
Artificial
Intelligence

E LS EV I ER Artificial Intelligence 68 (1994) 303-366

Grammatically biased learning:
learning logic programs using

an explicit antecedent description language
William W. Cohen*

AT&T Bell Laboratories, Room 2A-427, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

Received September 1991; revised April 1993

Abstract

Every concept learning system produces hypotheses that are written in some sort of
constrained language called the concept description language, and for most learning
systems, the concept description language is fixed. This paper describes a learning
system that makes a large part of the concept description language an explicit input,
and discusses some of the possible applications of providing this additional input. In
particular, we discuss a technique for learning a logic program such that the antecedent
of each clause in the program can be generated by a special antecedent description lan-
guage; it is shown that this technique can be used to make use of many different types
of background knowledge, including constraints on how predicates can be used, pro-
gramming cliches, overgeneral theories, incomplete theories, and theories syntactically
close to the target theory. The approach thus unifies many of the problems previously
studied in the field of knowledge-based learning.

1. I n t r o d u c t i o n

Every concept learning system produces hypotheses that are written in some
sort of constrained language called the concept description language. Most learn-
ing algorithms are specialized to work for a narrow class of concept description
languages, and hence, for most learning systems, the concept description lan-
guage is largely fixed; typically it is possible to modify the concept description
language only by adding or removing features, and (possibly) by specifying

* E-mail: wcohen@research.att.com.

0004-3702/94/$07.00 (~) 1994 Elsevier Science B.V. All rights reserved
SSDI 0004-3702 (93)E004 8-Q

304 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

a generalization hierarchy for the features. The ability to modify the concept
description language except in very limited ways, however, is rare [21].

This paper describes a learning system that makes a larger part of the concept
description language an explicit input to the learner, and discusses some of
the possible applications of providing this additional input. In particular, we
discuss a technique for learning a set of Horn clauses such that the antecedent
of each clause can be generated by a special antecedent description language;
an antecedent description language is an extended context-free language which
generates a string of literals, rather than a string of symbols from a fixed
alphabet.

The problem we hope to address with this technique is the problem of
using background knowledge of the target concept to improve concept learning
performance; here improving performance means either reducing the time
required for learning, or improving the quality of the learned knowledge.
Previous research has suggested a variety of techniques for taking advantage of
special types of background knowledge, some examples of which are described
below.

• Constraints on how predicates can be used. For example, if less_than (X, Y)
is one of the predicates available for inclusion in the hypothesis, then
knowing that less_than(X, Y) always fails might be useful background
knowledge. Similarly, knowing that equal(X, Y) is logically equivalent to
equal(Y, X), or knowing that the two arguments to the equal predicate
must be of compatible types, might also be useful. Pazzani and Kibler
[26] describe a way of extending Quinlan's FOIL system [28] to obey
such constraints.

• Knowledge o f "programming clichks". The knowledge that various pro-
gramming constructs are common, and hence likely to appear in the target
theory, can be useful. An example of such programming clich6s in logic
programming are conjunctions of the form

p (Xi , Xi , Xk) A greater_than(Xi, n)

where Xi is a new (previously unbound) variable and n is a numeric
constant. For technical reasons, such clich6s can be useful in learning
relational concepts; [34] describes a second extension to FOIL that takes
advantage of programming clich6s.

• Theories of related concepts. In some circumstances it is helpful to have a
theory defining a concept that is related in some specific way to the target
theory. Some techniques that use such related-concept theories are IOE
[15], IOU [22] and A-EBL [6].

• Incomplete theories o f the target concept. It may be the case that some but
not all of the clauses in the target theory are known. For example, it might
be known that the target theory includes the clause

high_risk_of_heart_attack(X) :-
parent (X, Y) A died_of_heart_disease(Y) A high_blood_pressure(X)

W. IV. Cohen/Artificial Intelligence 68 (1994) 303-366 3 0 5

but the definition of high~lood__pressure(X) may be unknown. Several
researchers have attacked this problem using a variety of methods; see for
instance [13,17,37,40].

• Theories syntactically close to the target theory. In some cases, a theory
may be available that could be transformed into the target theory by a
small number of local syntactic changes, such as adding a condition to the
antecedent of a clause, deleting a condition from a clause, adding a clause,
or deleting a clause. Some examples of learning systems that address this
problem are [16,23,26,25,36].

