
Extracting Personal Names from

Emails: Applying Named Entity

Recognition to Informal Text

Einat Minkov∗ Richard C. Wang†

Carnegie Mellon University Carnegie Mellon University

William W. Cohen‡

Carnegie Mellon University

The problem of named entity recognition (NER) has been well-studied, but there has been

little prior work on NER for “informal” documents—i.e., documents like email messages

and bulletin board postings that are prepared quickly, and intended for a narrow audience.

In this paper, we investigate NER for informal text, via an experimental study of recogniz-

ing personal names in email. We study the performance on four new annotated corpora of

two machine-learning based methods: conditional random fields, and a perceptron-based

method for learning HMMs. Experiments show that baseline F1 performance can be im-

proved substantially by introduction of email-specific learning features. F1 performance

is also improved by a novel recall-enhancing method, which exploits the fact that in email

corpora, names are typically repeated many times across the corpus.

1 Introduction

Named entity recognition (NER), the identification of entity names in free text, is a well-
studied problem. In most previous work, NER has been applied to news articles (e.g.,
(Bikel, Schwartz, and Weischedel, 1999; McCallum and Li, 2003)), scientific articles (e.g.,
(Craven and Kumlien, 1999; McCallum et al., 2000; Bunescu and Mooney, 2004)), or web
pages (e.g., (Freitag, 1998; Etzioni et al., 2004)). These genres of text share two important
properties: documents are written for a fairly broad audience, and writers take some care
in preparing documents. Important genres that do not share these properties include
instant messaging logs, email messages, and (to a somewhat lesser extent) call center
logs, bulletin board postings, and newsgroup postings. Below we will call text from these
genres “informal” text.

NER from informal text has many possible uses: for email alone, potential applica-
tions include improved search over large collections of email, email prioritization, social
network analysis, and semi-automatic meeting negotiation and scheduling. However, in-
formal text is harder to process automatically. Since less time is spent in preparing and
reviewing informal documents, they contain more grammatical and spelling errors; fur-
ther, since the audience is more restricted, they contain more abbreviations, and more
group- and task-specific jargon. Because of these differences, existing NER methods may

∗ Language Technology Institute, Pittsburgh, PA 15213, US. E-mail: einat@cs.cmu.edu
† Language Technology Institute, Pittsburgh, PA 15213, US. E-mail: rcwang@cs.cmu.edu
‡ Center for Automated Learning and Discovery, Pittsburgh, PA 15213, US. E-mail:

wcohen@cs.cmu.edu

c© 2004 Association for Computational Linguistics

Computational Linguistics Volume xx, Number x

require modifications to perform well on informal text.
In this paper, we investigate NER for informal text with an experimental study of

the problem of recognizing personal names in email—a NER task that is both useful and
non-trivial. There are several contributions of this work.

First, we present four corpora of informal, email-like text for personal names, each
roughly comparable in size to the MUC-6 corpus. Three of these are publicly available
(the fourth cannot be distributed due to privacy considerations).

Second, we experimentally evaluate two existing state-of-the art machine-learning
based NER methods—specifically, conditional random fields (CRFs) (Lafferty, McCal-
lum, and Pereira, 2001), and a perceptron-based method for learning hidden Markov
models (HMMs) (Collins, 2002a). These methods are supported by different types of for-
mal analysis: CRFs are a probabilistic approach to labeling sequences of examples, and
perceptron-trained HMMs are a margin-based approach. We show that these methods
achieve comparable performance on this problem.

Third, we evaluate several techniques for improving the performance of NER meth-
ods for this specific task. The simplest-to-implement of these techniques are new word
features that exploit properties of email; for instance, words that appear at the end of a
message are more likely to be names. Experiments show that these email-specific features
significantly improve NER performance on our corpora.

We also present and evaluate novel techniques for exploiting repetition of names in a
test corpus. Email messages often include some structured, easy-to-recognize names, such
as names within a header, or names appearing in automatically-generated phrases (like
“On August 16, 2004, Richard C. Wang writes:”, which might precede a quoted message).
However, other names occur in highly ambiguous contexts. As an example, a message
body might contain only one sentence, “can we get rich?”. Depending on context, this
might or might not mean “Can we get Richard to help us?”

This observation (supported by some analysis that we present below) suggests that
techniques for exploiting discourse are important in obtaining high recall NER. Tech-
niques for exploiting name repetition within documents have been previously applied to
newswire text (e.g., (Humphreys et al., 1998)) and scientific abstracts (e.g., (Bunescu
et al., 2002)); however, we believe that discourse in email is substantially different, and
hence requires different techniques.

In formal documents, discourse begins by establishing a common context with the
reader, and the discourse is limited to a single document ; hence a news story often
begins by giving a longer, clearer version of an entity’s name (e.g., “The Walt Disney
Corporation”) which is later followed by an abbreviated, more ambiguous version (e.g.,
“Disney”). However, in email, context is not always established within a single documents.
Instead, the sender and receiver typically share a context, which must be inferred. In the
method we present, this context is inferred by examining multiple documents in a corpus.

To exploit names that recur across multiple documents, we present a simple and
efficient scheme for increasing recall. In brief, the method considers re-assigning labels
to words w which sometimes occur inside a predicted NE, and sometimes outside of
any predicted NE. Re-assignment decisions are based on a “weight” for w, which can
be interpreted as a probabilistic determination of whether the “one sense per discourse”
assumption (Yarowsky, 1995) holds for w. Experiments show that this technique always
improves recall substantially, and almost always improves F1 performance.

A final issue considered in this paper is the question of what our NER systems have
learned—in particular, to what extent have they learned to recognize the context in which
names appear, and to what extent have they learned the content of entity names (i.e., the
particular names that appear in a corpus). This issue is of importance because often, a
small number of distinct names account for most of the name occurrences in email drawn

2

Minkov, Wang, and Cohen Extracting Names from Emails

from a particular working group. However, one would like a NER for that group’s email
to maintain the same level of performance, even if the people in the group change over
time. In other words, one would prefer the NER to rely primarily on context properties,
rather than content. This issue will be considered at several points throughout the paper.

In the remainder of the paper, we will first describe the corpora we used. Next, in
Section 3, we will illustrate the applicability of state-of-the-art sequential learners for
extracting personal names from emails. Section 4 presents an analysis of how names
repeat in email, and gives some upper bounds on the potential for exploiting name
repetition to enhance recall. Section 5 describes our approach for enhancing recall by
exploiting name repetition across multiple documents. The paper is concluded with a
discussion of related work and a summary of our contributions.

2 Corpora

Due to privacy issues, large and realistic email corpora are rarely available for research
purposes: for instance, in most US academic institutions, a users’ email can only be
distributed to researchers if all senders of the email provide explicit written consent.
Thus obtaining email for studies such as this one is a non-trivial problem.

The first email corpora used in our experiments was extracted from the CSpace
email corpus (Kraut et al., 2004), which contains approximately 15,000 email messages
collected from a management course conducted at Carnegie Mellon University in 1997.
In this course, 277 MBA students, organized in approximately 50 teams of four to six
members, ran simulated companies in different market scenarios over a 14-week period.
All email of the students associated with this course was collected. Mgmt-Game is a
subcorpora consisting of all emails written over a five-day period. In the experiments,
four days worth of email were used as a training set, and the fifth day as a test set.

This collection of mail is to some extent artificial, as the people who wrote it were
involved in a “management game”, in which the goal was to simulate companies. In
another sense, however, the corpus is quite real: the students who wrote it were enrolled
in a real course, with real assignments and real grades. Many of the emails in this corpus
involve negotiation and delegation of meetings and shared tasks (Cohen, Mitchell, and
Carvalho, 2004). We believe the corpus to be quite similar to the work-oriented mail of
employees of a small or medium-sized company.

The email corpus saved in the management-game experiment had been preserved in
a relational database in a preprocessed form. In particular, message headers had been
parsed into a set of pre-defined fields. While convenient for many purposes, the prepro-
cessing unfortunately eliminated whatever variation in header formats might have been
present in the original email. To reduce the bias of training on the highly regular headers
that we regenerated from the database, the text corpus we constructed contains only
three header fields: “From”, “Subject”, and “Time”. (This was considered the minimal
context needed for correct labeling.)

The next two collections of email were extracted from the Enron corpus (Klimt
and Yang, 2004). This data was originally made public and posted to the web by the
Federal Energy Regulatory Commission during its investigation. A version of this data
was later purchased by the CALO project (CALO, 2004) and subsequently made available
for research purposes. We formed two subsets of this data. The first subset, Enron-
meetings , consists of all messages in folders named “meetings” or “calendar”, with two
exceptions: (a) six very large files were removed, and (b) one very large “calendar” folder
was excluded. Most but not all of these messages were meeting-related. The second
subset, Enron-random, was formed by repeatedly sampling a user name (uniformly at
random among the 158 users), and then sampling an email from that user (uniformly at

3

Computational Linguistics Volume xx, Number x

random).
As a second type of informal text, we also annotated a collection of newsgroup

postings, taken from the 20Newsgroups corpus (Craven et al., 2000). This collection is
a subset of the corpora known to contain complex “signatures”, a common construct
which seems to be under-represented in the CSpace and Enron corpora. It was collected
by Vitor Carvalho as part of a related project on learning to extract email signatures
(Carvalho and Cohen, 2004).

