
An Email and Meeting Assistant using Graph Walks

Einat Minkov
Language Technologies Inst.
Carnegie Mellon University

einat@cs.cmu.edu

William W. Cohen
Machine Learning Dep.

Carnegie Mellon University

wcohen@cs.cmu.edu

ABSTRACT
We describe a framework for representing email as well as
meeting information as a joint graph. In the graph, docu-
ments and meeting descriptions are connected via other non-
textual objects representing the underlying structure-rich
data. This framework integrates content, social networks
and a timeline in a structural graph. Extended similarity
metrics for objects embedded in the graph can be derived
using a lazy graph walk paradigm. In this paper we evalu-
ate this general framework for two meeting and email related
tasks. A novel task considered is finding email-addresses of
relevant attendees for a given meeting. Another task we
define and evaluate is finding the full set of email-address
aliases for a person, given the corresponding name string.
The experimental results show promise of this approach over
other possible methods.

1. INTRODUCTION
Email corpora implicitly represent social network infor-

mation, textual content and a timeline. Obviously, there
is a close relationship between these components of infor-
mation. For example, persons on a user’s contact list may
be related by being part of one social “clique”, as derived
by a simple analysis of header information in a corpus [10,
9]. Or, they can be related via common key words that ap-
pear in the relevant correspondece in the email corpus [14].
Such persons’ relatedness is also tied to a time dimension. It
is therefore desired to combine multiple relevance measures
to utilize the multi-faceted information that is included in
email for email-prcessing tasks.

We represent email as a graph. The suggested graph
scheme naturally models an email corpus in the sense that it
forms a direct layout of the information included within the
corpus. The graph entities correspond to objects of partic-
ular types, including documents and terms, as well as email
addresses, persons and dates. The graph edges are directed
and correspond to relations like sent-by, sent-on-date etc.
We use this framework to derive a similarity metric between
email entities. Our similarity metric is based on a lazy graph
walk, and is closely related to the well-known PageRank al-
gorithm [18]. PageRank and its variants (e.g., [8]) are based
on a graph walk of infinite length with random resets. In a
lazy graph walk, there is a fixed probability of halting the
walk at each step. In previous work [21], lazy walks over

CEAS 2006 - Third Conference on Email and Anti-Spam,July 27-28, 2006,
Mountain View, California USA

graphs were used for estimating word dependency distribu-
tions: in this case, the graph was one constructed especially
for this task, and the edges in the graph represented differ-
ent flavors of word-to-word similarity. Other recent papers
have also used walks over graphs for query expansion [22,
6]. In these tasks, the walk propagates similarity to a start
node through edges in the graph—incidentally accumulating
evidence of similarity over multiple connecting paths.

We view the similarity metric as a tool for performing

search across this structured dataset, in which related enti-
ties that are not directly similar to a query can be reached
via multi-step graph walk.

In a previous work [15], this framework has been shown
to be very effective for a couple of email processing tasks:
namely, email threading and person name disambiguation.
In this paper we extend this framework to represent also
meeting information. We show that corpora of meeting
descriptions can be integrated into the email representing
graph. Combining these two information sources may be
beneficial in several respects. For example, social analysis
can benefit from information about meetings attendees (in
addition to email correspondence) and meeting management
can be leveraged by linkage to email content.

In this paper, we describe a graph that jointly represents
email and meetings. We formulate and evaluate the joint
graph for the novel task of finding relevant meeting atten-

dees. In this task, we search for relevant meeting attendees
given a short text description of the meeting. In particular,
we are interested in the attendees’ email-address informa-
tion that can be readily used in coordinating a meeting. A
second task that is explored in this paper is finding the set
of a person’s email-addresses given the person’s name. This
task is closely related to the first task of facilitating meeting
management. However, we believe this task to be of interest
also as a stand-alone application. Both tasks are phrased as
a search query in our framework, where we show that the
graph-based approach improves substantially over plausible
baselines.