The contribution of this paper is to describe a single technique which
can make use of a// of these types of background knowledge--as well as
other types of information about the target concept--in a uniform way. (This
is in contrast to systems like FOCL [25] which integrate several different
techniques for using background knowledge in the same learning system.)
All background knowledge is represented in a single formal structure--the
antecedent description grammar--that has a clear declarative meaning. In
other words, the various types of background knowledge listed above are
used by first transforming them into an appropriate antecedent description
grammar, and then using a learner that is biased by this grammar. One can
view the antecedent description grammar as a sort of "common coin" into
which other sorts of background knowledge can be translated; this translation
is possible because we allow very general classes of grammars to bias learning.
In contrast, previous techniques for allowing an explicit grammatical bias to
influence learning allowed only restricted classes of grammars [21].

The technique we describe is applied to the specific problem of learning a
set of Horn clauses. In this problem, it is assumed that the input is a series of
labeled positive and negative examples of the form

4 - p (t l , 1 , • • • , tl,n,), +P (t 2 , 1 , tz,n2) , . . .

where each ti,j i s a ground term, and it is assumed that the target concept (i.e.,
the concept to be learned) can be expressed as a set of Horn clauses of the
form

p (XI Xn) :- bodY1
p(XI ,Xn) :- body 2

p (Xl , Xn) :- body k

where each bodyi is a conjunction of literals. The literal P(XI Xn) is
called the goal formula. Negative literals in the bodyi's are allowed, but are
interpreted using the Prolog rule of negation as failure. This learning problem
is a generalization to relational concepts of the learning problem addressed
by attribute-value learning systems that learn concepts in disjunctive normal
form [18,24].

306 W. IV. Cohen/Artificial Intelligence 68 (1994) 303-366

This learning problem has received increasing attention recently, in part
because of the apparent success of learning systems like GOLEM [3] and
FOIL [28]. FOIL's main restriction is that it learns only clauses with no func-
tion symbols; however, experiments indicate that FOIL solves this restricted
problem quite well. Because we are considering FOIL-like learning problems,
and because the learning technique described in this paper is an extension of
the algorithm used in Quinlan's FOIL system, this paper could be viewed as
presenting a technique for adding an explicit grammatical bias to FOIL.

As we will show later, there is a close connection between grammatically
biased learning and theory specialization as performed by the A-EBL system
(see [9], and also Section 5.2 of this paper). Yet another way to view this paper
is applying FOIL-like learning techniques to the A-EBL theory specialization
problem. However, we prefer to introduce the new metaphor of grammatically
biased learning to describe the extended system, as these more powerful learning
techniques allow us to attack a broader range of problems, including many for
which the metaphor of theory specialization is clearly inappropriate.

In the remainder of the paper, we first define the antecedent description
grammars that are used to bias learning, and then motivate and describe
our semantic interpretation of these grammars. Section 3 then describes a
learning algorithm, based on Quinlan's FOIL algorithm, which is guided by
an antecedent description grammar. Sections 4 and 5 describe experimental
results dealing with our algorithm. Finally, we conclude by discussing related
work, further research issues, and conclusions that can be drawn from this
research.

The experimental portion of this paper (Sections 4 and 5) is rather long.
This is a consequence of the nature of our claim, which is a claim about
the generality of our method. To substantiate this claim requires experimental
comparison with a large number of systems; each of these comparisons requires
some discussion and explanation.

2. Antecedent description grammars

2. I. Notation for antecedent description grammars

As a running example, we will use a problem discussed in various places in
the literature (see [28,26], among many others): the problem of learning when
a chess position containing two kings and one rook is illegal. Formalized, this
becomes the problem of learning the predicate illegal(A, B, C, D, E, F), where
A and B are the rank and file of the white king, C and D are the rank and
file of the white rook, and E and F are the rank and file of the black king.
A position is illegal if the two kings are adjacent, if two pieces occupy the
same square, or if the black king is in check (since we assume white-to-move).
The predicates available for inclusion in the hypothesis are adj(X, Y), which
is true if the ranks or files X and Y are adjacent, less_than(X, Y), which is

IV. W. Cohen/Artificial Intelligence 68 (1994) 303-366 307

goal_formula(illegal(A, B, C, D, E, F)).

1) body(illegal(A,B, C , D , E , F)) ~ rels(A,B, C ,D,E,F) .

2) r e l s (A , B , C , D , E , F) ~ [].
3) re ls (A,B,C,D,E,F) ~ re l (A ,B ,C,D,E,F) , re ls(A,B,C,D,E,F) .

4) re l (A ,B ,C,D,E,F) ~ pred(X,Y)
where member(X, [A, B, C, D, E, F]), member(Y, [A, B, C, D, E, F]).

