
Ranking Users for Intelligent Message Addressing

Vitor R. Carvalho1 and William W. Cohen1,2

Language Technologies Institute1 and Machine Learning Department2

Carnegie Mellon University, Pittsburgh, PA 15218 USA

Abstract. Finding persons who are knowledgeable on a given topic (i.e.
Expert Search) has become an active area of recent research [1–3]. In this
paper we investigate the related task of Intelligent Message Addressing, i.e.,
finding persons who are potential recipients of a message under composi-
tion given its current contents, its previously-specified recipients or a few
initial letters of the intended recipient contact (intelligent auto-completion).
We begin by providing quantitative evidence, from a very large corpus, of
how frequently email users are subject to message addressing problems. We
then propose several techniques for this task, including adaptations of well-
known formal models of Expert Search. Surprisingly, a simple model based
on the K-Nearest-Neighbors algorithm consistently outperformed all other
methods. We also investigated combinations of the proposed methods using
fusion techniques, which leaded to significant performance improvements over
the baselines models. In auto-completion experiments, the proposed models
also outperformed all standard baselines. Overall, the proposed techniques
showed ranking performance of more than 0.5 in MRR over 5202 queries from
36 different email users, suggesting intelligent message addressing can be a
welcome addition to email.

1 Introduction

Expert search, the task of finding persons who are knowledgeable on a given topic,
has been an active area of research recently [1–3]. Here we explore the related task
of Intelligent message addressing, i.e., finding persons who are potential recipients
for a message under composition given its current contents, its previously-specified
recipients or a few initial letters of the intended recipient contact. This task can
be a valuable addition to email clients, particularly in large corporations, where
negotiations are frequently handled via email and the cost of errors in task manage-
ment is very high. Intelligent Message Addressing can prevent a user from forgetting
to add an important collaborator or manager as recipient, preventing costly mis-
understandings, communication delays and missed opportunities. Below we present
empirical evidence that such errors are very common in the corporate environment.
The same technique can also potentially provide assistance in identifying people who
have previously worked on specific topics or have relevant skills.

In this paper we formalize two variants of this intelligent email addressing as user-
ranking, i.e., finding a ranked list of email addresses that are likely to be intended
recipients of a given message. We propose several methods for this task, including
classification-based models and adaptations of successful Expert Search formal mod-
els [1]. Extensive experiments over 36 different users indicate that a simple model

based on the K-Nearest Neighbors algorithm generally outperforms all other meth-
ods, including more refined Expert Search models. In a second set of experiments,
we explore how to combine the rankings of different baseline models using rank-
based data fusion techniques. Experiments clearly indicate that combined models
can significantly outperform all base models on all prediction tasks.

Intelligent message addressing techniques can also be naturally adapted to im-
prove email address auto-completion, i.e., suggesting the most likely addresses based
on a few initial letters of the intended contact. Email auto-completion is an extremely
useful and popular feature, but in spite of it, little is publicly known on how addresses
are ranked in the most popular email clients, and we are not aware of any study com-
paring different techniques on this particular message addressing problem. In this
paper we evaluate several ranking baselines for this problem — including alphabet-
ical, frequency and recency ordering — in a large collection of users. Results clearly
indicate that the proposed intelligent addressing models outperform all baselines,
significantly improving suggestions in email auto-completion.

Overall we show that intelligent message addressing techniques are able to visibly
improve email auto-completion, as well as to provide valuable assistance for users
when composing messages. Results suggest it can be a desired addition to most email
clients — for instance, on the task of predicting all email recipients, our methods
reached 0.47 in MAP and more than 0.5 in MRR. Another advantage is that the
best performing methods are computationally efficient and can be easily adapted to
large-scale email systems, with no changes in the email server side.