This paper proceeds as follows. In Section 2 we describe
the schema for representing email as graph. Section 3 dis-
cusses the extension of the graph to include meeting descrip-
tions, where information is represented jointly. Section 4 re-
views the formal details of our framework. We then describe
the evaluation corpus in Section 5. The evaluation details
for the task of finding email-addresses of relevant meeting at-
tendees and for the task of finding a person’s email-addresses
are given in Section 6 and 7, respectively . We then review
related work and conclude.

source type edge type target type

file sent-from person
sent-from-email email-address
sent-to person
sent-to-email email-address
date-of date
has-subject-term term
has-term term

person sent-from−1 file

sent-to−1 file
alias email-address
as-term term

email-address sent-to-email−1 file

sent-from-email−1 file

alias−1 person
email-as-term term

is-email−1 term

term has-term−1 file

has subject-term−1 file
is-email email-address

as-term−1 person

email-as-term−1 email-address

date date-of−1 file

Table 1: Email graph structure: Node and relation

types

2. EMAIL AS A GRAPH
A graph G consists of a set of nodes, and a set of labeled

directed edges. Nodes will be denoted by letters like x, y,
or z, and we will denote an edge from x to y with label `

as x
`

−→ y. Every node x has a type, denoted T (x), and we
will assume that there is a fixed set of possible node types.
We will assume for convenience that there are no edges from
a node to itself (this assumption can be easily relaxed.)

We will use these graphs to represent real-world data.
Each node represents some real-world entity, and each edge

x
`

−→ y asserts that some binary relation `(x, y) holds.
The entity types used here to represent an email corpus
are shown in the leftmost column of Table 1. They in-
clude the traditional types in information retrieval sys-
tems, namely file and term. In addition, however, they
include the types person, email-address and date. These
entities are constructed from a collection of email mes-
sages in the obvious way–for example, a receipient of “Einat
Minkov <einat@cs.cmu.edu>” indicates the existence of a
person node “Einat Minkov” and an email-address node
“einat@cs.cmu.edu”. (We assume here that person names
are unique identifiers.)

The graph edges are directed. We also create an inverse

label `−1 for each edge label (relation) `. Note that this
means that the graph will definitely be cyclic.

Table 1 gives the full set of relations used in our email rep-
resention scheme. Most relations correspond directly with
email structure. In addition, a person node is linked to its
constituent token values with an “as-term” edge; Similarly,
an email-address node is linked to the constituent tokens of
its prefix with an “email-as-term” edge; and a term that is
identified as an email-address is linked to an email-address
node of the same string value with an “is-email” edge.

3. INCORPORATING MEETINGS
We are now interested in incorporating meeting objects

to create a joint graph representing both email and meeting

source type edge type target type

meeting attendee person
attendee-email email-address
date-of date
has-term term

person attendee−1 meeting
alias email-address
as-term term

email-address attendee-email−1 meeting

alias−1 person

is-email−1 term

email-as-term−1 term

term has-term−1 meeting
is-email email-address

as-term−1 person

email-as-term−1 email-address

date date-of−1 file

Table 2: Meetings node and relation types

information. Like email, meetings can be represented as a
graph. Table 2 gives a possible scheme for meeting represen-
tation in terms of entities and the relations between them. In
this description we assume that a given meeting includes at-
tendees’ information (names and email-addresses), text de-
scribing the meeting (e.g.,“Webmaster mtg, 3305 NS”) and
a date. One can imagine a richer setting where meetings are
also linked to files, web URLs, etc.

Evidently, related email and meeting corpora have many
entities in common: namely persons and email-addresses,
terms and dates. It is therefore straightforward to join the
two information sources in a shared graph. In such a graph,
a meeting will have a connecting path via term and date
nodes to email files, for example. Relevant emails or other
potentially included entities, like papers and presentations,
can be identified as background material for a meeting’s
participants in this framework. Similarly, the social net-
work information embedded in emails can be enhanced with
meeting information. That is, if meetings in the graph are
linked to known attendees, these links may provide addi-
tional knowledge about persons’ relationships, complement-
ing the social network derived from email files.

Figure 1 shows the graph structure where both email files
and meeting files are included. In the figure, we assume
that meeting attendees are not known. However, it is easy
to integrate additional entities and relation types into the
graph representation.

4. GRAPH SIMILARITY
This section describes the formal details of the used frame-

work, including graph edge weighting and the graph walk
paradigm.