5) pred(X, Y) ~ [X = Y].
6) pred(X, Y) ~ [~X = Y].
7) pred(S, Y) --. [adj(X, Y)].
8) pred(X,Y)- - . [~adj(X,Y)].
9) pred(X,Y) ~ [less_than(X,Y)].

10) pred(X, Y) ~ [-~less_than(X, Y)].

Fig. 1. An antecedent description grammar for illegal.

true if rank or file X precedes Y, and equal(X, Y). Because these predicates
play the same role as features in nonrelational inductive learning, we will call
them feature predicates. 1 In the remainder of the paper we will use the infix
operator " = " for the predicate equal.

A grammar defining one possible antecedent description language for this
learning problem is shown in Fig. 1. An antecedent description grammar differs
from a standard context-free grammar in that its symbols are logical literals; to
emphasize the fact that the symbols of the language are logical literals rather
than letters of a finite alphabet, we will henceforth use the terms g-symbol,
g-terminal, and g-nonterminal to denote symbols, terminals, and nonterminals
respectively. In this paper, antecedent description grammars will be shown
in a notation similar to that used for definite clause grammars [35, Chapter
16]; this parallels the notation used in the implementation. In particular, the
terminal g-symbols of the language, which are all literals, are enclosed in square
brackets: for example, [adj(X, Y)]. All other literals are nonterminal g-symbols.
Commas denote concatenation. An empty pair of square brackets [] denotes
the empty string. Capital letters like A and X denote logical variables. (The
number before each rule is a label for use in discussions of the grammar, and
is not part of the syntax.)

We have also introduced some special notation. The first line of the grammar
serves to declare which predicate is the goal formula; that is, it defines the name
of the concept to be learned. If the goal formula is G, then the g-nonterminal

l Others have simply called these predicates "background knowledge"; we will use the term
"feature predicate" here to distinguish this particular type of background knowledge (which is
readily made available to a learning system) from other types of background knowledge that are
more difficult to exploit.

308 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

body(G) is the designated start e-symbol of the grammar. Finally, if P is a
Prolog goal, a rule of the form

A ~ B where P

is simply shorthand for the set of rules

A01 ~ B01
A02 ~ B02

AOn ~ BOn

where 01 O n are the substitutions associated with the various proofs of the
goal P. In the current implementation, these rules are generated by a macro-
expansion process when the grammar is read in. For example, rule 4 of Fig. 1
is expanded to the following set of thirty-six rules 2

rel(A,B,C,D,E,F) ~ pred(A,A).
rel(A,B,C,D,E,F) ~ pred(A,B).

reI(A,B,C,D,E,F) ~ pred(F,F).

The semantics of the grammar are as one would expect; it differs from
a standard context-free grammar only in manipulating logical terms, rather
than symbols from a fixed alphabet. Thus, in the grammar of Fig. I,
the start g-symbol body(illegal(A,B,C,D,E,F)) expands to the g-symbol
rels(A, B, C, D, E, F) ; this e-symbol, in turn, expands to an list (of arbitrary
length) of rel(A, B, C, D, E, F) g-symbols. Each rel(A, B, C, D, E, F) g-symbol
expands to some relationship between some pair of the variables A, B, C, D,
E and F as follows. The g-symbol rel(A, B, C, D, E, F) first expands to an g-
symbol of the form pred(X, Y), where X and Y are one of the logical variables
A, B, C, D, E, or F. Thus this set of rules picks a pair of variables that will be
related by some predicate. Then, an e-symbol of the form pred(X, Y) rewrites
to one of the feature predicates adj, equal, or less_than, negated or un-negated,
with the arguments bound appropriately.

Thus, using the grammar, body(illegal(A, B, C, D, E, F)) can be rewritten to
strings of literals of the form Ll , . . . , Lk where k is arbitrarily large, and each
Li is any of the feature predicates adj, equal, or less_than with its arguments
bound to any of the variables A, B, C, D, E, or F. As used by our learning
system, this grammar defines a relatively weak learning bias, comparable to the

2 There is a corresponding notation which can be used to express a long fight-hand side of a
single grammar rule; an example of this will be given in Section 4.3.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 309

bias shown by FOIL. 3 Later we will show how this bias can be strengthened 4
by modifying the antecedent description grammar.