Annotation was done by presenting annotators with messages marked up with a
rule-based NER system as a baseline. Annotators were instructed to include nicknames
and misspelled names, but exclude person names that are part of an email address (e.g.,
“william.cohen@cs.cmu.edu”) and names that are part of a larger entity name like an
organization or location (e.g., “David A. Tepper School of Business”).

The sizes of the various corpora are summarized in Table 1. The table refers to
additional two datasets, namely MUC6 and Mgmt-Game-Groups, which will be described
below.

Corpus
Documents

#Tokens #Names
#Names

Train Test per Email
Mgmt Game 749 264 139,865 2,993 3.0
Enron-meetings 729 247 204,423 2,868 3.0
Enron-random 516 164 285,652 5,059 7.4
NewsGroups 477 120 300,177 2,885 4.8
MUC-6 347 30 204,071 2,559 6.8
Mgmt-Game-groups 631 128 104,662 2,792 3.7

Table 1
Summary of the corpora used in the experiments. (For MUC-6, our training set combines the
“training” and “dry run” subsets.)

3 Experiments with Existing NER Methods

A common approach to NER is to reduce it to the task of tagging (i.e., classifying)
each word in a document. Specifically, a document is encoded as a sequence x of tokens
x1, . . . , xN , and a tagger associates with x a parallel sequence of tags y = y1, . . . , yN ,
where each yi is in some tag set Y . If these tags are appropriately defined, the entity
names can be derived from them. Here we consider two tag sets. The binary tag set has
two labels y—one label for tokens inside an entity, and one label for tokens outside an
entity. The multi tag set has five tags y, corresponding to (1) a one-token entity, (2) the
first token of a multi-token entity, (3) the last word of a multi-token entity, (4) any other
token of a multi-token entity and (5) a token that is not part of an entity.

A common way of constructing such a tagging system is to learn a mapping from x

to y from labeled data (e.g., (Bikel, Schwartz, and Weischedel, 1999; Borthwick et al.,
1998; Malouf, 2002)). Annotated documents are converted to (x,y) pairs. In addition to
specifying a tagging scheme, it is necessary to specify a feature extractor , i.e., a function
that converts an occurrence of a token w inside a document into a set of descriptive
features.

In our first set of experiments we apply two state-of-the-art machine learning meth-
ods, which have been previously used for NER, and evaluate them on the problem of
extracting personal names from email. The methods have been described in detail else-
where, but we will summarize them here for completeness. We will then describe in detail
the features used in our NER experiments.

4

Minkov, Wang, and Cohen Extracting Names from Emails

3.1 VP-HMM: A margin-based sequential learner

Many methods for learning taggers exploit, in some way, the sequential nature of the
classification process. In general, each tag depends on the tags around it: for instance, if
person names are usually two tokens long, then if yi is tagged “Person” the probability
that yi+1 is “Person” is increased, and the probability that yi+2 is “Person” is decreased.
Hence many learning-based approaches to NER learn a sequential model of the data,
generally some variant of a hidden Markov model (HMM)(Durban et al., 1998).

We experimented with two sequential learning methods: Collins’ voted-perceptron
based algorithm for discriminatively training HMMs (Collins, 2002a) (below, VP-HMM),
and conditional random fields (CRFs) (Lafferty, McCallum, and Pereira, 2001).

The VP-HMM method can be summarized as follows. Assume a local feature function
f which maps a pair (x,y) and an index i to a vector of features f(i,x,y). Define

F(x,y) =

|x|∑

i

f(i,x,y)

and let W be a weight vector over the components of F. Also let V (W,x) denote the
Viterbi decoding of x with W , i.e.,

V (W,x) = argmaxyF(x,y) · W

To make Viterbi search tractable, we must restrict f(i,x,y) to make limited use of y.
Here we assume that for each component fk of f ,

fk(i,x,y) = fk(gk(i,x), yi, yi−1)

where gk(i,x) computes some property of the i-th component of x.
The goal of learning is to find a W that leads to the globally best overall performance

of a tagger based on Viterbi decoding. This “best” W is found by repeatedly updating
W to improve the quality of the Viterbi decoding on a selected example (xt,yt).

Specifically, Collin’s algorithm starts with W0 = 0. After the t-th example xt,yt, the
Viterbi sequence ŷt = V (Wt,xt) is computed, and Wt is replaced with

Wt+1 = Wt + F(xt,yt) − F(xt, ŷt) (1)

Examples are presented in multiple epochs. In each epoch all the documents are
randomly re-ordered, and then each is presented as a xt,yt pair. The number of epochs
E is a parameter of the algorithm. After training, one takes as the final learned weight
vector W the average value of Wt over all time steps t.

This simple algorithm has performed well on a number of important sequential learn-
ing tasks (Collins, 2002a; Altun, Tsochantaridis, and Hofmann, 2003; Sha and Pereira,
2003), including NER. It can also be formally proved to converge under certain plausible
assumptions (Collins, 2002a).

3.2 CRF: A probabilistic sequential learner

A CRF is a probabilistic conditional model Pr(y|x) which defines a probability distribu-
tion over tag vectors y given word vectors x. This model is based on a Markov random
field, with nodes corresponding to elements of the structured object y, and with poten-
tial functions that are conditional on (features of) x. Learning is performed by setting
parameters to maximize the likelihood of a set of (x,y) pairs given as training data. For
NER problems, the Markov field is a chain, and y is a linear sequence of word tags.

5

Computational Linguistics Volume xx, Number x

As before, we assume a set of features f . Following the notation of Sha and Pereira
(Sha and Pereira, 2003) we define a conditional random field (CRF) to be an estimator
of the form

Pr(y|x, W) =
1

Z(x)
eW ·F(x,y) (2)

where W is again a weight vector over the components of F, and Z(x) =
∑

y′ eW ·F(x,y′).
Although the definition of Z(x) involves a summation over exponentially many label
vectors y′, it can be computed efficiently using a dynamic programming scheme, similar
to the forward-backward algorithm.

In training the goal is to maximize log-likelihood over the training set. The CRF
implementation we use performs this maximization with a limited-memory quasi-Newton
method (Liu and Nocedal, 1989; Malouf, 2002). We also use a Gaussian prior to reduce
overfitting, which amounts to introducing a penalty for the L2 norm of the weight vector
W .

Like the epochs of VP-HMM, the optimization method makes multiple passes over
the data. In each pass certain expectations are computed with respect to the current
weight vector, which requires running the forward-backward algorithm for each example.
In our experiments we observed that in spite of the Gaussian prior, the optimization does
sometimes overfit the training data; also, the optimization can take a very long time to
converge. To control overfitting and reduce runtime, we introduced as an additional
parameter a bound on the number of iterations of the optimization method, similar to
the number of epochs E for the VP-HMM.

The implementations of CRF and VP-HMM that we used for these experiments are
from the Minorthird package (Minorthird, 2004).

3.3 Features

We trained and tested the learners using two sets of features, referred to below as the
basic and extended feature sets. In the notation used above, these features are g(i,x),
where x is an array of tokens and i indexes a token t in the array; below t will be called a
focus word. Notice that g(i,x) must be a real-valued function, while the natural features
we would like to define have string values; for instance, one natural feature g(i,x) might
simply return the focus word. We handle this mismatch in the usual way, by introducing
binary indicator functions g that have the “natural value” embedded in their names. For
instance, when we observe an x where the focus word is “william”, we might introduce
a new function gfocusWord.william(i,x) that has value 1 iff xi =“William”. Below we will
discuss the functions as if they returned string values. Table 2 gives the internal notation
used as well as the value of the “natural” string-valued function.

The basic features for a token t include the lower-cased value of t, and the capital-
ization pattern for t. The capitalization pattern is constructed by replacing all capital
letters with the letter “X”, all lower-case letters with “x”, and all digits with “9”, and the
compressing runs of the same letter with a single letter. All features are also computed
for a window of 3 tokens to the left and to the right of the focus word t. Some examples
are given in Table 2.

The extended features exploit some additional relevant information, as detailed below.