4.1 Edge weights
Similarity between two nodes is defined by a lazy walk

process, where a walk on the graph is controlled by a small
set of parameters Θ. To walk away from a node x, one first
picks an edge label `; then, given `, one picks a node y such

that x
`

−→ y. We assume that the probability of picking the
label ` depends only on the type T (x) of the node x, i.e.,
that the outgoing probability from node x of following an
edge type ` is:

Pr(` | x) = Pr(l | Ti) ≡ θ`,Ti

Figure 1: Email and Meetings graph sketch

Let STi
be the set of possible labels for an edge leaving a

node of type Ti. We require that the weights over all outgo-
ing edge types given the source node type form a probability
distribution, i.e., that �

`∈STi

θ`,Ti
= 1

In this paper, we will assume that once ` is picked, y is

chosen uniformly from the set of all y such that x
`

−→ y.
That is, the weight of an edge of type l connecting source
node x to node y is:

Pr(x
`

−→ y | `) =
θ`,Ti

| y : x
`

−→ y |

This assumption could easily be generalized, however: for
instance, for the type T (x) = file and ` = has-term, weights

for terms y such that x
`

−→ y might be distributed according
to an appropriate language model [7].

4.2 Graph Walks and Queries
Conceptually, the edge weights above define the probabil-

ity of moving from a node x to some other node y. At each
step in a lazy graph walk, there is also some probability γ of
staying at x. Putting these together, and denoting by Mxy

the probability of being at node y at time t + 1 given that
one is at x at time t in the walk, we define

Mxy = � (1 − γ)� ` Pr(x
`

−→ y|`) · Pr(`|T (x)) if x 6= y

γ if x = y

If we associate nodes with integers, and make M a matrix
indexed by nodes, then a walk of k steps can then be de-
fined by matrix multiplication: specifically, if V0 is some
initial probability distribution over nodes, then the distri-
bution after a k-step walk is proportional to Vk = V0M

k.
Larger values of γ increase the weight given to shorter paths
between x and y. In the experiments reported here, we con-
sider small values of k, and this computation is carried out

directly using sparse-matrix multiplication methods.1 If V0

gives probability 1 to some node x0 and probability 0 to all
other nodes, then the value given to y in Vk can be inter-
preted as a similarity measure between x and y.

In our framework, a query is an initial distribution Vq over
nodes, plus a desired output type Tout , and the answer is a
list of nodes y of type Tout , ranked by their score in the
distribution Vk. For instance, for an ordinary ad hoc doc-
ument retrieval query (like “economic impact of recycling
tires”) would be an appropriate distribution Vq over query
terms, with Tout = file. Replacing Tout with person would
find the person most related to the query—e.g., an email
contact heavily associated with the retread economics. Re-
placing Vq with a point distribution over a particular docu-
ment would find the people most closely associated with the
given document.

4.3 Relation to TF-IDF
It is interesting to view this framework in comparison to

more traditional IR methods, which can be viewed as a spe-
cial case. Suppose we restrict ourselves to only two types,
terms and files, and allow only has-term edges. Now con-
sider an initial query distribution Vq which is uniform over
the two terms “the aardvark”. A one-step matrix multipli-
cation will result in a distribution V1, which includes file
nodes. The common term “the” will spread its probability
mass into small fractions over many file nodes, while the
unusual term “aardvark” will spread its weight over only a
few files: hence the effect will be similar to use of an IDF
weighting scheme.

5. EVALUATION
For evaluation we use a corpus that contains a subset of

the second author’s email and meeting files. The email files
were all drawn from a “meetings” folder, over a time span
of about six months. In addition, we use all meeting entries
(as maintained in a “Palm” calendar) for the same period.
The information available for the meeting files is their ac-
companying descriptive notes as well as the meeting date.
The meeting notes typically include one phrase or sentence
– usually mentioning relevant person names, project name,
meeting locations etc. The list of attendees per each meet-
ing is not available, and is not included in the constructed
graph.

The joint corpus statistics are given in Table 3. The meet-
ings statistics refer to the number of additional graph nodes,
given that the email information is already represented in
the graph.

corpus

instances nodes email-addr.

Email 346 3239 195
Meetings 334 441 -

Table 3: Corpus Details

This corpus is modest in size. We believe that this frame-
work should benefit from larger corpora that may be less

1We have also explored an alternative approach based on
sampling; this method scales better but introduces some
additional variance into the procedure, which is undesirable
for experimentation.

sparse in text and have a richer link structure. Neverthe-
less, despite its size, this experimental corpus is an interest-
ing testbed for the suggested applications.

