
A Very Fast Method for Clustering Big Text Datasets
Frank Lin and William W. Cohen 1

Abstract.
Large-scale text datasets have long eluded a family of particularly

elegant and effective clustering methods that exploits the power of
pair-wise similarities between data points due to the prohibitive cost,
time- and space-wise, in operating on a similarity matrix, where the
state-of-the-art is at best quadratic in time and in space.

We present an extremely fast and simple method also using the
power of all pair-wise similarity between data points, and show
through experiments that it does as well as previous methods in clus-
tering accuracy, and it does so with in linear time and space, without
sampling data points or sparsifying the similarity matrix.

1 Introduction

Clustering methods based on pair-wise similarity of data points, such
as spectral clustering methods, are elegant algorithmically and have
been shown to be effective on a variety of tasks [1, 14, 15, 17]. How-
ever, there are two great obstacles when applying these methods to
large-scale text datasets: (1) these methods require finding eigenvec-
tors of the similarity matrix, a very slow operation, and (2) the simi-
larity matrix itself, for large text datasets, is dense and therefore pro-
hibitively expensive in both storage space and algorithm runtime.

Prior work have tried to address these issues along three directions:
(a) sample the data points and do computation on a much smaller ma-
trix [6,20], (b) sparsify the matrix by a k-nearest neighbor technique
and do computation on a much sparser matrix [1, 4, 19], and (c) do
computation on lots of machines at the same time [1].

Sampling and sparsifying methods gain speed and storage effi-
ciency at the cost of not using all the pair-wise similarity available in
the data. Distributed computing methods only speed up the computa-
tion linearly (if that) while the computation and storage requirements
increase quadratically with the size of the data. These methods have
one thing in common—they still use the same core algorithm. At the
end of the day, a similarity matrix is computed and stored, and an
expensive operation like eigendecomposition is performed.

So we ask: what is a fast clustering method that uses the full pair-
wise similarity of a large text dataset without incurring the cost of
constructing, storing, and operating on such a matrix?

This work is a solution to this problem. This solution is in two
parts and yields three advantages. As the first part of the solution we
present a clustering method (in Section 2) that finds cluster results
similar to that of spectral clustering from a similarity matrix with-
out eigencomputation—this results in the advantage of it being fast.
For the second part of the solution we show (in Section 3) how the
clustering method can easily be modified to incorporate all pair-wise
similarities without having to construct a similarity matrix—this re-
sults in the advantage of it being space-efficient. Lastly, this solution

1 Carnegie Mellon Unversity, USA, email: {frank,wcohen}@cs.cmu.edu

has the advantage of being simple in that it is easy to describe and
understand and also easy to implement and parallelize.

We test this solution (in Section 4) on a well-known text dataset to
show its effectiveness in practice and to demonstrate its scalability. In
particular, its runtime display an asymptoticly linear behavior with
respect to input size. After a brief survey of related work (Section 5)
we conclude with notes on issues and future directions (Section 6).

2 Power Iteration Clustering

Given a dataset X = {x1, ...,xn}, a similarity function s(xi,xj) is
a function where s(xi,xj) = s(xj ,xi) and s ≥ 0 if i 6= j. It is
mathematically convenient to define s = 0 if i = j [17]. An simi-
larity matrix S ∈ Rn×n is defined by Sij = s(xi,xj). The degree
matrix D associated with A is a diagonal matrix with dii =

∑
j Sij.

A normalized similarity matrix W is defined as D−1S. Below we
will view W interchangeably as a matrix, and an undirected graph
with nodes X and the edge from xi to xj weighted by s(xi,xj).

W is closely related to the random-walk Laplacian matrix L of
Meilă and Shi [13], defined as L = I − D−1S. L has a number of
useful properties: most importantly to this work, the second-smallest
eigenvector of L (one with the second-smallest eigenvalue) defines
a partition of the graph W that approximately maximizes the Nor-
malized Cut criteria. More generally, the k smallest eigenvectors de-
fine a subspace where the clusters are often well-separated. Thus the
second-smallest, third-smallest, . . . , kth smallest eigenvectors of L
are often well-suited for clustering the graph W into k components.