2 Frequency of Message Addressing Problems

Although email is ubiquitous, large, public and realistic email corpora are not easy
to find. The limited availability is largely due to privacy issues. For instance, in most
US academic institutions, an email collection can only be distributed to researchers
if all senders of the collection also provided explicit written consent. One of the
few datasets available is the Enron Email Corpus, a large collection of real email
messages from managers and employees of the Enron Corporation. This collection
was originally made public by the US Federal Energy Regulatory Commission during
the investigation of the Enron accounting fraud. The collection has approximately
half a million messages from 150 users’ inboxes.

By searching for messages containing the terms sorry, forgot or accident in the
entire corpus, and then manually filtering the results1, we found that at least 9.27% of
the users have forgotten to add a desired email recipient in at least one sent message,
while at least 20.52% of the users were not included as recipients (even though they
were intended recipients) in at least one received message2. These surprisingly high
numbers clearly suggest that these problems are very common and that email users
can benefit from an intelligent message addressing assistant.

1 Finding messages containing sentences such as “Oops, I forgot to send it to Vince.” or
“Sorry....missed your name on the cc: list!”.

2 This is a lower bound since not all errors will be noticed by users and not all error-
notification emails would be found by our search. A detailed analysis of these results can
be found in an extended version of this paper [4].

Table 1. Number of Email Messages in the Different Collections of the 36 selected Enron
users. |AB| is the Address Book size, i.e., the number of different recipients that were
addressed in the messages of the sent train collection. Sent test∗ contains only messages
having valid addresses in both TO and CC fields. User specific numbers can be found in [4]

|AB| sent train sent test sent test∗

Mean 377.67 1266.69 144.50 20.50
StDev 263.24 1099.05 116.79 0.69
Median 325 1025 109 20
Max 1262 4730 519 23
Min 36 99 26 19

3 Data Preprocessing and Task Definition

As expected, real email data have several inconsistencies. To help mitigate some of
these problems, we used the Enron dataset version compiled by Jitesh and Adibi
[5], in which a large number of repeated messages were removed. In addition, some
users in the corpus used multiple email addresses. We partially addressed this issue
by mapping “raw” email addresses into normalized email addresses for some users3.

In this paper, we describe two possible settings for the recipient prediction task.
The first setting is called the TO+CC+BCC or primary prediction, where we at-
tempt to predict all recipients of an email given its message contents. It relates to
a scenario where the message is composed, but no recipients have been added to
the recipient list. The second setting is called CC+BCC or secondary prediction, in
which message contents as well as the TO-addresses were previously specified, and
the task is to rank additional addresses for the CC and BCC fields of the message.

We randomly selected 36 Enron users, and for each user we chronologically sorted
their sent collection (i.e., all messages sent by this particular user) and then split
the collection in two parts: the oldest messages were placed into sent train and most
recent ones into sent test. Message counts statistics for the 36 randomly chosen
Enron users are shown in Table 1. More specifically, sent test collection was selected
to contain at least 20 “valid-CC” messages, i.e., at least 20 messages with valid
email addresses in both TO and CC (or both TO and BCC) fields. This particular
subset of sent test, with approximately 20 “valid-CC” messages, is called sent test∗.
The main idea is that TO+CC+BCC prediction will be tested on sent test, and the
CC+BCC prediction will be tested on the sent test∗ collection (a subset of sent test

in which all messages have a valid CC or BCC address).
This chronological split was necessary to guarantee a minimum number of test

messages for secondary prediction task and to simulate a typical scenario in a user’s
desktop — where the user already has several sent messages, and the goal is to
predict the recipients of the next sent messages. We also constructed, for each user,
an address book set AB which is the set of all recipient addresses in the user’s
sent train collection. A complete analysis of this data preparation over the different
users can be found in an extended version of this paper [4].

3 This mapping (author-normalized-author.txt) was produced by Andres Corrada-
Emmanuel, and is currently available from the Enron Email webpage [6].

4 Models

In this section we describe models and baselines to be used for recipient prediction.
In all cases, we followed this terminology. The symbol ca refers to candidate email

address and t refers to terms in documents or queries. A document doc refers to
documents in the training set, i.e., email messages previously sent by the same
Enron user. A query q refers to a message in the test set. Both documents and
queries are modeled as distributions over (lowercased) terms found in the “body” of
the respective email messages.