6. A MEETING ATTENDEES FINDER

6.1 The Task
Having meetings embedded in the graph, one can lever-

age the information included in both the email and meeting
corpora to assist in meeting management. Specifically, we
assume that a given meeting is associated with a text de-
scription. One can apply a search query starting from a
meeting node, looking for relevant email addresses. A re-
turned ranked list of such addresses can be utilized semi-
automatically, assisting the user in the task of identifying
relevant recipients to include in the meeting invitation or
update notifications.

6.2 Dataset
The experimental dataset consists of labeled examples of

meetings for which the list of the email addresses of rele-
vant attendees is given (manually annotated by the corpus
owner). The number of relevant meeting attendees varies
– for some examples that represent personal or small meet-
ings there are only few relevant email-addresses identified,
while for larger project meetings there are dozens of rele-
vant email-address nodes. For all examples, all attendees
are considered to be equally relevant.

The examples for the time slice of which this corpus was
derived are often similar to each other, given that many
meetings are periodic. In order to avoid bias towards specific
repetitive examples, the constructed dataset includes only
13 examples, manually selected as having distinct attendee
lists2.

We notice that mapping email-addresses to meetings is
not trivial since in many cases, there are multiple email-
addresses referring to a single person. Some addresses may
be rarely used or obsolete. In the next section describing
the experiments we refer to this issue in further detail.

6.3 Experiments

6.3.1 Evaluation Details
All of the methods applied generate a ranked list of email-

addresses. Since the number of correct answers varies be-
tween examples we use an 11-point precision-recall curve
averaged over all examples for evaluation. In case that the
ranking results include blocks of items with the same score,
a node’s rank is counted as the average rank of the “block”.
Figure 2 gives results for the meeting dataset. The results
are given in two forms: the top graph of Figure 1 consid-
ers the full list of email-addresses for a relevant person as
required correct answers. In contrary, the evaluation in the
bottom graph requires at least one email-address to be iden-
tified per person. For example, suppose a relevant person p

has three distinct email-addresses, where the three of them
are returned in ranks r1, r2 and r3, having r1 < r2 and
r1 < r3. In that case, the curve in Figure 2 would consider
person p to be ranked at r1.

2We also required that the meetings relate to persons that
are likely to appear in the email corpus, as opposed to ran-
dom visitors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

String Match
Graph Walk

a. all addresses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

String Match
Graph Walk

b. one address per person

Figure 2: Meeting to attendees email-addresses:

Precision-recall curve

6.3.2 Baseline Method
To the best of our knowledge, the suggested task is novel

and there is no previous suggested methods in this set-
tings. As a baseline, we use a string matching approach.
Since many of the message notes include persons and project
names, string matching can utilize the similarity between
persons name or public project names and relevant personal
or project-related email-addresses. We use the Jaro-Winkler
measure [5] to compute string similarity. The similarity
score for every email-address is considered as the maximum
Jaro-Winkler score of that email-address against any one of
the words appearing in a meeting notes. The result of the
described procedure is a ranked list of email-addresses, given
the meeting notes.

The results of applying the string matching approach are
given in Figure 2. As mentioned before, the given meet-
ing notes often include explicit mentions of persons names,
which allows string matching to be fairly effective. String
matching fails, however, where the meeting text is more gen-
eral, referring to (formal or informal) project names. In such
cases, string matching can not map the given terms to indi-

vidual persons’ email-addresses etc.: thus, recall using string
matching is necessarily limited.

6.3.3 Graph Walk
We perform a 3-step graph walk. The results of the graph

walk are given in Figure 2. The graph walk is clearly prefer-
able in retrieving relevant email addresses given the meeting
details.

The graph walk results are considerably better than mere
string matching although string similarity is not incorpo-
rated into the graph. Unlike string matching, the graph walk
can retrieve email-addresses that have no literal ressemb-
lence to a person’s name, using co-occurence mappings. In
particular, a 3-step walk uses the following paths:

• meeting
has−term

−→ term
email−as−term−1

−→ email-address

• meeting
has−term

−→ term
as−term−1

−→ person
alias
−→ email-

address

• meeting
has−term

−→ term
has−term−1/has−subj−term−1

−→ file
sent−to/from−email

−→ email-address

• meeting
on−date
−→ date

on−date−1

−→ file
sent−to/from−email

−→
email-address

The graph walk utilizes the full set of terms in a meeting’s
description in finding related persons’ email-addresses. In
addition, a graph walk would give higher weight to frequently-
used email-addresses over rarely used ones. Finally, having
time information in the graph allows for incorporating a time
notion in finding relevant persons. It is straight-forward for
example to add edges between date nodes according to time
proximity, thus modeling a timeline as required additional
graph walk steps. This is not used here, but might be ben-
eficial for richer corpora.