The k smallest eigenvectors of L are also the k largest eigenvec-
tors of W . One simple method for computing the largest eigenvector
of a matrix is power iteration (PI), also called the power method. PI is
an iterative method, which starts with an arbitrary vector v0 6= 0 and
repeatedly performs the update vt+1 = cWvt where c is a normaliz-
ing constant to keep vt from getting too large (here c = 1/||Wvt||1).

The largest eigenvector of W is not very interesting—in fact, it is a
constant vector: since the sum of each row of W is 1, a constant vec-
tor transformed by W will never change in direction or magnitude,
and is hence a constant eigenvector of W with eigenvalue λ1 = 1.
However, the intermediate vectors obtained by PI during the con-
vergence process are very interesting. This is best illustrated by ex-
ample. Figure 1(a) shows a synthetic two-dimensional dataset 2 and
Figures 1(b), 1(c) and 1(d) show vt at a different t, each illustrated
by plotting vt(i) for each xi. For purposes of visualization, the in-
stances x in the “bullseye” are ordered first, followed by instances
in the central ring, then by those in the outer ring. We have also re-
scaled the plots to span the same vertical distance. Qualitatively, PI
first converges locally within a cluster: by 1(d) the points from each

2 Each xi is a point in R2 space, with s(xi,xj) defined as
exp((−||xi − xj ||2)/(2σ2)

(a) 3Circles dataset (b) t=0 (c) t=50 (d) t=400

Figure 1. Clustering result and the embedding provided by vt for the 3Circles dataset. (a) shows the dataset and its clusters, each cluster indicated using a
different color and point style. In (b), (c) and (d) the value of each component of vt is plotted against its index. For visualization, indices are ordered according

to cluster and values are scaled so the largest value is always at the top and the minimum value at the bottom.

cluster have approximately the same value in vt, leading to three
disjoint line segments in the visualization.

These observations suggest that an effective clustering algorithm
might run PI for some small number of iterations t, stopping after it
has converged within clusters but before final convergence, leading to
an approximately piecewise constant vector, where the elements that
are in the same cluster have similar values. Specifically, define the
velocity at t to be the vector δt = vt − vt−1 and define the acceler-
ation at t to be the vector εt = δt−δt−1. We pick a small threshold
ε̂ and stop PI when ||εt||∞ ≤ ε̂. The stopping criterion is based on
the assumption that while the clusters are “locally converging”, the
rate of convergence changes rapidly; whereas during the final global
convergence, the converge rate appears more stable. This assumption
turns out to be well-justified. Note that

vt = Wvt−1 = W 2vt−2 = ... = W tv0

= c1W
te1 + c2W

te2 + ... + cnW ten

= c1λ
t
1e1 + c2λ

t
2e2 + ... + cnλt

nen

vt

c1λt
1

= e1 +
c2

c1

(
λ2

λ1

)t

e2 + ... +
cn

c1

(
λn

λ1

)t

en

The convergence rate of PI towards the dominant eigenvector e1 de-
pends on (λi/λ1)

t for the significant terms i = 2, ..., k, since their
eigenvalues are close to 1 if the clusters are well-separated [13],
making (λi/λ1)

t ' 1. This implies that in the beginning of PI, it
converges towards a linear combination of the top k eigenvectors,
with terms k + 1, . . . , n diminishing at a rate of ≥ (λk+1/1)t. After
the noise terms k + 1, . . . , n go away, the convergence rate towards
e1 becomes nearly constant. The complete algorithm, which we call
power iteration clustering (PIC), is shown in Figure 2.

Input: Normalized similarity matrix W , number of clusters k
Output: Clusters C1, C2, ..., Ck

1. Pick an initial vector v0.
2. vt+1 ← Wvt

||Wvt||1 and δt+1 ← |vt+1 − vt|.
3. Increment t and repeat above step until |δt − δt−1| ' 0.
4. Use k-means on vt and return clusters C1, C2, ..., Ck.

Figure 2. The PIC algorithm.

In prior work PIC has shown to be as effective as or even outper-
form spectral clustering methods such as [17] and [15] on a variety
of datasets [10]. Its obvious speed advantage over spectral cluster-
ing comes from finding cluster indicators without eigenvectors and
early stopping of the already-fast power iteration on sparse matrices.
However, this advantage alone does not solve the problem of large
text datasets.