We also define other useful functions. The number of times a term t occurs in a
query q or a document doc is, respectively, n(t, q) or n(t, doc). The recipient function

Recip(doc) returns the set of all recipients of message doc. The association function

a(doc, ca) returns 1 if and only if ca is one of the recipients (TO, CC or BCC)
of message doc, otherwise it returns zero. D(ca) is defined as the set of training
documents in which ca is a recipient, i.e, D(ca) = {doc|a(doc, ca) = 1}.

4.1 Models

Expert Search Model 1 Predicting recipients (candidates) of a message under
composition (query) is a very similar task to Expert Search, the task of predicting
experts (candidates) associated with a particular topic (query). The analogy works so
well that we can easily adapt many recently proposed Expert Search formal models
to the task of recipient prediction.

The first recipient prediction model considered here is the Model 1 proposed for
Expert Search by Balog et al. [1]. In this model, the final candidate ranking for each
query q is given by the probability of this query being generated by a smoothed
candidate language model θca

4:

p(q|θca) =
∏

t∈q

{

(1 − λ)

(

∑

doc

p(t|doc)f(doc, ca)

)

+ λp(t)

}n(t,q)

(1)

where λ is the Jelinek-Mercer smoothing parameter, p(t) is the background model
probability of term t (maximum likelihood estimates of term in sent train collection),
p(t|doc) is the maximum likelihood estimate of the term in the document doc, and
f(doc|ca) is the document-candidate association function. Similarly to Balog et al.
[1], we estimated the document-candidate association functions in two different ways:

f(doc, ca) =

a(doc,ca)
∑

doc′
a(doc′,ca)

, in document centric (DC) mode;

a(doc,ca)
∑

ca′
a(doc,ca′)

, in user centric (UC) mode.
(2)

Expert Search Model 2 The second recipient prediction model considered is
the Model 2 proposed by Balog et al. [1]. Basically, the final candidate ranking for
each query q is given by the expression:

p(q|ca) =
∑

doc

{

∏

t∈q

[(1 − λ)p(t|doc) + λp(t)]
n(t,q)

}

f(doc, ca) (3)

4 Please refer to the original reference [1] for further details.

where λ, p(t|doc) and p(t) are defined in the same way as in Section 4.1. Similarly,
the two possible views of the document-candidate function f(doc, ca) are defined
according to equation 2. Please refer to [1] for further details.

TFIDF Classifier The recipient recommendation problem can naturally be
framed as a multi-class classification problem, with each candidate email ca repre-
senting a class ranked by some notion of classification confidence. Here we propose
using the Rocchio algorithm with TFIDF (Term Frequency-Inverse Document Fre-
quency) [7, 8] weights as a classifier for recipient recommendation problems. For each
candidate, a centroid vector-based representation is created:

→

centroid(ca)=
α

|D(ca)|

∑

doc∈D(ca)

→

tfidf(doc) +
β

|sent train| − |D(ca)|

∑

doc/∈D(ca)

→

tfidf(doc)

(4)

where
→

tfidf(doc) is the TFIDF vector representation5. The final ranking score
for each candidate ca is produced by computing the cosine similarity be-
tween the centroid vector and the TFIDF representation of the query, i.e.,

score(ca, q) = cos

(

→

tfidf(q),
→

centroid(ca)

)

.

K-Nearest Neighbors We also adapted another multi-class classification algo-
rithm, K-Nearest Neighbors as described by Yang & Liu [9], to the recipient predic-
tion problem. Given a query q, the algorithm finds N(q), i.e., the K most similar
messages (or neighbors) in the training set. The notion of similarity here is also

defined as the cosine distance between the TF-IDF query vector
→

tfidf(q) and the

TFIDF document vector
→

tfidf(doc).
The final ranking is computed as the weighted sum of the query-document simi-

larities (in which ca was a recipient):

score(ca, q) =
∑

doc∈N(q)

a(doc, ca) cos

(

→

tfidf(q),
→

tfidf(doc)