7. EMAIL ADDRESS FINDER

7.1 The Task
A second related task we consider is automatic assistance

in finding a person’s email-address. A typical email user
oftentimes needs to retrieve email-addresses from his or her
address book. In some cases, this is done by searching for
an email with the desired information in the header. In
this section we evaluate the performance of graph walks for
this specific task, comparing it with string matching. We
consider two variants of this problem: querying a person’s
full name to get relevant email-addresses, and querying by
the person’s first name only. The latter setting may be faster
and more convenient for an end user (at least in cases where
the person’s first name is not ambiguous) and can be used
also when a user is not certain about the full name.

7.2 Dataset
We here use the manually labelled list of email-address

aliases per person for the given corpus. For the experiment,
we constructed a dataset containing 14 examples - all of
which refer to individual users (versus mailing lists) that
have two to five email-addresses. The relevant person’s name
was either found in header information or determined based
on personal acquaintance. In the experiment, we require the
full set of email-addresses to be retrieved given the person’s
name.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

String Match
Graph Walk

GW+SM1
GW+SM2

a. full name

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

String Match
Graph Walk

GW+SM1
GW+SM2

b. first name

Figure 3: Person to email-address mapping:

Precision-recall curve

7.3 Experiments

7.3.1 Baseline Method
As a baseline, we use here the string matching approach

described earlier (section 6.3.2).
The results of applying string matching are given in Fig-

ure 3. The top graph of Figure 3 refers to the setting where
the full person’s name is given as a query. String matching
is successful in this case in identifying email-addresses that
are similar to either the person’s first name or last name.
It therefore has relatively high recall. There are, however,
email-addresses that are not similar to neither the person’s
first or last name. Such instances bound the recall of this ap-
proach. As can be seen in the bottom graph, string matching
performance deteriorates when only the person’s first name
is given, due to this shortcoming.

7.3.2 Graph Walk
The results of the graph walk are shown in Figure 3. We

perform several variants of graph walk.
The curve named ’Graph walk’ gives the result of a 3-step

walk. The performance of the graph walk is comparable
to string matching when the person’s full name is given.
The graph walk performance is noticeably better than string
matching where only the person’s first name is available.
The gap stems mainly from the limited recall of the string
matching approach, as some of the email-addresses include
variants of the person’s last name only.

For the reader’s convenience, some relevant paths in a 3-
step walk are as follows:

• term
email−as−term−1

−→ email-address

• term
as−term−1

−→ person
alias
−→ email-address

• term
has−term−1/has−subj−term−1

−→ file
sent−to/from−email

−→
email-address

• term
has−term−1/has−subj−term−1

−→ file
sent−to/from

−→ per-

son
alias
−→ email-address

The next two variants of graph walk incorporate string
matching directly into the graph structure. As above men-
tioned, the “plain” graph walk is effective in realizing co-
occurence information and retrieving highly used email-address
nodes. However, rarely used email-addresses may be harder
to find using the graph walk approach. Incorporating string
matching into the graph links should thus increase graph
walk recall.

String similarity is inserted to the graph in the following
manner. We add edges between email-address nodes, where
the Jaro-Winkler score between the two addresses is above
a pre-defined threshold3. Specifically, referring to the set
of relevant paths described earlier in this section, this edge
is added as a “tail” to the previous paths. That is, once
the graph walk reaches an email address node, the next step
propagates some probability mass to similar email-address
nodes over “similar-string” edges.

The results for using the modified graph are given as
“GW+SM1” in Figure 3. As expected, the graph walk’s
overall recall is enhanced due to incorporating string simi-
larity considerations into the graph. “GW+SM2” is another
variant, where we assign higher weight to the outgoing edges
of type “similar-string” given an email-address node (other-
wise weights are distributed uniformly by edge type, as de-
scribed in section 4.1). The increased weight gives additional
improvement to the graph walk precision-recall curve. An
automatic optimization of non-uniform graph edge weights
has potential for further improving graph walk performance
and is a subject for future work.