3 Bipartite Graph and Similarity Functions
PIC provides us with only one part of the solution: we are able to
obtain cluster indicators from a similarity matrix with a fast iterative
method. The other issue remains: the input to PIC is still a n-by-n
similarity matrix; and constructing, storing, and operating on such a
matrix would require computing time and storage at least quadratic
to the size of the input. Here we present the observation which leads
to the complete solution that is the main contribution of this paper.

At the core of PIC is a simple calculation: a matrix-vector multi-
plication Wvt. If we decompose the matrix W into a series of ma-
trix multiplications, the original PIC matrix-vector multiplication be-
comes a series of matrix-vector multiplications. This decomposition
is not useful if any of these matrices is n-by-n or dense, but if they
are all sparse and with size linear to n, then this decomposition is
extremely useful. This turns out to be exactly the case.

3.1 Bipartite Graph and “Path Folding”
A bipartite graph is a network with two mutually exclusive groups
of nodes where only links between nodes from different groups are
allowed and links within the groups are not allowed. A text dataset
can be viewed as a bipartite graph or network, where one group the
nodes correspond to the documents and the other group the nodes
correspond to the words. If a document contains a particular word,
a link exists between the document node and the word node. If two
documents contain the same word, a path of length two can be traced
from one to the other. If two documents are very similar, there would
be many such paths between them (since similar documents tend to
contains the same words); if two documents are very dissimilar, then
there would be very few such paths. The number of paths between
two document nodes in such graph then can be viewed as a similarity
measure between two documents.

If we are only interested in the similarity between documents, we
may “fold” the paths by counting all paths of length two between any
two documents and replacing the paths with a direct link between

them, weighted by the path count. This “folding” can be expressed
concisely with a matrix multiplication:

FF T = S

where rows of F represent documents and columns of F represent
words; F (i, j) can simply be the binary occurrence of word j in
document i, or it could be the word count of j in i, or a weighted
word count (e.g., tf-idf term weighting [9]). S is then the “folded”
network—each of its nodes is a document and a weighted link be-
tween two documents (S(i, j)) represent the combined weight of all
paths of length two in the original “unfolded” network F .

We now consider the density of these two different representa-
tions, the “unfolded” bipartite network F and the “folded” network
S, in the context of large text datasets. F will most certainly be a
sparse matrix; there are a large number of words in the vocabulary,
but only a very small fraction of it will occur in any single docu-
ment. S is quite the opposite. S(i, j) is zero only if no words are
shared between documents i and j; yet the very skewed distribu-
tion of word occurrences [12], and in particular that of the most
common words, makes S(i, j) highly likely to be non-zero, which
subsequently makes S very dense. As the number of documents in-
creases, S, a direct representation of document similarity, becomes
very costly in terms of storage and processing time; on the other
hand, F is a much more compact, albeit indirect, representation of
document similarity. This leads us to our modification of the original
PIC algorithm: instead of the similarity matrix we use the decompo-
sition instead, and this decomposition is actually the data in its orig-
inal form, saving us from having to construct and store a similarity
matrix at all, while providing us with the same exact result.

Before using the similarity data in its “unfolded” form in a PIC it-
eration, we need to do one more thing. Recall that W is a normalized
form of S where W = D−1S; we need to find the diagonal ma-
trix D−1 without S. It follows that the values of the diagonal matrix
D−1 can also be calculated efficiently via a number of sparse matrix-
vector multiplications using the same decomposition: calculate a vec-
tor d = FF T 1, where 1 is a vector of 1’s, and let D(i, i) = d(i).
Now the Wvt in PIC becomes:

D−1(F (F T vt))

Note that in the above equation the math is exactly the same without
the bracketing, but the order of operations is vital to making this a
series of sparse matrix-vector multiplications.

3.2 Similarity Functions

If instead of a bipartite graph we view the rows of F as feature vec-
tors of documents in vector space, then “Path folding” is equivalent
to the inner product similarity of documents in a vector space model,
often used in information retrieval problems [12]. However, this is
just one of many similarity functions often used for measuring doc-
ument similarity; for example, one may want to normalize the docu-
ment feature vectors by its length.