•Dictionary features: We use several name dictionaries as features. One is the
US Census’ lists of the most common first and last names in the US, reflecting
year 1990 records, and including 5,492 and 88,798 names respectively.1 Another

1 These were taken from http://www.census.gov/genealogy/www/freqnames.html.

6

Minkov, Wang, and Cohen Extracting Names from Emails

Feature function g(i,x) Feature name
and value

Basic Features
focus word, in lowercase lc.cohen=1

one token to left of focus word, lowercased left.1.lc.william=1
two tokens to left . . . left.2.lc.is=1
three tokens to left . . . −

one token to right of focus word right.1.lc.attending=1
two tokens to right right.2.lc.nips=1
three tokens to right right.3.lc.this=1

capitalization of focus word cap.Xx=1
capitalization one token to left left.1.cap.x=1
. . .
Extended Features
indicates if the focus word is in the “from” field inFrom=1
indicates if token to left of focus is in the “from” field left.1.inFrom=1
. . .
indicates if the focus word is in a “signoff”

(≈ after two line breaks and near end of message) inSignoff=1
indicates if token to left of focus is in “signoff” left.1.inSignoff=1
. . .
indicates if the focus word is a probable initial (X or X.) isInitial=1
indicates if the token to the left of focus is a probable initial left.1.isInitial=1
. . .
indicates if the focus word is part of an email address (regex) isEmail=1
indicates if the focus word appears anywhere in the header inHeader=1
indicates if the focus word starts a new sentence

(≈ capitalized after a period, question or exclamation mark) startSentence=1
indicates if the focus word is in the common words dictionary isCommon=1
indicates if the focus word is in the first names dictionary FirstName=1
indicates if the focus word in the last names dictionary LastName=1
indicates if the focus word in roster names dictionary inRoster=1
indicates if the focus word is considered a “sure first name”

(FirstName AND not LastName AND not isCommon) SureFirst=1
indicates if the focus word is considered a sure last name SureLast=1
indicates if the focus word is considered a sure name

((SureFirst OR SureLast OR inRoster) and not isCommon) SureName=1
indicates if the focus word is in the personal prefixes/suffixes dict. PersonalTitle=1
indicates if the focus word is in the organizations suffixes dict. OrgSuffix=1
indicates if the focus word is in the location suffixes dict. LocSuffix=1
indicates if the focus word is followed by the bigram ”and I” beforeAndI=1
indicates if the focus word is referred to by a pronoun

(≈ capitalized and followed by a sing. pronoun within 15 tokens) hasPronoun=1
. . .

Table 2
Examples of the various features used in the experiments. The “basic” features are applied at
position i = 3 to the sample document “Is William Cohen attending Nips this fall? - Richard”.
The “extended” features are applied to hypothetical tokens on which they give a “true” value.

is a dictionary of 16,623 student names, obtained from students at universities
across the country as part of the RosterFinder project (Sweeney, 2003). We also
used a dictionary of the base forms, conjugations and plural forms of common
English words, and a relatively small ad-hoc dictionary representing words
especially common in emails (e.g., “email”, “inbox”). Finally we used some

7

Computational Linguistics Volume xx, Number x

small manually created word dictionaries of prefixes and suffixes indicative of
persons (e.g., “mr”, “jr”), locations (e.g., “ave”) and organizations (e.g., “inc”).

The dictionaries were used to define various categories of words including
common words, first names, last names and “roster names”. (A roster name is
any word from the roster-name dictionary, in which first and last names are
mixed.) In addition, we constructed three composite features that combine
membership in a name dictionary with non-membership in the common-word
dictionary. A word that is in the first names dictionary and is not in the
common words dictionaries is designated a “sure first name”. The feature “sure
last name” is defined analogously, and words that are in any of the name
dictionaries but not the common-word dictionary are designated “sure names”.

•Email structure features: We perform a simplified document analysis of the
email and use this to construct some additional features. One is an indicator as
to whether a token t is contained in the “from” field of an email. Another
indicates whether a token in the email body is equal to some token t appearing
in the header. An indicator feature based on a regular expression is used to
mark tokens that are part of a probable “sign-off” (i.e., a name at the end of a
message). Finally, since the annotation rules do not consider email addresses to
be names, we added an indicator feature for tokens that are inside an email
address.

• Syntactic features: We experimented, unsuccessfully, with using features derived
from POS tags and NP-chunking of the email. We conjecture that the POS tags
assigned by our tagger (a version of Brill’s WSJ-trained tagger (Brill, 1995))
are too noisy to be beneficial. We did include some features based on linguistic
rules. One rule looks for capitalized words that are not common words and are
followed by a pronoun within a distance of up to 15 tokens. (As an example, in
the document “Try to contact Puck tomorrow. He should be around.” a human
reader will realize that Puck is a person, rather than, say, an organization).
Another rule looks for words followed by the bigram “and I”. As is common for
hand-coded NER rules, both these rules have high precision and low recall.

3.4 Experiments

3.4.1 Feature sets and parameter settings In our initial experiments, the Mgmt-
Game dataset was used as a development set to refine and evaluate the features and
parameter settings. We begin by analyzing the effect of the number of epochs E on
entity-level F1 measure, for a combination of feature sets and tag sets. (We note that
our use of VP-HMM differs somewhat from previous experiments, in which the number
of epochs was generally smaller (Collins, 2002a).) Table 3 shows the results of these
experiments. In the table, the F1 measure that is best, over all epochs, for a particular
algorithm, tag-set, and feature-set is in bold.

To evaluate these results further, we split each test set into five disjoint subsets,
and computed the F1 measure on each subsets. These five measurements allow one to
compute a standard error for each F1 measurement (shown in parentheses in the table).
The five measurements also allow two different F1 measures to be statistically compared.

From the statistical tests, it is clear that the extended features do indeed improve
performance over the basic features (for all of the sixteen cases, a paired t-test gives
confidence level of p > 0.975). It is also evident that the multi-tags are preferable to
the binary tags in this case: with extended features, the best results for multi-tags are
significantly better (p > 0.95) than the best results with binary tags.

8

Minkov, Wang, and Cohen Extracting Names from Emails

Algorithm Epochs
Binary Tags Multi-tags

Basic Extended Basic Extended

VP-HMM

5 84.3 (0.7) 92.3 (0.3) 88.2 (0.8) 94.7 (0.4)
20 90.6 (0.3) 93.6 (0.4) 91.6 (0.6) 94.5 (0.8)
50 91.0 (0.5) 94.2 (0.6) 92.0 (0.2) 94.8 (0.9)
100 91.9 (0.4) 94.5 (0.5) 91.8 (0.3) 95.9 (0.3)

CRF

5 47.4 (1.3) 72.9 (1.2) 43.8 (1.0) 80.8 (1.2)
20 83.4 (0.5) 92.9 (0.5) 86.2 (1.0) 94.5 (0.5)
50 90.4 (0.7) 94.3 (0.8) 91.2 (0.5) 95.5 (0.3)
100 91.3 (0.4) 94.2 (0.9) 91.8 (0.6) 95.3 (0.4)

Table 3
Entity-level F1 measurements and standard error (in parentheses) for the Mgmt game corpus,
varying the number of epochs, features and tag-sets.

The experiments suggest that the number of epochs depends on several factors.
Overall, the VP-HMM converges more quickly than the CRF, and hence it may be useful
when training time is critical. Also, the extended feature sets require fewer epochs to
train. For the extended feature sets, performance stabilizes after around 50 epochs—the
differences between 50 and 100 epochs are generally not statistically significant2. Since
computation time for the experiments is a consideration, subsequent results given in the
paper will be for 50 epochs only. We will also consider only the multi-tag tag set, unless
otherwise noted.

Finally, the experiments suggest that the two algorithms perform comparably well,
when given sufficient time for learning. The best results of VP-HMM and CRF (the ones
boldfaced in the table) are not statistically significantly different for any combination of
feature and tag set.

3.4.2 Context vs content with basic and extended features We now turn to the
question of what our NER systems have learned—in particular, to what extent have they
learned to recognize the linguistic context in which names appear, and to what extent
have they memorized the particular entity names associated with the Mgmt-Game corpus.
Below we will take a rather broad notion of “context”, and include as “context” not only
the words surrounding a token, but the relationship of that token to other external
objects—in particular, the membership of that token in external dictionaries.

As one way of measuring the relative contribution of context vs. content, we removed
the feature for the focus word from the basic feature set. This makes it more difficult for
the learner to memorize names from the training set, and simulates a situation where the
test set includes names that were not encountered before. The result of this experiment
on the Mgmt-Game dataset is shown in Table 4(a). As might be expected, removing the
focus-word features degrades performance. However, performance degrades much more
when the basic features are used than when the extended features are used. This suggests
that extractors learned using the extended feature set rely more on context and less on
content than those learned using basic feature set.

As confirmation of the generality of the effect, a similar experiment conducted on
the Enron-meetings dataset. The results are similar, as is shown in Table 4(c).

In an additional experiment, we constructed another split of the Mgmt-Game corpus
to evaluate the importance of content information. In the management game task, users
were divided into 50 teams, and most email was exchanged between members of a team.

2 The only exception to this is the VP-HMM with binary tags and basic features.

9

Computational Linguistics Volume xx, Number x

Algorithm
Basic Features Extended Features

focus no focus ∆ focus no focus ∆
VP-HMM 92.0 77.1 16.2% 94.8 94.1 0.7%
CRF 91.2 77.3 15.2% 95.5 93.1 2.5%

(a) Mgmt-Game corpus.

Algorithm
Basic Features Extended Features

focus no focus ∆ focus no focus ∆
VP-HMM 76.4 70.2 8.1% 91.2 88.6 2.9%
CRF 75.0 71.0 5.3% 88.4 86.8 1.8%

(b) Mgmt-Game-Teams corpus.

