not form rectangles. The grammar rules
constructed for these symbol pairs in this case will use the extended direction
values (e.g., ph, pv). After getting the new rule, the system updates the current
record set with this rule by replacing the pairs in the records with the head of
the rule.

After learning the grammar rules, the GSH assigns probabilities associated
with these grammar rules. For each rule with head V , p is assigned to 1 divided
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by the number of rule that have V as the head. In order to break the symmetry
among all rules, the algorithm adds a small random number to each probability
and normalizes the values again. This structure learning algorithm provides a
redundant set of grammar rules to the Viterbi algorithm.

5 Experimental Results of the Two-Dimensional Display
Learner

In order to evaluate whether the proposed layout learner is able to acquire the
correct layout, we carried out three experiments in progressively more realistic
settings. All experiments were performed on a machine with a 3.06 GHz CPU
and 4 GB Memory. The time the layout learner takes to learn ranges from less
than 1 millisecond to 442 milliseconds per training record.

5.1 Experiment Design

In this section, we use the 1-D layout learner (i.e., 1-D pCFG learner) as a
baseline, and compare it with the proposed 2-D layout learner. In order to make
the training records learnable by the 1-D layout learner, we first transform each
training record into a row-ordered 1-D record, and then call the 1-D layout
learner on the transformed records.

We evaluate the quality of the learned parses with the most widely-used
evaluation measurements [15]: (1) the Crossing Parentheses score, which is the
number of times that the learned parse has a structure such as ((A B) C) and
the oracle parse has one or more structures such as (A (B C)) which “cross”
with the learned parse structure; (2) the Recall score, which is the number of
parenthesis pairs in the intersection of the learned and oracle parses (L intersec-
tion O) divided by the number of parenthesis pairs in the oracle parse O, i.e.,
(L intersection O) / O. To better understand the crossing parentheses score, we
further normalize it so that it ranges from zero to one.

5.2 Experiments in Randomly Generated Synthetic Domains

In the first experiment, we randomly generate 50 oracle two-dimensional gram-
mars. For each oracle grammar, we randomly generate a sequence of 15 training
layouts6 based on the oracle grammar. Each randomly-generated oracle gram-
mar forms an and-or tree, where each non-terminal symbol can be decomposed
by either a non-recursive or a recursive rule. Each grammar has 50 non-terminal
symbols in it. For each layout, we give the layout learners a fixed number of train-
ing records. The two layout learners (i.e., the 1-D layout learner with row-based
transformation and the 2-D layout learner) are trained on the 15 layouts sequen-
tially using a transfer learning mechanism developed for the layout learner. The
transfer learning mechanism is not described here due to the limited space. Then,

6 Some layouts may be the same.
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Fig. 3. Recall scores in a) randomly-generated domains, and three synthetic domains,
b) fraction addition, c) equation solving, d) stoichiometry.

we generate another layout with a fixed number of testing records by the oracle
grammar, and test whether the grammars acquired by the two layout learners
are able to correctly parse the testing records.

Figure 3(a) presents the recall scores of the layout learners averaged over
50 grammars. Both learners perform surprisingly well. They are able to achieve
close to one recall scores, and close to zero crossing parentheses scores with only
five training examples per layout. To better understand the result, we take a
close look at the data. Since the oracle grammar is randomly generated, the
probability of getting a hard-to-learn grammar is very low. In fact, many of the
training records are traces of single rows or columns, which makes learning easy.
Hence, to challenge the layout learner more, we carried out a second experiment.

5.3 Experiments in Three Synthetic Domains

We examine three tutoring systems used by human students: fraction addition,
equation solving, and stoichiometry, and manually construct an oracle grammar
that is able to parse these three domains. Moreover, the oracle grammar can
further generate variants of the existing user interfaces. For example, instead
of adding two fractions together, the oracle grammar can generate interfaces
that can be used to add three factions. We carry out the same training process
based on this manually-constructed oracle grammar, and test the quality of the
acquired grammar in three domain variants.
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•  Skill divide (e.g. -3x = 6) 
•  Perceptual information: 

•  Left side (-3x) 
•  Right side (6) 

•  Precondition: 
•  Left side (-3x) does not 

have constant term 
•  Operator sequence: 

•  Get coefficient (-3) of left 
side (-3x) 

•  Divide both sides with the 
coefficient (-3) 

Fig. 4. Original and extended production rules for divide in a readable format.

The interface of the fraction addition tutor has four rows, where the upper
two rows are filled with the problem (e.g., 3

5 + 2
3 ), and the lower two rows are

empty cells for the human students to fill in. The equation solving tutor’s inter-
face is shown in Figure 1. The interface of the stoichiometry domain contains
four tables of different sizes. The four tables are used to provide given values, to
perform conversion, to self-explain for the current step, and to compute inter-
mediate results. All tables are of column-based orders.

Figure 3(b), 3(c), 3(d) show the recall scores of the three domains averaged
over 50 runs. Both learners achieve better performance with more training exam-
ples. We also see that the 2-D layout learner has significantly (p < 0.0001) higher
recall scores than the 1-D layout learner in all three domains. Both fraction ad-
dition and stoichiometry contain tables/subtables of column-based orders. The
row-based transformation of the 1-D layout learner removes the column informa-
tion, and thus hurts the learning performance. The crossing parentheses scores
for both learners are always close to zero across three domains, which indicates
the acquired grammar does not generate bad “crosses” often.