It turns out that this scalability extension to PIC can be easily
swapped with other similarity functions; here we consider one of
the most widely used in information retrieval literature [9, 12], the
cosine similarity: cos(a,b) = a·b

||a||||b|| where cos(a,b) is simply the
cosine of the angle between vectors a and b. For the normalizing
term 1/(||a||||b||) , we need to calculate an additional diagonal ma-
trix N(i, i) = 1/

√
(F (i)F (i)T) where F (i) is the ith row-vector

of F . Then following inner product similarity, the values of the diag-
onal matrix D can be calculated by d = NFF T N1. Then for each
iteration of PIC we have:

D−1(N(F (F T (Nvt)))) (1)

Again, all operations in constructing N and D and in calculation PIC
are sparse matrix-vector multiplications. As the sharp reader may no-
tice, instead of doing additional multiplications with N we can pre-
process F to be cosine-normalized and consequently simplify the
above to a inner product similarity. However, practically, with ex-
tremely large datasets it is very inefficient to store a version of the
dataset for every similarity function one might want to apply; cal-
culating similarity functions on-the-fly as in Equation 1 will often
prove to be a much more efficient approach.

4 Experiments

Dataset. To test the proposed method, we choose the RCV1 text cat-
egorization collection [9]. RCV1 is a well-known benchmark col-
lection of 804,414 newswire stories labeled using three sets of con-
trolled vocabularies. We use the test split of 781,256 documents and
category labels from the industries vocabulary. To aid clustering eval-
uation, documents with multiple labels and categories with less than
500 instances were removed, following previous work [1]. We ended
up with 193,844 documents and 103 categories.

We generate 100 random category pairs and pool documents from
each pair to create 100 two-cluster datasets: first, we randomly draw a
category from the 103 categories—this is category A. Then for can-
didates of category B, we filter out category A itself and any other
category that is more than twice the size or less than half the size
of category A. Finally, category B is randomly drawn from the re-
maining categories. This whole process is repeated 100 times. The
filtering is done so we do not have datasets that are overly skewed
in cluster size ratio, leads to the misinterpretation of clustering ac-
curacy; for example, a dataset with size ratio 1:9 will achieve 90%
accuracy with trivial clustering of all the data points in one cluster).

Since the industries vocabulary supports many fine distinctions,
we end up with 100 datasets of varying difficulty. For example,
whereas [PIG FARMING vs GUIDED WEAPONS] should be a rel-
atively “easy” pair to cluster, [SYSTEMS SOFTWARE vs APPLI-
CATIONS SOFTWARE] may be more “difficult” due to similarity in
vocabulary. These category pair datasets vary greatly in size—useful
in observing how well a method scale up as input data size increases.

Each document is represented as a log-transformed tf-idf (term-
frequency ¦ inverse document-frequency) vector, as is typically done
in the information retrieval community for comparing similarity be-
tween documents [9, 12].
Methods Compared. We compare PIC against two well-known
methods—the standard k-means algorithm and Normalized Cuts
[17]. k-means is an iterative algorithm with the objective of finding
k cluster centers that minimizes the within-cluster sum of squares
(WCSS), the sum of the Euclidean distances from the cluster centers
to the data points within the cluster. In practice, k-means converges
fast and gives reasonable results on linearly separable datasets but is
sensitive to initial centers and may be trapped in a local minima. In
our experiments we run k-means 10 times with random initial centers
and use the one with the smallest WCSS as the final result.