)

(5)

Other Baselines: Frequency and Recency For comparison, we also imple-
mented two simple baseline models: one based on the frequency of the candidates in
the training set, and another based on recently sent messages in the training set. The
first method ranks candidates according to the number of messages in the training
set in which they were a recipient: in other words, for any query q the Frequency

model will present the following ranking of candidates:

Frequency(ca) =
∑

doc

a(doc, ca) (6)

Compared to Frequency, the Recency model ranks candidates in a similar way,
but attributes more weight to recent messages according to an exponential decay

5 For each term t in document doc, the value tfidf(t) = log(n(t, doc) + 1)log(|sent train|
DF (t)

),

where DF (t) is the document frequency of t.

function. In other words, for any query q the Recency model will present the following
ranking:

Recency(ca) =
∑

doc

a(ca, doc)e

(

−timeRank(doc)
β

)

(7)

where timeRank(doc) is the rank of doc in a chronologically sorted list of messages
in sent train (the most recent message will have rank 1).

4.2 Effect of Threading

Threading information is expected to be a very important piece of evidence for recip-
ient prediction tasks, but unfortunately it cannot be directly exploited here because
the Enron dataset does not provide it explicitly. To approximately reconstruct mes-
sage threads, we used a simple heuristic based on the approach adopted by Klimt &
Yang [10].

For each test message q, we construct a set with all messages on the same thread
as q (or MTS(q), Message Thread Set) by searching for all messages satisfying two
conditions. First, the message is among the last P messages sent previous to q.
Second, the message must have the same “subject” information6 as q. While small
values of P may not be enough to find all previous messages on the same thread,
larger values are expected to introduce more noise in the thread reconstruction
process. In preliminary experiments, however, we observed that on average larger
values of P did not degrade prediction performance, so only the second condition
was imposed on the construction of MTS(q).

In order to exploit thread information in all previously proposed models, we used
the following backoff-driven procedure:

threaded modeli(q) =

{

MTS model(q) , if ‖MTS(q)‖ ≥ 1;
modeli(q) , otherwise.

where

MTS model(q) =

{

1.0 , if ca ∈
⋃

d∈MTS(q) Recip(d);

0.0 , otherwise.

That is, if q has no previous messages in its thread, predictions from the threaded
version of modeli will be made based on the original model modeli (for instance,
Frequency, Knn, TFIDF, Expert Model 1, etc.). Otherwise, if the thread of q contains
at least one message (‖MTS(q)‖ ≥ 1), predictions are dictated by MTS model(q)
— a model that assigns weight 1.0 to all recipients found in the messages in MTS(q)
and weight 0.0 to all other candidates7.

5 Results

5.1 Initial results

In this section we present recipient prediction experiments using the models intro-
duced in Section 4. All those models can be naturally applied to both primary and

6 Or subjects differing only in terms of reply-to (RE:) or forward (FWD:) markers.
7 In all models of this paper, candidates with the same scores were ranked randomly.

Table 2. MAP recipient prediction results averaged over 36 users. Statistical significance
relative to the best model results (in bold) is indicated with the symbols ∗∗ (p < 0.01) and
∗ (p < 0.05).

T-only Freq Rec M1-dc M1-uc M2-dc M2-uc TFIDF Knn

TOCCBCC 0.221** 0.203** 0.260** 0.279** 0.275** 0.279** 0.313** 0.365 0.361
CCBCC 0.261** 0.228** 0.309 0.262** 0.272** 0.236** 0.278** 0.301* 0.332

TOCCBCC (thread) N/A 0.331** 0.363** 0.393** 0.385** 0.384** 0.408** 0.440 0.441

CCBCC (thread) N/A 0.379** 0.424* 0.402** 0.407** 0.391** 0.425** 0.429* 0.459

Table 3. Recipient prediction results for the best model (Knn) averaged over 36 users.