8. RELATED WORK
As noted above, the similarity measure we use is based on

graph-walk techniques which have been adopted by many
other researchers for several different tasks. In the infor-
mation retrieval community, infinite graph walks are preva-
lent for determining document centrality (e.g., [18, 8, 13]).
Another related line of research is of spreading activation

over semantic or association networks: here the underly-
ing idea is to propagate “activation” from source nodes via

3It may be beneficial to use the exact similarity score on
a weighted edge when walking these edges. Here, however,
the similarity coding is binary, in one line with the general
framework.

weighted links through the network (e.g., [4, 19]). Spread-
ing activation methods are parameterized by user-provided
threshold functions for node activation, limits on node dis-
tance, preferences over paths, and other constraints. The
framework presented here is similar, but operates through
unconstrained lazy graph walks, where path preferences can
be learned from data [15].

The idea of representing structured data as a graph is
widespread in the data mining community, which is mostly
concerned with relational or semi-structured data. Recently,
the idea of PageRank has been applied to keyword search
in structured databases [2]. Analysis of inter-object rela-
tionships has been suggested for entity disambiguation for
entities in a graph [12], where the graph edges are undi-
rected and edge weights represent confidence in having a
connecting path between the entities. It has been suggested
to model similarity between objects in relational data in
terms of structural-context similarity [11], where the simi-
larity measure corresponds to the expected number of steps
required for a random surfer to cross the graph from one ob-
ject to the other. The latter did not consider edge weights.

As mentioned earlier, not much work has been done that
integrates meta-data and text in email. One example ex-
amines clustering using multiple types of interactions in co-
occurence data [3]. Another recent paper [1] proposes a
graph-based approach for email classification. They repre-
sent an individual email message as a structured graph rep-
resenting both content and header, and find a graph profile
for each folder; incoming messages are classified into folders
using graph matching techniques.

We believe that the tasks formulated in this paper are
both novel in the literature. We are not aware of previous
works exploring the task of finding a set of relevant meeting
attendees (or their email-addresses) in planning or updating
a meeting. Previous research focused mainly on automatic
meeting scheduling (e.g., [20, 16]). Our work facilitates semi-
automatic construction of a meeting attendees’ list, which
is a preliminary step to meeting scheduling. A generative
approach has been recently suggested [14] for clustering per-
sons by their inter-similarity assuming a joint model of email
recipients and topic. This approach may be adapted to pre-
dict relevant persons given text. Our framework, however, is
more general. Another recent work [17] uses desktop search
to create a bag-of-words representation of email messages,
and also of persons and meetings. By this method, co-
sine similarity between the bag-of-words representation of
a meeting and a person can be used to identify relevant
meeting attendees. One difference between their approach
and ours is that we consider the data structure in evaluat-
ing entity relationships; also, we can tune the importance of
particular connecting paths in this framework.

Finally, the task of finding a person’s set of email-addresses
in an email corpus given the person’s name is novel as well.
This task is related, however, to the task of identifying email
aliases in a corpus. Previous works [9, 10] attempted to com-
bine social network information and string similarity mea-
sures to identify email aliases. Our approach allows integra-
tion of header information and string similarity measures,
as used in these works, as well as email content and time in
a unified framework.

9. CONCLUSION
We have presented a scheme for representing a corpus of

email messages as well as meeting entries in a unified graph
of typed entities. An extended similarity measure between
graph entities is derived via graph walk. We have shown that
this scheme provides good performance on two representa-
tive meeting and email assisting tasks: constructing a list of
relevant meeting attendees, and email-address mapping to
person names. The experimental results are promising: for
meeting attendee identification, the retrieved email-address
ranked list has about 63% precision at full recall comparing
with about 49% using string matching; for email-address
identification given a person’s first name, precision is about
67% at full recall using this framework comparing to 58%
using string matching. The performance of graph walks in
terms of the precision-recall curve is considerably preferable.
These results are especially encouraging taking into account
that the experimental corpus is small and therefore rela-
tively sparse. In general, the graphical framework should
benefit from increased entity linkage evidence.

In future work, we plan to further explore the scalability
of the approach, and also ways of integrating this approach
with language-modeling approaches for document represen-
tation and document retrieval. Formally, this can be done

straightforwardly by appropriately defining Pr(d
`

−→ t|`)
for the edge type ` = has − term to correspond to the prob-
ability for t assigned by a language model for the docu-

ment d, and by defining Pr(t
`

−→ d|`) for the edge type
` = has − term−1 to reflect the probability of the document
d given the query term t.