Normalized Cuts (NCUT) is an elegant spectral clustering method
and has shown to be effective in a variety of tasks including network
community detection and image segmentation [1,17,19]. The method

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 55 60 65 70 75 80 85 90 95 100

P
IC

k-means

Accuracy of k-means vs PIC

y=x
 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 55 60 65 70 75 80 85 90 95 100

P
IC

NCUTevd

Accuracy of NCUTevd vs PIC

y=x
 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 55 60 65 70 75 80 85 90 95 100

P
IC

NCUTiram

Accuracy of NCUTiram vs PIC

y=x

Figure 3. Clustering accuracy correlation plots between PIC and other methods. The diagonal line indicates y = x.

first finds the bottom 2− k-th eigenvectors of the normalized Lapla-
cian of the similarity matrix L = I−D−1S, and the eigenvectors are
the embedding of the data points onto a (k − 1)-dimensional plane.
A k-means algorithm is then used to find the clusters from the em-
bedding. The most computationally expensive part of NCUT is find-
ing the eigenvectors. Finding eigenvectors of a matrix takes O(n3)
time in general, though there are faster methods that provide reason-
able approximations. In this experiment we compare results with two
versions of the NCUT: NCUTevd and NCUTiram. NCUTevd uses
the slower but more accurate classic eigenvalue decomposition for
finding eigenvectors. NCUTiram uses the fast Implicitly Restarted
Arnoldi Method [8], a more memory-efficient version of the Lanczos
algorithm for approximations to the top or bottom eigenvectors of a
non-symmetric matrix.

In this experiment we use PIC modified with cosine similarity
function as described in Section 3.2 in Equation 1, with 0.00001/n
as the convergence threshold, where n is the number of documents,
and with random initial vectors where components are randomly
drawn from [0,1). For both PIC and the NCUT methods, we run k-
means 10 times on the embedding and choose the result with the
smallest WCSS as the final clustering.
Evaluation Metrics. We evaluate the clustering results according to
the industries category labels using two metrics: clustering accuracy
(ACC) and normalized mutual information (NMI).

Accuracy in general is defined to be the percentage of correctly la-
beled instances out of all the labeled instances. Clustering accuracy
here is the best accuracy obtainable by a clustering if we are to assign
each cluster a unique category label by consider all such possible as-
signments and then pick one that maximizes the labeling accuracy.
To do this with a large number of clusters a dynamic programming
approach is needed to avoid searching through all possible label per-
mutations, but here we only need to pick from two possible cluster
labeling. NMI is a information-theoretical measure where the mutual
information of the true labeling and the clustering are normalized by
their entropies. Due to space constraints, we refer readers to [1] for
its formal definition.

4.1 Accuracy Results

The experimental results are summarized in Table 1, showing the
accuracy and NMI for the methods compared, average over 100 cat-

egory pair datasets. The “baseline” number for ACC is the average
accuracy of a trivial clustering where all the data points are in one
cluster and none in the other (i.e., the accuracy of having no clus-
ters). This is provided due to the tendency for clustering accuracy
to appear better than it actually is. The differences between numbers
in Table 1 are all statistically significant with the exception of those
between NCUTevd and PIC, where the p-values of one-tailed paired
t-tests of ACC and NMI are 0.11 and 0.09 respectively.

Table 1. Summary of clustering results. Higher numbers indicate better
clustering. All differences are statistically significant with the exception of

those between NCUTevd and PIC, boldface.

ACC-Avg NMI-Avg
baseline 57.59 -
k-means 69.43 0.2629

NCUTevd 77.55 0.3962
NCUTiram 61.63 0.0943

PIC 76.67 0.3818

The ACC results correlate with those of NMI, and NCUTevd is
the most accurate algorithm, though not significantly more so than
PIC. Both NCUTevd and PIC do much better than k-means, a typi-
cal result in most prior work comparing k-means and methods using
pair-wise similarity [1, 15, 19]. We are surprised to find NCUTiram
doing much worse than all other methods including k-means; the de-
gree to which it failed the task is even more pronounced in NMI,
showing the clustering is close to random. In prior work [1, 8] and
in our previous experience with other datasets NCUTiram usually
do as well or nearly as well as NCUTevd. Perhaps a more advanced
tuning of the parameters of IRAM is required for better approxima-
tions to eigenvectors, but we are unable to obtain better results from
the IRAM implementation at the time of this writing. Regardless, the
conclusions we draw from these experiments is no less significant
even if NCUTiram were to perform just as well as NCUTevd.

Since the datasets are of varying difficulties, we are interested in
how well PIC performs compared to other methods in detail. Is PIC
always better than k-means? Does it have difficulty clustering the
same datasets as other methods? To answer such questions we plot
the accuracy of other methods against that of PIC in Figure 3.