Algorithm
Basic Features Extended Features

focus no focus ∆ focus no focus ∆
VP-HMM 75.9 66.3 12.6% 79.8 77.3 3.2%
CRF 73.0 68.6 6.0% 79.7 78.5 1.5%

(c) Enron-Meetings corpus.
Table 4
Entity F1, with and without “focus word” features. In Mgmt-Game and Enron-Meetings,
performance is less sensitive to the presence of the focus-word feature when the extended
feature set is used. The same behavior is seen in Mgmt-Game-Teams. Comparing Mgmt-Game
to the more difficult Mgmt-Game-Teams task, performance degrades dramatically when the
basic features are used, but only slightly when the extended feature set is used.

We split the corpus into a training and test set such that the senders of training-set
messages were on different teams from senders of test-set messages—i.e., messages from
a single team were never split between the training and test sets. Therefore, an extractor
is trained on messages from some working groups, and then tested on messages from
other groups. This is a more rigorous simulation of testing on a different distribution of
person names from that seen in the training set. Since this task is clearly harder than
training and testing on a more homogenous corpus, we should expect somewhat worse
performance.

Table 4(b) shows the results of this experiment. Comparing these results to Table 4(a)
shows that performance is indeed lower than on Mgmt-Game. However, for this split, the
F1 performance for the extended feature set is far better than for the basic feature set—
the best extended-feature F1 is 91.2%, while the best basic-feature F1 is only 76.4%.
This again supports the conjecture that the extended features emphasize content versus
context in the learned classifier. Also, as before, the performance of the basic feature set
is much more sensitive to the focus word feature.

To summarize the results of the last two sections, there appear to be no large differ-
ences between the two learners VP-HMM and CRFs, when comparable training time is
provided for each. However, the multi-tag tag scheme is better than the binary scheme,
and the extended feature set is better than the basic feature set. The extended feature
set is also more robust to changes to the distribution of names in the test set.

3.4.3 Performance on different datasets Table 5 summarizes performance of the
extended-features and basic-features for each learner on several different corpora of in-
formal text: Mgmt-Game, Mgmt-Game-Teams, Enron-Random, Enron-Meetings, and
NewsGroups. In addition to entity-level F1, denoted as E-F1, we also show token-level

10

Minkov, Wang, and Cohen Extracting Names from Emails

Fea. Set Dataset
VP-HMM CRF

T-P T-R T-F1 E-F1 T-P T-R T-F1 E-F1

Extended

Mgmt Game 97.7 96.4 97.1 94.8 98.2 95.9 97.1 95.5
Mgmt Teams 97.9 90.2 93.9 *91.2 98.2 89.9 93.9 88.4
Enron-Random 92.1 90.5 91.3 *86.1 90.9 88.3 89.6 83.8
Enron-Meetings 92.2 87.1 89.6 79.8 93.5 84.3 88.7 79.7
NewsGroups 94.2 74.4 83.1 70.5 91.6 77.4 83.9 70.9

Basic

Mgmt Game 98.4 92.7 95.5 92.0 97.6 92.2 94.8 91.2
Mgmt Teams 96.5 76.8 85.5 76.4 97.3 74.2 84.2 75.0
Enron-Random 93.5 80.2 86.4 81.6 91.3 82.6 86.7 79.8
Enron-Meetings 91.5 75.7 82.8 *75.9 89.3 77.4 82.9 73.0
NewsGroups 91.6 63.0 74.7 60.6 89.7 65.7 75.8 62.2

Table 5
Performance for the two sets of features and multi-tags, across all datasets.

precision, recall and F1, denoted as T-P, T-R, and T-F1 respectively.3 In the table, the
best entity level F1 results among the two learners for each dataset and feature set are
marked in bold. An asterisk designates an F1 measure that is significantly better than
the result for the lower-scoring learner.

Overall the level of performance is encouraging. In the four email-related datasets,
entity-level F1 performance is reasonably good. Performance on Mgmt-Game-Teams is
lower than for Mgmt-Game mainly because (by design) there is less similarity between
training and test sets with this split. Enron emails seem to be harder than Mgmt-Game
emails, perhaps because they include relatively fewer structured instances of names.
Enron-Meetings emails also contain a number of constructs that were not encountered
in the Mgmt-Game corpus, notably lists (e.g., of people attending a meeting), and also
include many location and organization names, which are rare in Mgmt-Game. A larger
set of dictionaries might improve performance for the Enron corpora.

Not unexpectedly, performance is worst on NewsGroups, the only non-email cor-
pus of informal text we experimented with. The NewsGroups dataset was taken from
several newsgroups from different domains, and contains a broad mixture of multiple
styles. In addition to email-like messages, it contains messages quoted from (or similar
to) newswire, literature or even the Bible. As noted above, these messages were also
extracted because they contain non-trivial “signatures”—which of course contain names
in linguistically unusual contexts. We believe that the email-specific features are not
optimally suited for this genre of informal text, and that better performance would be
obtained if the genre were modeled separately.

3.4.4 Email vs Newswire For comparison, we applied the same learning methods to
the MUC-6 corpus. Table 6 shows results for VP-HMM and CRF with both the basic
and extended feature sets. Performance on MUC-6 is generally not competitive with
the best previously-reported results on this task. For MUC-6, the extended features do
not statistically significantly improve performance for either learner—in fact for CRFs,
performance with the basic feature set is significantly better than with the extended
feature set. This is unsurprising, given that the extended emails were designed for email,
and supports the hypothesis that NER is somewhat different for informal text in general,
and email in specific.

3 Token-level recall is the ratio of the number of tokens that were marked by the extractor as inside a
name to the total number of tokens truly inside a name. Token-level precision and F1 are defined
analogously.

11

Computational Linguistics Volume xx, Number x

Algorithm Basic Features Extended Features
VP-HMM 87.6 89.7
CRF *88.7 81.6

Table 6
Entity F1 results for the MUC-6 dataset with different feature sets, multi-tags. On this dataset,
the email-specific extended features do not statistically significantly improve performance for
either learner. For CRFs, the extended features significantly degrade performance.

left.2.mr left.1.president
left.2.mrs left.2.dr
left.1.jr right.2.who
left.1.judge right.2.jr
right.3.staff left.3.by
left.2.ms right.3.president
right.2.staff left.3.by
right.1.family left.3.rep
left.3.says left.2.rep
right.3.resporter right.1.administration

left.1.by right.2.home
left.2.by right.1.or
left.3.name left.1.with
left.2.name left.1.thanks
left.3.by right.1.picked
right.3.his left.3.meet
right.1.ps right.1.started
right.3.home right.1.told
right.1.and left.2.prof
left.1.called left.2.email

Figure 1
Predictive contexts for personal-name words for MUC-6 (left) and Mgmt-Game (right) corpora.

To further explore the differences between email and newswire NER problems, we
stripped all header fields from the Mgmt-Game messages, and trained a model (using VP-
HMM and basic features) from the resulting corpus of email “bodies”. We then compared
the features used in this model with the features used in the corresponding model learned
from the MUC6 corpus. Figure 1 shows the features most indicative of a token being part
of a name in these two models. To make the list easier to interpret, it includes only the
features corresponding to tokens surrounding the focus word.

As one might expect, the important features from the MUC-6 dataset are mainly
formal name titles such as “mr”, “mrs”, and “jr”, as well as job titles and other pronom-
inal modifiers such as “president” and “judge”. However, for the Mgmt-Game corpus,
most of the important features are related to email-specific structure. For example, the
features “left.1.by” and “left.2.by” are often associated with an quoted excerpt from an-
other email message, which in the Mgmt-Game corpus is often marked by mailers with
text like “Excerpts from mail: 7-Sep-97 Re: paper deadline by Einat Minkov”. Similarly,
features like “left.1.thanks” and “right.1.ps” indicate a “signoff” section of an email, as
does “right.2.home” (which often indicates proximity to a home phone number appearing
in a signature).

4 Repetition of named entities in email

In the results of Table 5, the extractors uniformly have high precision, but relatively
low recall. This suggests that some sort of recall-enhancing procedure should be adopted
to improve overall performance. One family of recall-enhancing techniques are based on
looking for multiple occurrences of names in a corpus, so that names which occur in
ambiguous contexts (e.g., “can we get rich?”) will be more likely to be recognized.

In the introduction, we conjectured that the ways in which names repeat themselves
in a corpus would be different in email and newswire text. In news stories, one would
expect repetitions within a single document to be common, as a means for an author to

12

Minkov, Wang, and Cohen Extracting Names from Emails

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35

Mgmt Game

Enron-Meetings

Enron-Random

MUC-6

Figure 2
Cumulative percentage of person-name tokens w that appear in at most K distinct documents
as a function of K.

establish a shared context with the reader. In an email corpus, one would expect names
to repeat more frequently across the corpus, in multiple documents—at least when the
email corpus is associated with a group that works together closely.