6 Experimental Results within an Intelligent Agent

In order to understand how display representation learning affects agent learning
effectiveness, the last experiment that we carry out is within an intelligent agent,
SimStudent. SimStudent is an intelligent agent that inductively learns skills to
solve problems from demonstrated solutions and from problem solving experi-
ence. It is an extension of programming by demonstration [2] using inductive
logic programming [16] as an underlying learning technique.

Given a sequence of problem examples, the knowledge acquired by SimStu-
dent defines “where” to look for useful information in the GUI, and “when”
the useful information satisfies certain conditions, “how” to proceed. This skill
knowledge is represented as production rules. Figure 4 shows an example of a
production rule learned by SimStudent in its readable format7. The perceptual
information part is acquired by the “where” learner. The precondition part is

7 Actual production rules follows the LISP format.
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Fig. 5. Learning curves of three SimStudents in three domains, a) fraction addition,
b) equation solving, c) stoichiometry.

learned by the “when” learner. The operator function sequence part is created
by the “how” learner. The rule to “divide both sides of -3x = 6 by -3” shown in
Figure 4 would be read as “given a left-hand side (i.e., -3x) and a right-hand side
(6) of the equation, when the left-hand side does not have a constant term, then
get the coefficient of the term of the left-hand side and divide both sides by the
coefficient.” The “where” learner requires the layout of the interface to be given
as input, which is essential for constraining the search space of the other two
learning components. Previously, the agent developers need to manually encode
such layout as prior knowledge, which hurts the usability of SimStudent as an
authoring tool for building cognitive tutors, and fails to model display represen-
tation learning. With the layout learner, we are now able to acquire the layout
based on the training problems SimStudent observes.

6.1 Experiment Design

We use the actual tutor interfaces in three tutoring domains. The 2-D layout
learner is first trained on no more than five problems used to tutor human
students, and sends its output to SimStudent. An automatic tutor (also used
by human students) then teaches the SimStudent with the constructed/acquired
layouts with one set of problems, and tests SimStudents’ performance on another
set of problems. Both the training and testing problems are problems used by
human students. In each domain, SimStudent is trained on 12 problem sequences.
Three SimStudents are compared in the experiment. One SimStudent (manual)
is given the manually-constructed layout, one SimStudent (learned) is given the
acquired layout, and one SimStudent (baseline) is given a row-based layout8.

To measure learning gain, we calculated a step score for each step in the
testing problem. Among all possible correct next steps, we counted the number
of correct steps that were actually proposed by some applicable production rule,
and reported the step score as the number of the correct next steps proposed by
learned rules divided by the total number of correct next steps plus the number
of incorrect next steps proposed. For example, if there were four possible correct
next steps, and SimStudent proposed three, of which two were correct, and

8 A fully flat layout performs so badly that SimStudent cannot finish learning.
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one was incorrect, then only two correct next steps were covered, and thus the
step score is 2/(4+1)=0.4. Step score measures both recall and precision of the
proposed next steps. We report the average step score over all testing problem
steps for each curriculum.

6.2 Results

Figure 5 shows the learning curves of the three SimStudents across three do-
mains. In all three cases, the SimStudent with a row-based layout (baseline)
performs significantly (p < 0.0001) worse than the other two SimStudents. This
shows the importance of the layout in achieving effective learning. Both the
SimStudent with the manually-constructed layout (manual) and the SimStu-
dent with the learned layout (learn) perform well across three domains. There is
no significant difference between the two SimStudents, which suggests that the
acquired layouts are as good as the manually constructed layouts.

7 Future Work

Although in this paper, we mainly focus on using the two-dimensional grammar
learner to model interface layouts, the algorithm is not limited to this specific
task. We would like to explore the generality of the proposed approach in other
tasks. Reading tables on webpages or notes on paper are potentially interesting
tasks. Sometimes, notes on a paper may not be well-aligned. In this case, the
layout learning algorithm will need to be able to align these contents.

Moreover, we would like to test whether the layout learner can be used to
recognize two-dimensional complex math equations. Correct 2-D layouts of tables
are also important in completing calculation tasks in Excel. We would like to
see whether the 2-D grammar learner can be used to help learning to perform
tasks in Excel.

Finally, the complexity of the current Viterbi training algorithm increases
rapidly with the lengths of the training records. Although the GSH and the
caching mechanism speed up the learning process a lot, we would like to fur-
ther optimize the Viterbi training phase to ensure scalability of the learning
algorithm.

8 Concluding Remarks

In summary, we proposed a novel approach that models learning to perceive
visual displays by grammar induction. More specifically, we extend an exist-
ing one-dimensional pCFG learning algorithm to support acquisition of a two-
dimensional variant of pCFG by incorporating spatial and temporal information.
We showed that the two-dimensional layout learner is more effective than the
one-dimensional layout learner in general. When integrated into an intelligent
agent, the SimStudent using the acquired layouts performs equally well compar-
ing with the SimStudent given manually constructed layouts.
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