MAP MRR R-Prec P@5 P@10

TOCCBCC 0.361 0.440 0.294 0.182 0.135
CCBCC 0.332 0.405 0.266 0.177 0.126

TOCCBCC (threaded) 0.441 0.516 0.398 0.225 0.157
CCBCC (threaded) 0.459 0.540 0.425 0.239 0.156

secondary recipient prediction tasks: the only difference is that, for obvious reasons,
in the secondary prediction task, a post-processing step removes all TO-addresses
from the final rank, and the test set contains only messages having at least one CC
or BCC address.

Similarly to Balog et al. [1], in our experiments both Expert Model 1 and 2 used
a smoothing parameter λ = 0.5. The TFIDF Classifier model had α = 1 and β = 0,
creating a centroid of positive examples for each candidate ca. We set K = 30 in
the Knn Model and β = 100 in the Recency model, values that delivered the best
results in preliminary tests.

Table 2 shows Mean Average Precision (MAP) results for all models presented
in Section 4. T-only refers to Thread Only — the prediction based only on detecting
threads, i.e., if no thread is detected, candidates are chosen randomly. Freq refers to
the Frequency model, while Rec refers to the Recency model. The symbol TFIDF

refers to the TFIDF Classifier model. Expert models one and two are referred as M1

and M2, with the candidate-document association indicated by -uc (user centric) or -

dc (document centric). Thread refers to models with thread processing (Section 4.2).
Two-tailed paired t-test were used for statistical significance tests. Results in Table
2 clearly indicate that the best recipient prediction performance is typically reached
by the Knn model, followed by TFIDF. It also reveals that Recency is typically a
stronger baseline for this task than the Frequency model. Overall, the expert models
M1 and M2 presented statistically significant inferior results when compared to Knn.
It is also interesting that the best Expert Search-based model was consistently M2-
uc, the same behavior observed by Balog et al. [1] on the TREC-2005 Expert Search
task. The use of thread information clearly provided considerable performance gains
for all models and tasks. These gains are somewhat expected because, in many
cases, email users are simply using the “reply-to” or “reply-all” buttons to select
recipients. These improvements are consequently a strong indication that the thread
reconstruction algorithm is working reasonably well in this dataset and also the fact
that a large proportion of the test messages was found to have a non-empty Message

Thread Set MTS(q). In fact, 29% of the test messages in the primary prediction
task had non-empty MTS(q), while the same number for secondary predictions was
35%.

To give a complete picture of the best results, Table 3 shows the Knn performance
metrics in terms of other metrics, such as Mean Reciprocal Rank (MRR), R-Precision
(R-Prec), and Precision at Rank 5 and 10 (P@5 and P@10) [11]. Overall, the average
performance over the 36 Enron users had MRR of more than 0.5, a very good result
for such a large prediction task (5202 queries from 36 different users). A closer look
in the numbers revealed a much larger variation in performance over different users
than over different models. For the primary prediction (threaded), over the 36 users
sample, the maximum MAP was 0.76, the minimum was 0.186, with a standard
deviation of 0.101.

Based on this variability, we measured the Pearson’s correlation coefficient R

(quotient of the covariance of the two variables by the product of their standard de-
viations) between variables that might influence performance. First, the correlation
between training set size (|sent train|) and the number of classes or ranked entities
(address book size) is 0.636 — a clear indication that users who send more messages
tend to have larger address books. More surprising, perhaps, was the fact that the
Pearson’s correlation between performance and training set size, as well as the one
between performance and Address Book size, was smaller than 0.2 in absolute values
— suggesting there is no apparent strong correlation between these variables8. One
possible explanation is that these two variables contribute inversely to the perfor-
mance (while recipient prediction is certainly easier with smaller Address Book sizes,
it is certainly harder with less training data) and the overall effect is hence weak.

5.2 Combining Evidence with Data Fusion Methods

Ranking results can be potentially improved by combining the results of two or more
rankings to produce a better one. One set of the techniques commonly applied to
rank combination is Data Fusion [12], whose methods have been successfully applied
to many areas, including Expert Search [3] and Known Item Search [13].