Readers familiar with our previous work on theory specialization [9] will
probably notice that there is a close connection between antecedent description
grammars and overgeneral theories: grammar rules correspond to clauses in
an overgeneral theory, and deriving a sentence in the grammar corresponds to
finding an operationalization of the theory. (This connection is exploited in
the results of Section 2.6, and is explained at length in Section 5.2.) It might be
wondered if it is possible to recast the process of learning given a grammatical
bias as a theory specialization problem. However, while grammatically guided
learning tasks can be recast as theory specialization problems, the theories
which must be constructed are often extremely artificial; this point is illustrated
by many of the learning problems described in this paper. We thus prefer to
introduce the new and more natural notion of an explicit grammatical bias.

Finally, we note that it is easy to show that the addition of logical variables
makes antecedent description grammars strictly more powerful than context-
free grammars; this additional computation power is necessary to encode
several sorts of background knowledge, such as the knowledge encoded in
nonpropositional domain theories.

2.2. Derivations and languages

We will now give a more rigorous description of antecedent description
grammars. If aA'fl is a string of g-symbols, there is a rule A ~ 7 in the
grammar G, and A' and A have a most general unifier (mgu) 0, then we say
that aA'fl derives (a7fl)O in one step in G, and write

aA'p £

If al an are strings of e-symbols and

al £a2 4. . . £an-i £an
then we say that al derives an in ~, and write

a I :::~* a n

If the derivation is of length one or greater, we will write al =~+ an When the
grammar G is clear from context, the superscript will be omitted, and we will
write simply a , r , a * * r , or a ~ + ft.

3 The only difference between this bias and FOIL's bias is that while FOIL allows new variables
to be introduced in the antecedent of a rule, this grammar does not.
4 We will also show how the bias can be weakened, for example by allowing new variables to be
generated.

310 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

Derivation 1:
body(illegal(A, B, C, D, E, F))
rels(A, B, C, D, E, F) using

~ rel(A,B, C ,D,E,F) , rels(A,B, C ,D ,E ,F) using
pred(A, E), rels(A, B, C, D, E, F) using
adj(A, E), rels(A, B, C, D, E, F) using

=~ adj(A,E), rel(A,B, C ,D,E ,F) , rels(A,B, C ,D ,E ,F) uslng
=~ adj(A, E), pred(B, F), rels(A, B, C, D, E, F) using

adj (A, E), adj(B, F), rels(A, B, C, D, E, F) using
adj (A, E), adj (B , F) using

rule
rule
rule
rule
rule
rule
rule
rule

Derivation 2:
body(illegal(A, B, C, D, E, F))

=~ rels(A,B, C ,D ,E ,F)
rel(A,B, C ,D,E,F) , rels(A,B, C ,D ,E ,F)
rel(A,B, C,D, E ,F)

=~ pred (C, E)
~ C = E

using rule 1
using rule 3
using rule 2
using rule 4
using rule 5

Fig. 2. Sample derivations in the example grammar.

If S is the start g-symbol, then a string of g-symbols c~ such that S ~* a is
called a sentential form of the grammar. A sentential form that contains only
terminal g-symbols is a sentence of the language. The language of a string of
g-nonterminals S, written £(S) , is the set of sentences derivable from S; the
language of a grammar G, denoted £(G), is the language of its start g-symbol.

For the grammar of Fig. 1, the sentential forms are those strings of g-
symbols derivable from the g-symbol body(illegal(A,B,C,D,E,F)). Fig. 2
gives some example derivations in the grammar of Fig. 1; the end product of
the derivations are sentences, and all of the intermediate results are sentential
forms•

2.3. A plausible next step

The natural step to take at this point is to consider learners that take as
input an antecedent description grammar ~, and output hypotheses that are
sets of clauses of the form

p (X1 Xn) :- body1
p (Xl Xn) :- bodY2

p (Xl X.) :- bodyk

where each bodyi is not an arbitrary conjunction of literals, but a sentence of
~, converted from a string of g-symbols to a conjunction. Such a learner could

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 311

be biased--i.e., given background knowledge about the target concept--by
appropriately restricting the antecedent description language.

In this paper, we will consider instead a slight variant of this learning
problem. In particular, we will allow the learner to propose as a hypothesis a
set of clauses where each bodyi is a sententialform, rather than a sentence, of
the antecedent description language. To motivate this variant learning problem,
we begin with a slight digression on what properties make a hypothesis space
useful for learning (where the hypothesis space of a learner refers to the set of
possible hypotheses that it can generate).

2.4. Desirable properties for a hypothesis space

Learning can be thought of as search through the hypothesis space for a
hypothesis that fits the data [19]. In principle, weak methods like enumeration
can be used to perform this search; however, most practical learning systems
make use of special properties of the hypothesis space in order to search the
space more efficiently. The following have empirically proven to be desirable
properties for a learner's hypothesis space to have.