In the remainder of this section, we will present some analysis that supports this
conjecture. Specifically, we will show that for our email corpora, repetitions of names
across multiple documents are more common than for newswire data, and hence that
recall-enhancing methods should be based on looking at terms that occur across docu-
ments. We will also show that only a modest improvement can be expected on our email
corpora by exploiting only single-document repetitions.

In a first experiment, we plotted the percentage of person-name tokens w that appear
in at most K distinct documents as a function of K. Figure 2 shows this function for
the Mgmt-Game, MUC-6, Enron-Meetings, and Enron-Random datasets. There is a large
separation between MUC-6 and Mgmt-Game, the most workgroup-oriented email corpus.
In MUC-6, for instance, almost 80% of the names appear in only a single document, while
in Mgmt-Game, only 30% of the names appear in only a single document. At the other
extreme, in MUC-6, only 1.3% of the names appear in 10 or more documents, while
in Mgmt-Game, almost 20% do. On average, a name appears in 1.7 documents in the
MUC-6 corpus, and in 6.9 documents in the Mgmt-Game corpus. The Enron-Random
and Enron-Meetings datasets show distributions of names that are intermediate between
Mgmt-Game and MUC-6. The name distribution on the NewGroups dataset (omitted
from the graph) is nearly identical to that of MUC-6.

As a second experiment, we implemented two very simple extraction rules. The single
document repetition (SDR) rule marks every token that occurs more than once inside a
single document as a name: for instance, both instances of the token “puck” would be
marked in the following document (where italicized words are names): “Ask dr. puck if
we can have an extension . . . if we have no luck with puck then we’ll have to download an
old . . . ” Adding tokens marked by the SDR rule to the tokens marked by an extractor E
generates a new extractor, which we will denote SDR+E. Clearly, SDR+E has a higher
token recall than E, and further, it is clear that the recall of SDR+E is an upper bound on
the token recall of any recall-enhancing method that improves E by exploiting repetition

13

Computational Linguistics Volume xx, Number x

Single-Document Repetition (CRF)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mgmt Mgmt-groups Enron-meetings Enron-random New s Groups MUC-6

Dataset

T
o

ke
n

 R
ec

al
l

SDR

E(CRF)

SDR+E(CRF)

(a) SDR

Multiple-Document Repetition (CRF)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mgmt Mgmt-groups Enron-
meetings

Enron-
random

News
Groups

MUC-6

Dataset

T
o

ke
n

 R
ec

al
l

MDR

E(CRF)

MDR+E(CRF)

(b) MDR

Figure 3
Upper bounds on recall and recall improvements associated with methods that look for terms
that re-occur within a single document (SDR) or across multiple documents (MDR).

within a single document.
Analogously, the multiple document repetition (MDR) rule marks every token that

occurs in more than one document as a name. Again, the token recall of MDR+E rule is
an upper bound on the token recall of any recall-enhancing method that exploits token
repetition across multiple documents. (Note that token repetitions repetitions within
a single documents are not marked: for instance, “puck” would not be marked in the
example above. This is a somewhat artificial restriction, which is not imposed by the
recall-enhancement algorithm we will describe in Section 5; however, it is helpful to
make this distinction in the analysis that follows.)

14

Minkov, Wang, and Cohen Extracting Names from Emails

The light gray bars in Figure 3 show the recall obtained by the SDR rule (on the left)
and the MDR rule (on the right). The MDR rule has highest recall for the two Mgmt-
Game corpora, and lowest recall for the MUC-6 corpus and the NewsGroups corpus.
Conversely, for the SDR rule, the two highest recall levels obtained by the SDR rule are
for NewsGroups and MUC-6.

Figure 3 also shows the token recall obtained by the CRF extractor (using extended
fetaures and multi-tags), in dark gray. In white, the figure shows the token recall of the
SDR+E and MDR+E extractors, where E stands for the CRF extractor. The white bars
in the left-hand chart are thus an upper bound on recall for SDR-like methods—methods
which which exploit single-document repetition. Comparing them to the dark gray bars,
we see that the maximal potential recall gains from a SDR-like method are small on the
email corpora, but larger on MUC-6 and NewsGroups. For MDR-like methods, there are
large potential gains on Mgmt-Game-Teams and Enron-Meetings as well as MUC-6 and
NewsGroups.

Finally, in the left-hand side of Figure 4, we show the difference between the maxi-
mum token-recall gain possible with a MDR-like method and the maximum token-recall
gain possible with a SDR-like method. (Here changes are expressed as percentages.) It
is clearly preferable to explore MDR-like methods rather than SDR-like for the Mgmt-
Game, Mgmt-Game-Teams and Enron-Meetings data, and SDR-like methods for the
others. Note that in the particular case of the Mgmt-Game corpus, gains for both the
SDR-like and MDR-like methods are limited by the fact that the token recall of the orig-
inal CRF extractor is high—more than 95%. Enron-Random also appears to offer little
scope for recall improvement, perhaps because there is little regularity in the names that
appear in it.

With a little bit of extra bookkeeping, it is possible to perform the same analysis to
bound the possible improvements in entity-level recall. The graph on right-hand side of
Figure 4 summarizes the result of the entity-level recall analysis. Notice that while the
pattern is similar, the possible improvements are generally larger.

The results above emphasize the importance of exploiting repetition of names across
multiple documents, as well as within a single document, for entity extraction from email.
In the section below, we will describe a method that exploits both single-document and
multiple-document repetitions to improve recall.

5 Improving Recall With Inferred Dictionaries

Sequential learners of the sort used here classify tokens from each document indepen-
dently; moreover, the classification of a word w is independent of the classification of
other occurrences of w elsewhere in the document. This means that sequential learners
cannot easily exploit the “one sense per discourse” constraint. As one example of this,
the fact that a word w has appeared somewhere in a context that clearly indicates that it
is name (e.g., “Hello Einat, can you help me. . . ”) does not increase the probability that
it will be classified as a name in other, more ambiguous contexts. One simple and natural
approach to correct this problem is to augment the sequential learner with two additional
components: one which infers a dictionary of names by analyzing the test documents,
and one which matches text against the inferred dictionary to identify additional name
occurences that match entries in the inferred dictionary.

In this section we will describe such a technique. First we will describe the matching
component, which is dictionary-independent (that is, it could be used with any given
dictionary) but task-specific (as it uses normalization rules that work only for person
names). Then we will describe several heuristics for inferring dictionaries, all of which
are based on taking names extracted from the test set by the learned sequential classifier,

15

Computational Linguistics Volume xx, Number x

MaxDelta(MDR)-MaxDelta(SDR) for Entity Recall

2.14%

5.19%

17.25%

1.20%

-11.72%

-15.36%

Mgmt Mgmt-groups Enron-meetings Enron-random News Groups MUC-6

(a) Token recall

MaxDelta(MDR)-MaxDelta(SDR) for Entity Recall

2.14%

5.19%

17.25%

1.20%

-11.72%

-15.36%

Mgmt Mgmt-groups Enron-meetings Enron-random News Groups MUC-6

(b) Entity recall

Figure 4
Comparing the upper bounds on recall improvements associated with methods that look for
terms that re-occur within a single document (SDR) or across multiple documents (MDR).
The graph on top is for token-level recall, and the bottom graph is for entity-level recall.

and filtering these names based on certain corpus-wide heuristics.

5.1 Matching names from dictionary

To find names from an existing dictionary, we use a transform-and-match scheme. Each
name n is first processed by constructing a family of possible variations of n: as an
example, Figure 5 shows the variations created for the name “Benjamin Brown Smith”.
After all variations of each dictionary name have been created, a single pass is made
through the corpus, and every longest match to some name-variation is marked as a
name.

16

Minkov, Wang, and Cohen Extracting Names from Emails

Variations from the rightmost column (the initials-only variants of a name) are
treated specially. These are marked as a name only if the “inSignoff” feature holds—
i.e., if they appear near the end of a message in an apparent signature.

It may be that some name n1 already identified by the extractor overlaps with a name
n2 identified by the dictionary-matching scheme described above; in other words, the
name suggested by the dictionary-matching scheme may conflict with the name suggested
by the extractor. In this case, the name n2 marked by the dictionary-matching scheme
is retained, and the name n1 marked by the extractor is removed.

benjamin brown smith benjamin-brown-s. b. brown s. bbs
benjamin-brown smith benjamin-b. s. b. b. smith bs
benjamin brown-smith benjamin-smith b. brown-s.
benjamin-brown-smith benjamin smith benjamin
benjamin brown s. b. brown smith b. smith
benjamin-b. smith benjamin b. s. b. b. s.
benjamin b. smith b. brown-smith b. s.
benjamin brown-s. benjamin-s. brown
benjamin-brown s. benjamin s.

Figure 5
Names variants created from the name “Benjamin Brown Smith”

5.2 Dictionary-filtering schemes

The dictionary-matching scheme works fairly well, but is susceptible to false positives. In
preliminary experiments, most of these false positives were created by matching against
single-token name-variants, like “bs”, “benjamin” and “brown” in Figure 5. One simple
way to reduce the number of false positives is to remove some of these single-token
name-variants from the dictionary, and one simple way of doing this is by using extractor
confidence. In other words, it seems natural to filter the dictionary by including in it only
multi-token name-variants (which are unlikely to lead to false positives), and single-token
name-variants that were generated from a name that was given a high confidence score
by the extractor.