Because not all ranking scores of the proposed methods in Section 4 are normal-
ized, it is not reasonable to use score-based fusion techniques such as CombSUM

and CombMNZ [3]. Instead, we utilized Reciprocal Rank [3] (or RR), a rank-based
fusion techniques in which the aggregated score of a document is the sum of inverse
ranks of this document in the rankings, i.e., the sum of one over the rank of the
document across all rankings.

Table 4 shows experimental results on aggregating recipient recommendation
techniques with rank-based Fusion methods. The symbol ⊙ represents the aggre-
gation operation over different models (all threaded). On each line, the best per-
forming model (in bold face) is selected to be part of the base aggregation in the
following line. For instance, the second line displays aggregation results when Knn
is combined with the best model in the previous line (TFIDF) and all other three
remaining methods. The initial baseline model is threaded Knn. Results clearly show

8 Similar results were observed for different models on both for primary and secondary
predictions.

Table 4. MAP values for model aggregations with Reciprocal Rank. The ∗ and ∗∗ symbols
indicate statistically significant results over the Knn baseline.

Task Freq Recency TFIDF M2-uc

TOCCBCC Knn ⊙ 0.417** 0.432 0.457** 0.444
Knn ⊙ TFIDF ⊙ 0.455** 0.464** — 0.461**

Baseline: Knn Knn ⊙ TFIDF ⊙ Rec ⊙ 0.451** — — 0.470**
MAP = 0.441 Knn ⊙ TFIDF ⊙ Rec ⊙ M2-uc ⊙ 0.464** — — —

CCBCC Knn ⊙ 0.455 0.470 0.462 0.474*
Knn ⊙ M2-uc ⊙ 0.476** 0.491** 0.482** —

Baseline: Knn Knn ⊙ M2-uc ⊙ Rec ⊙ 0.491** — 0.494** —
MAP = 0.458 Knn ⊙ M2-uc ⊙ Rec⊙ TFIDF ⊙ 0.501** — — —

noticeable performance improvements over the baseline. MAP gains up to 0.042 in
the secondary prediction task, and close to 0.03 on primary predictions. In most
cases, the gains over the Knn baseline are statistically significant9. In a second set
of experiments, we used a weighted version of RR, where the weights for each base
ranking were determined by the performance obtained by the respective model in a
development set. More specifically, this development set was constructed using the
20% most recent messages in sent train, and used as test after training the models
in the remaining 80%. Overall, results were statistically significantly better than the
Knn baseline, but not statistically significantly better than the unweighted results
in Table 4.

5.3 Auto-completion Experiments

Email address auto-completion is the feature in email clients that provide a list of
email addresses after the user typed a few initial letters of the intended contact
address. Typically email clients allow users the option to turn on or off the auto-
completion feature, but rarely are users allowed pick how the suggested addresses
should be ranked. In this section we analyze different strategies for email auto-
completion ranking.

In order to test different strategies and models for email auto-completion, we
used the following experimental procedure. For each query message q, we extracted
all its recipient Recip(q), and for each recipient in Recip(q), we extract its V ini-
tial letters10. Then these V initial letters are used to filter out candidates ranked
by the recommendation model. Table 5 presents performance values in terms of
MRR* for different values of V and different recommendation models. Notice that
for each query q, |Recip(q)| different auto-completion rankings are created, one for

9 We also experimented with the Borda Fuse [3] aggregation method, but it presented
consistently worse results when compared to RR. A similar observation can be drawn
from other rank aggregation tasks [3, 13]

10 In a general case, initial letters from the contact’s email address, last name, first name and
nickname can be used. We used only email addresses because those were the only contact
information consistently available in the Enron corpus; but results can be extended for
the general case.

Table 5. Auto-completion Experiments. Performance values for different models and V

values. Statistical significance relative to the previous column value is indicated with the
symbols ∗∗ (p < 0.01) and ∗ (p < 0.05).