Practically, there are many implementation issues to ad-
dress. However, a new version of this system (not the one
used in the experiments) uses a sampling-based approxima-
tion to iterative matrix multiplication. In preliminary tim-
ing experiments, the new system can very accurately approx-
imate walks of the sort considered here in around 0.5 sec-
onds, and can approximate 10-step walks on a million-node
corpus (from a different domain) in around 10-15 seconds.

Another venue for future work is tuning the graph weights
to improve performance. Optimal edge weights should dif-
fer depending on the task at hand. Given labeled examples,
we are interested in exploring learning of edge weight pa-
rameters in this framework. Note that a gradient descent
approach has already been proposed for similar settings [8].
In addition, re-ranking of the output nodes using graph-
walk describing features has proved to be successful in this
framework [15]. Given the limited size of the experimental
corpus, the re-ranking scheme has not been applied here.

In conclusion, the suggested framework is appropriate for
perfoming various search-related tasks in email. Preserv-
ing entity type allows one to formulate a broad range of
problems as typed search queries—including, in this paper,
retrieval of email-addresses related to given meeting or per-
sons names. Other useful tasks in this framework would be,
for example, finding terms related to a particular person in
a corpus (this can be useful in determining a person’s social
role), identifying similar email messages given a message as
means of providing a user with relevant context etc. This
model provides a unified framework for integration of mul-
tiple types of information, including social networks, text,
timelines as well as other potentially available information
sources such as organization charts or other relations of in-
terest.

10. REFERENCES
[1] M. Aery and S. Chakravarthy. emailsift: Email

classification based on structure and content. In ICDM,
2005.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: Authority-based keyword search in databases.
In VLDB, 2004.

[3] R. Bekkerman, R. El-Yaniv, and A. McCallum. Multi-way
distributional clustering via pairwise interactions. In ICML,
2005.

[4] H. Berger, M. Dittenbach, and D. Merkl. An adaptive
information retrieval system. based on associative networks.
In APCCM, 2004.

[5] W. W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for name-matching
tasks. In IIWEB, 2003.

[6] K. Collins-Thompson and J. Callan. Query expansion using
random walk models. In CIKM, 2005.

[7] W. B. Croft and J. Lafferty. Language Modeling for
Information Retrieval. Springer, 2003.

[8] M. Diligenti, M. Gori, and M. Maggini. Learning web page
scores by error back-propagation. In IJCAI, 2005.

[9] R. Holzer, B. Malin, and L. Sweeney. Email alias detection
using social network analysis. In LinkKDD, 2005.

[10] P. Hsiung, A. Moore, D. Neill, and J. Schneider. Alias
detection in link data sets. In Proceedings of the
International Conference on Intelligence Analysis, May
2005.

[11] G. Jeh and J. Widom. Simrank: A measure of
structural-context similarity. In SIGKDD, 2002.

[12] D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting
relationship for domain independent data cleaning. In
SIAM, 2005.

[13] O. Kurland and L. Lee. Pagerank without hyperlinks:
Structural re-ranking using links induced by language
models. In SIGIR, 2005.

[14] A. McCallum, A. Corrada-Emmanuel, and X. Wang. Topic
and role discovery in social networks. In IJCAI, 2005.

[15] E. Minkov, W. W. Cohen, and A. Y. Ng. Contextual search
and name disambiguation in email using graphs. In SIGIR,
2006.

[16] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and
D. Zabowski. Experience with a learning personal assistant.
Communications of the ACM, 37(7), 1994.

[17] T. Mitchell, S. Wang, Y. Huang, and A. Cheyer. Extracting
knowledge about users activities from raw workstation
contents. In AAAI, 2006.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web. In
Technical Report, Computer Science department, Stanford
University, 1998.

[19] G. Salton and C. Buckley. On the use of spreading
activation methods in automatic information retrieval. In
SIGIR, 1988.

[20] S. Sen. Developing an automated distributed meeting
scheduler. IEEE Expert, 12(4), 1997.

[21] K. Toutanova, C. D. Manning, and A. Y. Ng. Learning
random walk models for inducing word dependency
distributions. In ICML, 2004.

[22] W. Xi, E. A. Fox, W. P. Fan, B. Zhang, Z. Chen, J. Yan,
and D. Zhuang. Simfusion: Measuring similarity using
unified relationship matrix. In SIGIR, 2005.