Unfortunately, it is non-trivial to assign confidence to an extracted name in general.
For CRFs, confidence can be assigned by running the forward-backward algorithm to
marginalize out the parts of a document before and after an extracted name (Culotta
and McCallu, 2004). For margin-based approaches like VP-HMM, however, there is no
obvious entity-level confidence measure. Therefor, in order to assign confidence scores,
we trained a secondary classifier. The secondary classifier examines the entities extracted
by a sequential learner, and then classifies them as correct or false. We investigated a
number of training schemes; below we consider a classifier trained using the original voted
perceptron method (Freund and Schapire, 1998) using the same features and training
data given to the extractor. The rankings produced by this classifier are quite good.

The left-hand graph in Figure 8 shows the result of training and extractor, applying
it to the test set, filtering the dictionary created by thresholding the confidence of the
secondary classifier, and then applying the matching scheme described above using the
filtered dictionary.4 As expected, including all extractor predictions (confidence threshold
zero) severely lowers precision, so F1 performance is also lowered. However, using a
dictionary containing only high-confidence extractions improves performance: entity-level

4 More details on this experiment will be given below.

17

Computational Linguistics Volume xx, Number x

recall increases, and so does entity-level precision (since in matching we also correct
boundaries of some partial extractions).

As the threshold is reduced, precision drops. Unfortunately, the drop in precision
is very steep, which suggests that a system using this heuristic would be very sensitive
to parameter settings. Error analysis shows that the main reason for the sharp drop
is certain high-frequency words for which the “one sense per discourse” rule does not
hold. For example, “Andrew” is a common first name, and is sometimes confidently
(and correctly) recognized as one by the extractor. However, in the Mgmt-Game corpus,
“Andrew” is also the name of an email server, and most of the occurrences of this name
in this corpus are not personal names. The high frequency of the word “Andrew” in the
corpus, coupled with the fact that it is only sometimes a name, means that adding this
word to the dictionary leads to a large number of false positives.

Since confidence is not sensitive to this property, we investigated three other metrics
for filtering the name dictionary. The first metric estimates the degree to which the “one
sense per discourse” rule holds for a word—specifically, the degree to which it appears
to be used consistently as a name throughout the corpus. This metric is named predicted
frequency (PF), and is defined as

PF (w) ≡
cpf(w)

ctf(w)

where cpf(w) is the number of times that a word w is predicted as part of a name in the
entire corpus by the extractor, and ctf(w) is the number of occurrences of the word w

in the entire corpus. We emphasize that this statistic is based on running the extractor
on the test data, not the training data.

Predicted frequency does not assess the likely cost of adding a word to a dictionary:
as noted above, terms that occur frequently will lead to more false positives. A number of
statistics could be used here; for instance, practitioners sometimes filter a large dictionary
by simply discarding all words that occur more than k times in a test corpus. We elected
to use the inverse document frequency (IDF) of w to measure word frequency:

IDF (w) ≡
log(N+0.5

df(w))

log(N + 1)

Here df(w) is the number of documents that contains a word w, and N is the total
number of documents in the corpus. Inverse document frequency is often used in the
field of information retrieval (Allan et al., 1998), and the formula above has the virtue of
being scaled between 0 and 1 (like our PF metric) and of including some smoothing. In
addition to bounding the cost of a dictionary entry, the IDF formula is in itself a sensible
filter, since personal names will not appear as frequently as common English words.

The third metric combines these two multiplicatively, with equal weights:

PF.IDF (w) :
cpf(w)

ctf(w)
×

log(N+0.5
df(w))

log(N + 1)

PF.IDF takes into consideration both the probability of a word being a name, and how
common it is in the entire corpus. Words that get low PF.IDF scores are therefore
either words that are highly ambiguous in the corpus (as derived from the extractors’
predictions) or are common words in the corpus.

5.3 Evaluation of different dictionary-filtering schemes

From the discussion above, several dictionary-filtering schemes are possible: in addition
to using any of the four metrics of extractor confidence, PF, IDF, and PF.IDF, one could

18

Minkov, Wang, and Cohen Extracting Names from Emails

also plausibly combine extractor confidence with any of the latter three. In a preliminary
exploration of the different approaches, we trained a CRF learner for five iterations on
the Mgmt-Game corpus using binary tags and the basic feature set with the focus-word
features excluded. This leads to an extractor with a modest F1 value of 70.8, which makes
it easier to see the results of dictionary filtering.

We first consider the performance of the PF, IDF, and PF.IDF filters when all
extracted names are considered as candidates. In other words, we first extract a set S of
names from the test set, using the extractor learned by the procedure above. We then
discard all names n ∈ S such that PF (n) < θ, for θ = 0.10, 0.20, . . . , 1.0, thus forming a
new dictionary Sθ for each threshold. Then we compute the entity-level F1 that results
from using dictionary-matching with each Sθ.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

E
nt

ity
 F

1
[%

]

Score threshold θ

PF

IDF

PF.IDF

Baseline

 50

 55

 60

 65

 70

 75

 80

 85

 90

 10 20 30 40 50 60 70 80 90 100

E
nt

ity
 F

1
[%

]

Confidence threshold φ

PF

IDF

PF.IDF

Baseline

Figure 6
Comparison of the filtering formula components. Left: at varying thresholds for IDF, PF, and
PF.IDF, considering all extracted names. Right: setting the threshold levels for IDF, PF, and
IDF at optimal levels per the left-hand graph, and varying the confidence threshold.

The left-hand side of Figure 6 shows the result of this experiment, repeated for PF,
IDF, and PF.IDF. Both PF and PF.IDF improve over the baseline (of doing no dictionary
matching) for most values of θ, and IDF improves over the baseline for a sufficiently high
θ.

In the curve, the IDF, PF, and PF.IDF curves peak at thresholds of 0.6, 0.5, and 0.2
respectively. In the right-hand side of Figure 6, we set the thresholds for these functions
at these “peak” values, and vary the threshold for extractor confidence. In other words,
we compute several initial sets S0.1, . . . , S1, such that Sφ contains all names extracted
from the test set that are assigned a confidence greater than φ by the secondary classifier.
For each value of φ = 0.1, . . . , 1.0, we then filter Sφ by removing all names n such that
PF (n) < θopt,PF , where θopt,PF is the “peak” value from the left-hand graph, and then
compute the entity-level F1 that results from using dictionary-matching on the resulting
set.

The result of this experiment is shown in the right-hand graph of Figure 6. The
PF.IDF curve dominates the other two, although the PF.IDF and and PF curves are
quite similar.

Figure 7 presents some more detailed results from the experiment. This graph shows
token recall, token precision, and token F1 for PF and PF.IDF when used on the dictio-
nary of all extracted names S. As the threshold is decreased, the PF.IDF measure has a
much lower drop in precision, but a comparable rise in recall.

Finally, Figure 8 shows the result on token-level performance of varying the extractor
confidence φ when no subsequent filter is used (on the left) and when the PF.IDF filter is
used with θ = 0.2 (on the right). The PF.IDF filter prevents the sharp drop in precision

19

Computational Linguistics Volume xx, Number x

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

 [
%

]

Score threshold θ

PF Token Precision

PF Token Recall

PF Token F1

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

 [
%

]

Score threshold θ

PF.IDF Token Precision

PF.IDF Token Recall

PF.IDF Token F1

Figure 7
Precision vs. Recall trade-off applying name-matching with PF filter (left) and PFIDF filter
(right)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

 [
%

]

Confidence Threshold

Token recall

Token precision

Token F1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

 [
%

]

Confidence Threshold

Token recall

Token precision

Token F1

Figure 8
Token precision, recall and F1 behavior as a threshold on extractor confidence is varied. On
the left, no filter is applied. On the right, the PF.IDF filter at threshold 20 is applied.

as φ is lowered. In fact, F1 performance at φ = 0 is close to best F1 performance reached
for any value of φ.

Our conclusions from the above experiments are as follows. First, using a dictionary of
all extracted names, or even all high-confidence extracted names, is somewhat dangerous:
intuitively, the danger is that precision can drop off quite suddenly if a common term
that does not obey the “one sense per discourse” rule is added to the dictionary. Second,
of the three measures discussed above, the PF.IDF measure seems to be the most robust
to parameter settings, and also seems to dominate the other two when parameters are
carefully set. PF.IDF at its optimal setting yields the best improvement in recall. Third,
the PF.IDF filter with θ = 0.2 provides good performance, even when a threshold of zero
is used for extractor confidence.

This suggests the following simple recall-enhancing strategy, which we will evaluate
further below.

1.Learn an extractor E from the training corpus Ctrain .

2.Apply the extractor E to a test corpus Ctest to assign a preliminary labeling.