Primary Prediction (TOCCBCC)

V Alpha Freq Rec Knn Fus ∆(Knn-Rec) ∆(Fus-Rec) ∆(Fus-Knn)

0 0.022 0.274** 0.300** 0.377** 0.394** 25.542% 31.124% 4.447%
1 0.250 0.620** 0.653** 0.690** 0.731** 5.753% 11.893% 5.806%
2 0.557 0.846** 0.857 0.858 0.895** 0.078% 4.412% 4.331%
3 0.737 0.911** 0.923* 0.917 0.942** -0.683% 2.001% 2.702%

Secondary Prediction (CCBCC)

0 0.025 0.329** 0.364** 0.398* 0.436** 9.526% 19.927% 9.496%
1 0.265 0.668** 0.718** 0.717 0.777** -0.125% 8.289% 8.424%
2 0.549 0.858** 0.875 0.865 0.910** -1.189% 3.928% 5.178%
3 0.729 0.915** 0.929 0.915 0.946** -1.558% 1.811% 3.423%

each member of Recip(q) (each ranking contains a single relevant recipient and all
other recipients in the Address Book who share the same initial letters). MRR* is
the mean value of MRR over these rankings.

When V = 0, no initial letter of the email contact is known, just like in previous
Sections 5.1 and 5.2. As V increases, more is known about the intended recipient
and consequently prediction performance becomes better. In addition to the threaded
versions of Knn, Recency(Rec) and Frequency(Freq), Table 5 shows results for when
recipients are presented in alphabetical order (Alpha). It also contains a model called
All-Fusion (Fus), displaying results with the aggregated rankings from all models in
Table 4 (i.e., using rankings produced by the combinations indicated in the 4th and
8th lines of that Table).

In general, Table 5 indicates that Knn performs slightly better than Recency,
which in turn performs better than Frequency. This difference is more noticeable
for small values of V — exactly where most email users will benefit the most from
auto-completion. When V = 2 or V = 3 the different between Knn and Recency is
not statistically significant. The All-Fusion model shows the best auto-completion
results overall, significantly outperforming all other models for all values of V . Table
5 also displays the relative performance gains between Knn and Recency, All-Fusion
and Recency as well as All-Fusion and Knn.

Compared to any of the other models, auto-completion based only on the al-
phabetical order presents a rather low performance on both primary and secondary
prediction tasks. All other methods can provide significant gains in performance
when compared to it. It is surprising that some email clients still provide auto-
completion based on this method, given that simple baselines such as Frequency or
Recency can provide visible gains in recommendation ranking.

6 Related Work

The email recipient prediction problem is closely related to the expert search task.
In the former, the task is to retrieve the most likely recipients of a message under

composition, while in the latter the task is to retrieve the most likely experts in
a topic specified by a textual query. In fact, it is easy to find similarities between
recipient prediction and early expert search work using enterprise email data [14–16].
Recently, interesting models for Expert Search have been motivated by the TREC
Enterprise Search, where different types of documents are taken as evidence in the
process of finding experts. Because of the similarity between these tasks, many ideas
in this paper were motivated by expert search models recently proposed by Balog et
al. [1], Fang & Zhai [2] and Macdonald & Ounis [3].

Though relatively similar, expert search and email recipient prediction have some
fundamental differences. First, the latter is focused on a single email user, while the
former is typically focused in an organization or group. The former is explicitly
trying to find expertise in narrow areas of knowledge (queries with a small number
of words), while the latter is not necessarily trying to find expertise — instead, it is
trying to recommend users related to one or more indiscriminate “topic(s)” (i.e., a
message query that may have up to a few hundred words).

In a related work, Pal & McCallum [17] described what they called the CC
Prediction problem. In their short paper, two machine learning models were used to
predict email recipients in the personal collection of a single user. However their
modeling assumptions is substantively different from ours: they assume that all
recipients but one are given and the task is to predict the final missing recipient.
Performance was evaluated in terms of the probability of having “recall at rank 5”
larger than zero, i.e., the probability of having at least one correct guess in the top
5 entries of the rank. They report performance values around 44% for this metric on
their single private email collection. For comparison, our best system achieves 64.8%
and 70.6% on the same metric for primary and secondary predictions, respectively,
averaged over the 36 different Enron users.