Looking at k-means vs PIC accuracy chart, we see that there are
clearly some “easy” datasets, with their corresponding points con-
centrated near the top right, and some “difficult” datasets concen-

trated near the bottom left. Aside from these, points lie mostly above
the center diagonal line, showing that most of the time, PIC do as
well or better than k-means. There is not a strong correlation be-
tween k-means and PIC accuracy, possibly due to them being very
different clustering methods, one using centroid-to-point similarity
and one using all point-to-point similarity.

The NCUTevd vs PIC accuracy plot, with the exception of less
than 10 datasets, forms a nearly diagonal line through the middle
of the chart, showing that most datasets are “equally difficult” to
these clustering methods. This may be an indication that the clusters
produced by these methods are very similar, possibly due to them
both using all point-to-point pair-wise similarity. Although PIC and
NCUT yield very similar accuracy results on these datasets, we will
see the next section that their ability to scale up to larger datasets are
very different. We will not discuss NCUTiram vs PIC accuracy here
since NCUTiram seems to have failed completely on this dataset to
produce approximate eigenvectors.

4.2 Scalability Results

We plot data size versus runtimes on a log-log chart in Figure 4. Note
that these times are the embedding time of the methods. Specifically,
for NCUT it is the time it took to find the second bottom eigenvector
of L and for PIC it is the time it took for the PI loop to converge.
We do not include the times for constructing the required matrices
(S for NCUT and D, N for PIC) and we did not include the times
for k-means to run after the embedding. The reasons are: (a) these
times are always a very small fraction of the embedding time, (b) k-
means can be run as many times as desired to avoid being trapped at
a local minima, and (c) their inclusion will only favor PIC, since k-
means runs take the same amount of time and the matrix construction
is O(n2) for NCUT and O(n) for PIC. All algorithms were imple-
mented in MATLAB and ran on a single Linux machine with two
quad-core 2.26Ghz CPUs and 24GB of RAM.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000

R
un

tim
e

(s
ec

)

Dataset Size

Size vs Runtime of PIC and NCut (log-log)

NCUTevd
NCUTiram
PIC
y=ax2

y=ax

Figure 4. A size versus runtime plot on a log-log scale. The dots show
runtime (in seconds) of various methods on datasets of increasing sizes. The
lines show the slope of a linear curve and a quadratic curve for comparison

purposes and do not correspond directly to any method.

What is immediately outstanding from Figure 4 is that PIC is much
faster than either NCUTevd or NCUTiram. On the smallest dataset of
1,070 documents, PIC took only a hundredth of a second, 50 times
faster than NCUTiram and 175 times faster than NCUTevd. On the

largest dataset of 16,636 documents, PIC took about a tenth of a sec-
ond, roughly 2,000 times faster than NCUTiram and 30,000 times
faster than NCUTevd. In addition, this time is with PIC calculating
cosine similarities on-the-fly on each iteration (NCUT is given the
pre-calcualted cosine similarity matrix).

What is perhaps less obviously but even more remarkable is the
runtime asymptotic behavior. To visualize this in the figure, we in-
clude a line with quadratic behavior (y = ax2) and a line with lin-
ear behavior (y = ax). With these are guidelines, we can see that
NCUTiram time is slightly above quadratic and NCUTevd close to
cubic. PIC, on the other hand, display a linear behavior. The runtime
asymptotic behaviors of NCUTevd and NCUTiram are more or less
better understood so these results are no surprise (for a detailed run-
time analysis of NCUTiram see [1]). However, one may question the
linearity of PIC based solely on a log-log plot.

As shown in Sections 2 and 3, within each PIC iteration the run-
time is strictly linear to the size of the input—that is, linear to the
number of non-zero elements in the input document vectors. Assum-
ing the vocabulary size is constant, then PIC runtime is:

O(n)× (# of PIC iterations)

Generally, it is difficult to analyze the number of steps required for
convergence in an iterative algorithm (e.g., k-means), but if we are
interested in the asymptotic behavior on certain datasets, we can in-
stead ask a simpler question: does the number of iterations increase
with dataset size? To observe this experimentally, we plot a corre-
lation chart of the size of the dataset and the number of PIC itera-
tions and calculate the R2 correlation value, show in Figure 5(a). We
find no noticeable correlation between the size of the dataset and the
number of PIC iterations. This implies that the number of iterations
is independent of dataset size, which means that asymptotically, the
number of iterations is constant with respect to dataset size.