3.Build a dictionary Sθ∗
including the names n such that (a) n is extracted

somewhere in the preliminary labeling of the test corpus or is derived from an

20

Minkov, Wang, and Cohen Extracting Names from Emails

extracted name applying the names transformation scheme and (b)
PF.IDF (n) > θ∗. A reasonable value is θ∗ = 0.2.

4.Apply the dictionary-matching scheme of Section 5.1, using the dictionary Sθ∗

to augment the preliminary labeling, and output the result.

Notice that this procedure does not require using a secondary classifier.

5.4 Experiments with inferred dictionaries

Tables 7 and 8 show results using the method described above. We will initially consider
all of the email corpora and both learners in their best configurations, using both the
extended feature set. The results are given in terms of relative change, compared to the
baseline results generated by the extractors (see Table 5, above).

As expected, recall is always improved. The entity-level F1 (denoted as E-F1) is
mostly increased as well, showing that recall is increased more than precision is decreased.
The Table also gives F2 measure, which gives higher weight to recall. (This measure
reflects the preferences of a more recall-oriented user, for example one who is interested
in anonymizing a corpus.) As shown, the change in entity-level F2 is almost always
positive, and always higher than the increase in entity-level F1. The method shows modest
improvements in F1 for two of the four datasets for both learners, and improvements in
F2 for three of the four datasets. The largest improvements are for Enron-Meetings
and Mgmt-Game-Teams—the two e-mail datasets shown to have the largest potential
improvement from MDR-like methods in Figure 3.

Recall that the extended features already include membership tests in several large
name dictionaries, which are not available for all NER tasks. We repeated the same
experiments using the basic features. Here performance improvements are larger. An
especially large improvement occurs in Mgmt-Game-Teams. As detailed in Section 3.4.2
this dataset was constructed so that the names in the training and test set have only
minimal overlap. The substantial performance improvement here shows that repetition
of mostly-novel names—some in familiar name-like contexts, and some in ambiguous
context—can be used to improve overall performance.

Dataset
VP-HMM CRF

T-F1 T-F2 E-F1 E-F2 T-F1 T-F2 E-F1 E-F2
Mgmt Game 0.3% 0.9% 0.1% 0.9% 0.3% 1.0% -0.4% 0.6%
Mgmt Game-Teams 0.4% 1.5% -0.7% 0.7% 1.6% 3.3% 0.8% 2.6%
Enron-Random -0.3% 2.0% -4.0% -1.0% -0.2% 2.7% -4.3% -0.2%
Enron-Meetings 1.0% 3.0% 2.3% 5.3% 3.0% 5.9% 3.9% 7.3%

Table 7
Relative improvement for the results presented in table 5, applying name-matching on models
trained with the extended feature set

Dataset
VP-HMM CRF

T-F1 T-F2 E-F1 E-F2 T-F1 T-F2 E-F1 E-F2
Mgmt Game 1.5% 2.8% 2.5% 4.5% 1.6% 3.1% 2.6% 4.8%
Mgmt Game-Teams 7.6% 13.5% 11.4% 20.6% 9.4% 15.8% 15.0% 25.6%
Enron-Random 1.9% 4.5% -0.5% 3.0% 1.3% 4.2% 0.2% 3.0%
Enron-Meetings 4.9% 8.9% 3.8% 8.1% 3.3% 6.8% 4.9% 7.8%

Table 8
Relative improvement for the results presented in table 5, applying name-matching on models
trained with the basic feature set

The datasets considered above are fairly large. In a final experiment, we examined
the usefulness of the inferred-dictionary name-matching technique when training data is

21

Computational Linguistics Volume xx, Number x

limited. We split the Mgmt-Game training documents set into four parts, based on email
date (thus the parts are not exactly equal in size). We trained the extractor on one, two,
three or four days worth of email, which correspond to 25%, 50%, 75%, and 100% of the
available training data. The resulting curves for entity-level F1 (on the left-hand side)
and entity-level F2 (on the right-hand side) are presented in Figure 9.

The curves show that the name-matching method substantially outperforms the base-
line method when less training data is available. In fact, training on one day’s worth of
email data and applying name-matching gives better performance than training on four
day’s worth of email, without using name-matching.

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

25 50 75 100

E
nt

ity
 F

1
[%

]

Training set size [%]

Baseline

Names matching result

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

25 50 75 100

E
nt

ity
 F

2
[%

]

Training set size [%]

Baseline

Names matching result

Figure 9
Entity-level F1 and F2 that are output by the extractor (baseline) against the result of inferred
name-matching for an increasing amount of training data (% of the Mgmt Game training set)

To summarize the preceding experiments: using our technique, name-matching using
a dictionary inferred from test data generally improves recall, even for highly-tuned, state-
of-the-art extractors that use as features membership in several large name dictionaries.
As implemented, this increase in recall comes at the expense of precision. The technique
helps most when names are novel, as in Mgmt-Game-Teams, or dense as in Enron-
Meetings; when the features used for learning are not well-tuned, as with the basic
feature set; or when there is less training data available.

6 Related Work

Although NER has been well-studied, there have been relatively few studies of NER
on informal text. One exception is by Huang (Huang, Zweig, and Padmanabhan, 2001)
and Janche and Abney (Jansche and Abney, 2002), who studied the extraction of caller
names and phone numbers from voice mail transcripts. Interestingly, position within a
message turns out to be an important feature for identifying names in both voice messages
and email messages. There has also been some prior work on using sequential learning
methods for document analysis of email, specifically identifying signature sections and
reply sections of emails (Carvalho and Cohen, 2004).

Our recall-enhancing name-matching method is based on finding all strings predicted
to be names somewhere in a document, filtering this set using two simple statistical mea-
surements, and then marking as names subsequent matches to the names from the filtered
set. Previously, Stevenson and Gaizauskas (Stevenson and Gaizauskas, 2000) presented
a pure dictionary-based method for extracting names from newswire. They evaluated
certain ad-hoc rules for filtering dictionaries, for instance using a “probability filter”,
in which names that occur more frequently as non-names than names in the annotated

22

Minkov, Wang, and Cohen Extracting Names from Emails

corpus are removed. The probability filter was also combined with excluding names that
appear in a common words lexicon. Although there are many points of similarity to the
approach that we describe, the method of Stevenson and Gaizauskas has been tested only
for filtering a user-provided dictionary, rather than the far noisier dictionaries formed by
running an extractor on the test set. Another difference is that their filter measures ambi-
guity on the training set, whereas we estimate ambiguity over the test set using a learned
extractor. This is an important distinction for datasets such as Mgmt-Game-Teams, in
which the sets of names appearing in the testing and training sets are largely different.

Another technique analogous to our PF filter was proposed by Collins (Collins,
2002b) who suggested using, as a feature for NER, the ratio of capitalized to non-
capitalized occurrences of a word in an unannotated corpus. Meulder et al (Meulder
and Daelemans, 2003) also use this feature for learning names from an unannotated cor-
pus. In this work, they identify potential names from the text using dictionaries and
capitalization information, and then classify these candidate strings using a learner. In
contrast to these works, which rely on capitalization features to identify names, we use
capitalization information only as a feature for the extractor. Our dictionary-filtering
technique does not use capitalization features. This makes it more applicable to informal
texts, where capitalization conventions are often not followed.

There is a long history of improving NER by exploiting repetition within a single
document (e.g., (Humphreys et al., 1998; Chieu and Ng, 2002)). Recently, sequential
learning methods have been extended to directly utilize information about name co-
occurrence in learning the sequential classifier (Bunescu and Mooney, 2004; Raghavan,
Allan, and McCallum, 2004). This approach is an elegant solution to modeling repetition
within a single document; however, it is not clear that it can scale to modeling multiple-
document repetition, which our analysis shows to be important for email.

7 Concluding Remarks

This work applies two recently-developed sequential learning methods to the task of
extraction of named entities from email. This problem is of interest as an example of
NER from informal text—text that has been prepared quickly for a narrow audience.

We showed that although informal text has different characteristics from its formal
text like newswire text, sequential extraction learners such as VP-HMM and CRFs yield
reasonable to excellent performance on informal text. Analysis of the highly-weighted
features selected by the learners showed that names in informal text have different (and
less informative) types of contextual evidence. However, email also has some structural
regularities which make it easier to extract personal names. We presented a detailed
description of a set of features that address these regularities and statistically signifi-
cantly improve NER performance on email. These features also appear to make learned
extractors more robust to changes in the particular set of names that appear in the test
data.

In the second part of this paper, we analyzed the way in which names repeat in
different types of corpora. We showed that repetitions within a single document are
more common in newswire text, and that repetitions that span multiple documents are
more common in email corpora. Additional analysis confirms that the potential gains in
recall from exploiting multiple-document repetition is much higher than the potential
gains from exploiting single-document repetition.

Based on this insight, we introduced a simple and effective method for exploiting
multiple-document repetition to improve an extractor. The method consists of inferring
a name dictionary from a test corpus using a trained extractor, filtering the inferred
name dictionary, and then matching against names from the filtered dictionary. This

23

Computational Linguistics Volume xx, Number x

approach substantially improves recall, and often improves F1 performance. Performance
is improved most when only simpler features are available, or when there is little available
training data. The principle limitation of the method is that it requires a reasonable
amount of unlabeled test data to be applied.