The recipient prediction task is also related to email leak prediction [18]. The
goal of this task is preventing information leaks by detecting when a message is acci-
dentally addressed to non-desired recipients. In some sense, the recipient prediction
task can be seen as the negative counterpart of the email leak prediction task: in the
former, we want to find the intended recipients of email messages, whereas in the
latter we want to find the unintended recipients or email-leaks.

7 Conclusions

In this work we addressed the the problem of recommending recipients for messages
under composition, a task relatively similar to Expert Search. Evidence from a very
large real email corpus (Enron corpus) revealed that at least 9% of the users forgot
to address an intended recipient at least once, while more than 20% of the users
have been accidentally “forgotten” as intended recipients. We proposed several pos-
sible models for this task, and evaluated their predictive performance on 36 different
users from the Enron corpus. Experiments showed that a simple model based on the
K-Nearest Neighbors algorithm generally outperformed all other methods, includ-
ing frequency or recency based models, and more refined formal models previously
proposed for Expert Search.

We also investigate how to combine the rankings of different models using rank-
based data fusion techniques, such as sum of Reciprocal Ranks. Experiments clearly
indicated that aggregated models can generally outperform all base models, both
on primary and secondary recipient prediction tasks. We then applied the proposed
ideas to the email auto-completion problem, where the initial letters of the email
contact are typed by the user. Results clearly indicate that the proposed models can
provide intelligent email auto-completion, outperforming auto-completion based on
alphabetical ordering (currently used by some email clients).

Acknowledgments We would like to thank Jonathan Elsas for helpful com-
ments. This material is based upon work supported by the DARPA under Contract
Numbers NBCHD030010. Any opinions, findings and conclusions expressed in this
material do not necessarily reflect the views of DARPA.

References

1. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise
corpora. In: SIGIR 2006. (2006)

2. Fang, H., Zhai, C.: Probabilistic models for expert finding. In: ECIR. (2007) 418–430
3. Macdonald, M.;Ounis, I.: Voting for candidates: Adapting data fusion techniques for

an expert search task. In: CIKM, Arlington, USA; November 6-11, 2006. (2006)
4. Carvalho, V.R., Cohen, W.W.: Predicting recipients in the enron email corpus. Tech-

nical Report CMU-LTI-07-005 (2007)
5. Shetty, J., Adibi, J.: Enron email dataset. Technical report, USC Information Sciences

Institute (2004) Available from http://www.isi.edu/ adibi/Enron/Enron.htm.
6. Cohen, W.W.: Enron Email Dataset Webpage. http://www.cs.cmu.edu/ enron/.
7. Joachims, T.: A probabilistic analysis of the rocchio algorithm with TFIDF for text

categorization. In: Proceedings of the ICML-97. (1997)
8. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Infor-

mation Processing and Management 24(5) (1988) 513–523
9. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: 22nd Annual

International SIGIR. (August 1999) 42–49
10. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research.

In: ECML. (2004)
11. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley

(1999)
12. Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of ACM SIGIR.

(2001) 276–284
13. Ogilvie, P., Callan, J.P.: Combining document representation for known item search.

In: ACM SIGIR. (2003)
14. Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail

expertise analysis. In: Data Mining and Knowledge Discovery Workshop(DMKD2003)
in ACM SIGMOD. (2003)

15. Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using email
communications. In: CIKM. (2003)

16. Sihn, W., Heeren, F.: Expert finding within specified subject areas through analysis of
e-mail communication. In: Proceedings of the Euromedia 2001. (2001)

17. Pal, C., McCallum, A.: Cc prediction with graphical models. In: CEAS. (2006)
18. Carvalho, V.R., Cohen, W.W.: Preventing information leaks in email. In: Proceedings

of SIAM International Conference on Data Mining (SDM-07), Minneapolis, MN (2007)