The sharp reader may raise further questions regarding this analy-
sis. What if larger datasets are more “difficult” to PIC? It is meaning-
less to point out an algorithm being linear if it fails to work as dataset
size gets bigger. To observe this we calculate R2 values and plot cor-
relations between dataset size and PIC accuracy in Figure 5(b) and
between dataset size and the ratio of PIC accuracy to NCUTevd ac-
curacy in Figure 5(c). Again, with no discernible correlation in these
figures, we conclude that PIC accuracy is independent of dataset size
(Figure 5(b)) and that PIC is as accurate as NCUT as dataset size
increases (Figure 5(c)).

An additional correlation statistic that may be of interest between
that of PIC’s accuracy and number of iterations. It is not unusual for
an iterative algorithm to converge much faster on a “easy” dataset
and slower on a more “difficult” dataset. Since the number of itera-
tions is directly related to runtime, we may expect PIC to be slower
on more “difficult” datasets. Surprisingly, Figure 5(d) does not show
correlation between the two, indicating that PIC work just as fast on
“difficult” datasets as on “easy” datasets. This leads us to our con-
clusion concerning the runtime scalability of PIC—that as far as text
datasets are concerned, its runtime is linear with respect to input size.

Perhaps PIC’s runtime scalability is only matched by its small
memory footprint. In addition to the input dataset, the “bipartite
graph” PIC embedding requires exactly 4n storage (vt,vt−1 and di-
agonal matrix δt−1, D) for inner product similarity and 5n (an addi-
tional diagonal matrix N) for cosine similarity, regardless of vocabu-
lary size. This is much more feasible compared to at least n2 storage
required by methods requiring explicit construction of a similarity
matrix.

P
IC

 It
er

at
io

ns

Dataset Size

Size vs PIC Iterations

(a) R2 = 0.0424

P
IC

 A
cc

ur
ac

y

Dataset Size

Size vs PIC Accuracy

(b) R2 = 0.0552

P
IC

/N
C

U
T

 A
cc

ur
ac

y

Dataset Size

Size vs PIC/NCUT Accuracy

(c) R2 = 0.0007

P
IC

 A
cc

ur
ac

y

PIC Iterations

PIC Iterations vs PIC Accuracy

(d) R2 = 0.0134

Figure 5. Correlation plots and R2 correlation values. None of these plots or values indicate even a weak correlation, thus providing further evidence of
PIC’s runtime linearity. Note on average it takes 15 iterations for PIC to converge, with 31 iterations being the maximum.

5 Related Work

The basic PIC algorithm (in Section 2) is related to [18] and [21]
in that repeated matrix multiplications reveals cluster structure in a
similarity matrix; however these methods do matrix-matrix multipli-
cation instead of matrix-vector multiplication—a major disadvantage
when it comes to scalability. PIC is perhaps most related to spectral
clustering [5,15–17,19]; both find a low-dimensional embedding re-
lated to the eigenvectors of the similarity matrix and use k-means
to produce the final clusters. The difference most relevant to this
work is that PIC creates the embedding without explicitly finding any
eigenvector [10]. This makes PIC much faster than spectral cluster-
ing methods. Methods that attempt to make spectral clustering faster
have mostly relied on data pint sampling or matrix sparsifying as
described in Section 1.

PIC’s repeated multiplication of a normalized matrix with a vector
can be viewed as a sort of iterative averaging or a backward random
walk. This idea has been used in semi-supervised learning method
for propagating class labels on network data [3, 11, 22].

This paper extends the prior PIC algorithm to work efficiently
with text datasets, where ”adjacency” is defined by tf-idf distance.
In doing so, we exploit a well-known equivalence between cosine
distance and the inner-product computation, and more generally, be-
tween multistep random walks and iterated matrix multiplication [2].