The principle contributions of the paper are development of new labeled test corpora
of email text; evaluation of state-of-the-art NER methods on these corpora; development
of novel email-specific feature sets that significantly improve performance; and develop-
ment of a novel method for exploiting multiple-document repetition of names to improve
recall.

A number of additional topics to investigate are suggested by this paper, and may
form the basis of future work. We have studied in depth one NER problem involving
informal text—person-name extraction from email. It would be valuable to investigate
whether other informal-text NER problems show similar patterns—in particular, if the
same pattern of multiple-document vs single-document named-entity repetition holds
for other entity types, and other types of informal text. The method used for filtering
dictionaries is potentially quite broadly applicable, and it would be desirable to explore
the applicability of this method in other domains, involving other large lexicons and
imperfectly-trained extractors.

Acknowledgments

The authors wish to thank Shinjae Yoo for
contributions to the early phase of this
research. This work was funded by grants
from the Information Processing Technology
Office (IPTO) of the Defense Advanced
Research Projects Agency (DARPA).

References

Allan, J., J. Callan, W.B. Croft,
L. Ballesteros, D. Byrd, R. Swan, and
J. Xu. 1998. Inquery does battle with
trec-6. In Proceedings of the Sixth Text
REtrieval Conference (TREC-6).

Altun, Yasemin, Ioannis Tsochantaridis, and
Thomas Hofmann. 2003. Hidden markov
support vector machines. In Proceedings
of the 20th International Conference on
Machine Learning (ICML).

Bikel, D. M., R. L. Schwartz, and R. M.
Weischedel. 1999. An algorithm that
learns what’s in a name. Machine
Learning, 34:211–231.

Borthwick, A., J. Sterling, E. Agichtein, and
R. Grishman. 1998. Exploiting diverse
knowledge sources via maximum entropy
in named entity recognition. In Sixth
Workshop on Very Large Corpora New
Brunswick, New Jersey. Association for
Computational Linguistics.

Brill, Eric. 1995. Transformation-based
error-driven learning and natural
language processing: A case study in part
of speech tagging. Computational
Linguistics, 24(1):543–565.

Bunescu, Razvan, Ruifang Ge, Raymond J.

Mooney, Edward Marcotte, and
Arun Kumar Ramani. 2002. Extracting
gene and protein names from biomedical
abstracts. Unpublished Technical Note,
Available from
http://www.cs.utexas.edu/users/ml/
publication/ie.html.

Bunescu, Razvan and Raymond J. Mooney.
2004. Relational markov networks for
collective information extraction. In
Proceedings of the ICML-2004 Workshop
on Statistical Relational Learning
(SRL-2004), Banff, Canada, July.

2004. CALO: Cognitive assistant that learns
and organizes.
http://www.ai.sri.com/project/CALO.

Carvalho, Vitor and William W. Cohen.
2004. Learning to extract signature and
reply lines from email. In Proceedings of
the Conference on Email and Anti-Spam
2004, Mountain View, California.

Chieu, Hai Leong and Hwee Tou Ng. 2002.
Named entity recognition: A maximum
entropy aapproach using global
information. In Proceedings of the
Nineteenth International Confreence on
Computational Linguistics, pages
190–196.

Cohen, William W., Tom Mitchell, and
Vitor Carvalho. 2004. Learning to classify
email into “speech acts”. In Empirical
Methods in Natural Language Processing
(EMNLP), Barcelona, Spain.

Collins, Michael. 2002a. Discriminative
training methods for hidden markov
models: Theory and experiments with
perceptron algorithms. In Empirical

24

Minkov, Wang, and Cohen Extracting Names from Emails

Methods in Natural Language Processing
(EMNLP).

Collins, Michael. 2002b. Ranking
algorithms for named-entity extraction:
Boosting and the voted perceptron. In
Meeting of the Association for
Computational Linguistics.

Craven, M., D. DiPasquo, D. Freitag,
A. McCallum, T. Mitchell, K. Nigam, and
S. Slattery. 2000. Learning to construct
knowledge bases from the world wide web.
Artifical Intelligence, 118((1-2)):69–113.

Craven, Mark and Johan Kumlien. 1999.
Constructing biological knowledge bases
by extracting information from text
sources. In Proceedings of the 7th
International Conference on Intelligent
Systems for Molecular Biology
(ISMB-99), pages 77–86. AAAI Press.

Culotta, Aron and Andrew McCallu. 2004.
Confidence estimation for information
extractio. In Proceedings of Human
Language Technology Conference and
North American Chapter of the
Association for Computational Linguistics
(HLT-NAACL).

Durban, R., S. R. Eddy, A. Krogh, and
G. Mitchison. 1998. Biological sequence
analysis - Probabilistic models of proteins
and nucleic acids. Cambridge University
Press, Cambridge.

Etzioni, Oren, Michael Cafarella, Doug
Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and
Alexander Yates. 2004. Methods for
domain-independent information
extraction from the web: An experimental
comparison. In Proceedings of the
Twenty-First National Conference on
Artificial Intelligence (AAAI-2004).

Freitag, Dayne. 1998. Information
extraction from html: application of a
general machine learning approach. In
Proceedings of the Fifteenth National
Conference on Artificial Intelligence
(AAAI-98), Madison, WI.

Freund, Yoav and Robert E. Schapire. 1998.
Large margin classification using the
perceptron algorithm. In Computational
Learning Theory, pages 209–217.

Huang, Jing, Geoffrey Zweig, and Mukund
Padmanabhan. 2001. Information
extraction from voicemail. In Meeting of
the Association for Computational
Linguistics, pages 290–297.

Humphreys, K., R. Gaizauskas, S. Azzam,
C. Huyck, B. Mitchell, H. Cunningham,
and Y. Wilks. 1998. Description of the
LASIE-II system as used for MUC-7.

Jansche, Martin and Steven P. Abney. 2002.
Information extraction from voicemail
transcripts. In Empirical Methods in
Natural Language Processing (EMNLP).

Klimt, Bryan and Yiming Yang. 2004.
Introducing the Enron corpus. In
Proceedings of the Conference on Email
and Anti-Spam 2004, Mountain View,
California.

Kraut, R. E., S. R. Fussell, F. J. Lerch, and
J. A. Espinosa. 2004. Coordination in
teams: evi-dence from a simulated
management game. To appear in the
Journal of Organizational Behavior.

Lafferty, John, Andrew McCallum, and
Fernando Pereira. 2001. Conditional
random fields: Probabilistic models for
segmenting and labeling sequence data.
In Proc. 18th International Conf. on
Machine Learning, pages 282–289.
Morgan Kaufmann, San Francisco, CA.

Liu, D. C. and J. Nocedal. 1989. On the
limited memory bfgs method for
large-scale optimization. Mathematic
Programming, 45:503–528.

Malouf, Robert. 2002. Markov models for
language-independent named entity
recognition. In Proceedings of the Sixth
Conference on Natural Language Learning
(CoNLL-2002).

McCallum, A. K., K. Nigam, J. Rennie, ,
and K. Seymore. 2000. Automating the
construction of internet portals with
machine learning. Information Retrieval
Journal, 3:127–163.

McCallum, Andrew and Wei Li. 2003.
Early results for named entity recognition
with conditional random fields, feature
induction and web-enhanced lexicons. In
Proceedings of The Seventh Conference on
Natural Language Learning
(CoNLL-2003), Edmonton, Canada.

Meulder, Fien De and Walter Daelemans.
2003. Memory-based named entity
recognition using unannotated data. In
Proceedings of the Seventh CoNLL
confreence held at HLT-NAACL, pages
208–211.

2004. Minorthird: Methods for identifying
names and ontological relations in text
using heuristics for inducing regularities
from data.
http://minorthird.sourceforge.net.

Raghavan, Hama, James Allan, and Andrew
McCallum. 2004. An exploration of entity
models, collective classification and
relation description. In Proceedings of the
Tenth ACM SIGKDD International
Conference on Knowledge Discovery and
Data Mining.

25

Computational Linguistics Volume xx, Number x

Sha, F. and F. Pereira. 2003. Shallow
parsing with conditional random fields. In
In Proceedings of HLT-NAACL.

Stevenson, Mark and Robert Gaizauskas.
2000. Using corpus-derived names lists for
named entities recognition. In Proceedings
of the sixth conference on Applied natural
language processing, pages 290–295.

Sweeney, L. 2003. Finding lists of people on
the web. Technical Report
CMU-CS-03-168, CMU-ISRI-03-104,
Carnegie Mellon University School of
Computer Science. Available from
http://privacy.cs.cmu.edu/dataprivacy/
projects/rosterfinder/.

Yarowsky, David. 1995. Unsupervised word
sense disambiguation rivaling supervised
methods. In Meeting of the Association
for Computational Linguistics, pages
189–196.

26