6 Conclusion and Future Work

We have shown that, on large text datasets, our proposed method ex-
ploits the power of pair-wise similarity to provide clustering accuracy
equal to that of Normalized Cuts without constructing or operating
on a similarity matrix, yielding remarkable computational efficiency
in space and time. It not only runs much faster; according to many
observable statistics, it shows a runtime linear to input size, mak-
ing clustering based on pair-wise similarity feasible and practical for
large-scale text data.

Additionally, crucial to its practical use is its simplicity—all core
operations are simple matrix-vector multiplications. Not only is it
trivial to implement, it is easy parallelize in a large-scale distributed
computing environment [7].

In order to ascertain the accuracy and asymptotic behavior of a
new method on text data, we have restricted the experiments in this
paper to be on two-cluster datasets. We plan to expand experiments to
include multi-cluster problem, and we also plan to extend the method
to allow for more complicated structures such as hierarchical clusters
and mixed-membership clusters.

ACKNOWLEDGEMENTS
This work was funded by NSF under grant IIS-0811562, by NIH under grant
R01 GM081293, and by a gift from Google.

REFERENCES
[1] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Ed-

ward Y. Chang, ‘Parallel spectral clustering in distributed systems’,
PAMI, (2010).

[2] Edith Cohen and David D. Lewis, ‘Approximating matrix multiplica-
tion for pattern recognition tasks’, in SODA, (1997).

[3] Nick Crawell and Martin Szummer, ‘Random walks on the click graph’,
in SIGIR, (2007).

[4] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis, ‘Weighted graph
cuts without eigenvectors: A multilevel approach’, PAMI, 29(11),
1944–1957, (2007).

[5] Miroslav Fiedler, ‘Algebraic connectivity of graphs’, Czechoslovak
Mathematical Jour., 23(98), 298–305, (1973).

[6] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik,
‘Spectral grouping using the Nyström Method’, in PAMI, (2004).

[7] U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos, ‘Pega-
sus: A peta-scale graph mining system - implementation and observa-
tions’, in ICDM, (2009).

[8] R.B. Lehoucq and D. C. Sorensen, ‘Deflation techniques for an implic-
itly re-started arnoldi iteration’, SIAM Journal on Matrix Analysis and
Applications, 17, 789–821, (1996).

[9] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li, ‘RCV1: A
new benchmark collection for text categorization research’, JMLR, 5,
361–397, (2004).

[10] Frank Lin and William W. Cohen, ‘Power iteration clustering’, in
ICML(to appear), (2010).

[11] Sofus A. Macskassy and Foster Provost, ‘Classification in networked
data: A toolkit and a univariate case study’, JMLR, 8, 935–983, (2007).

[12] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze, In-
troduction to Information Retrieval, Cambridge University Press, 2008.

[13] Marina Meilă and Jianbo Shi, ‘A random walks view of spectral seg-
mentation’, in AISTAT, (2001).

[14] M. E. J. Newman, ‘Finding community structure in networks using the
eigenvectors of matrices’, Physical Review E, 74(3).

[15] Andrew Y. Ng, Michael Jordan, and Yair Weiss, ‘On spectral clustering:
Analysis and an algorithm’, in NIPS, (2002).

[16] Tom Roxborough and Arunabha Sen, ‘Graph clustering using multiway
ratio cut’, in Graph Drawing, (1997).

[17] Jianbo Shi and Jitendra Malik, ‘Normalized cuts and image segmenta-
tion’, PAMI, 22(8), 888–905, (2000).

[18] Naftali Tishby and Noam Slonim, ‘Data clustering by markovian relax-
ation and the information bottleneck method’, in NIPS, (2000).

[19] Ulrike von Luxburg, ‘A tutorial on spectral clustering’, Statistics and
Computing, 17(4), 395–416, (2007).

[20] Donghui Yan, Ling Huang, and Michael I. Jordan, ‘Fast approximate
spectral clustering’, in KDD, (2009).

[21] Hanson Zhou and David Woodruff, ‘Clustering via matrix powering’,
in PODS, (2004).

[22] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty, ‘Semi-supervised
learning using Gaussian fields and harmonic functions’, in ICML,
(2003).