• Ease of "navigation". Many learning systems make use of the fact that
the hypothesis space is partially ordered under generality to search the
hypothesis space--usually in either general-to-specific or specific-to-general
order. Such "navigation" through the hypothesis space is easiest if the
position of a hypothesis in the partial order (i.e., its generality) is reflected
in its syntax; when this is true, syntactic changes to a hypothesis can be
used to navigate up and down the partial ordering.

• Efficiency of testing membership. Usually many hypotheses are tested
against the data in searching through the hypothesis space. Thus being
able to efficiently test membership in a hypothesis is important.

• Perspicuity of hypotheses. Although for some applications this considera-
tion is of secondary importance, in general it is useful if hypotheses are
understandable to people.

These considerations partially explain the success of representations based
on propositional logic, which is perspicuous, tractable, and has a syntax which
closely reflects its semantics (thus making "navigation" easy). To a lesser ex-
tent, these considerations explain the popularity of learning systems based on
predicate logic; the main difference is that representations based on predicate
logic are less likely to be tractable. One motivation for considering the learn-
ability of Horn clauses is that they are believed to be a relatively tractable
subset of predicate logic.

2.5. Solving the navigation problem by using sentential forms

The hypothesis space described in Section 2.3--namely, the space of theories
comprised of Horn clauses whose antecedents are sentences of an antecedent

312 W.W. Cohen/Artificial lntelhgence 68 (1994) 303-366

description grammar--is reasonably efficient and perspicuous. 5 However, it is
difficult to navigate through the space of sentences of the antecedent description
grammar; while the grammar could be used to determine which syntactic
changes to a clause are legal, it is difficult to predict the effect of these changes
on the semantics of a clause; in short, it is hard to predict if the changes
generalize or specialize a clause. We call this problem the navigation problem.

This problem can be partially solved by first, allowing the learner to hypoth-
esize sentential forms as well as sentences of the grammar and second, defining
an appropriate semantics for sentential forms. We will define the semantics
of a sentential form so that it is a generalization of the clauses it derives;
thus the syntactic relationship c~ =~* fl can be used to determine the semantic
relationship that ~ is more general than ft.

In particular, let ext(A :- B) denote the extension of the Horn clause A :- B;
that is, the set of literals classified as "true" by the clause. (More precisely,
A' ~ ext(A :- B) iff A' and A have an mgu 0 and BO is provable.) Let
translates (~) be a function that inputs a string of g-symbols ~ = A~ . . . An and
outputs the corresponding conjunction of literals A1 A..-A An; translates ([]) is
defined to output the literal true, which always succeeds. 6 Let ~ be a sentential
form, and let body(G) be the start t-symbol from which a was derived. We
define

ext(c~) - U ext(G :- translates(fl)).

The semantics of sentential forms are thus inherited from the semantics of
Horn clauses.

For example, if the start g-symbol is body(illegal(A, B, C, D, E, F)), then the
sentential form

adj(B, D), pred(D, F)

has the following extension:

ext(illegal(A,B, C , D , E , F) : - a d j (B , D) A D = F)
u ext(illegal(A, B, C, D, E, F) :- adj(B,D) A -~(D = F))
u ext(illegal(A, B, C, D, E, F) :- adj(B,D) A adj(D, F))
U ext(illegal(A, B, C, D, E, F) :- adj(B, D) A -~adj(D, F))
U ext(illegal(A,B, C , D , E , F) :- adj(B,D) A less_than(D,F))
u ext (illegal(A, B, C, D, E, F) :- adj(B, D) A -~less_than (D, F)).

A consequence of this definition is that the derivability relationship has a
direct correspondence to generality: if ~ =~+ /~, then c~ is at least as general

5 If a suitable grammar is used; it is of course possible to design a grammar such that hypotheses
will be neither efficient nor perspicuous. In this paper we will always be assuming that the
antecedent description grammar is appropriate for the problem at hand; the experimental section
of the paper shows that such grammars do sometimes exist.
6 We are again using definite clause notation; [] denotes the empty string.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 313

as ft. Thus, this interpretation of sentential forms largely solves the navigation
problem.

We say "largely solves" rather than "solves" for this reason: although it
would be preferable if a ~ + fl implied that a was strictly more general than
fl, this is quite often not the case. The fact that the partial order of generality
is nonstrict leads to some minor difficulties in learning, which are discussed
in Section 3.2.2.

2. 6. Implementing the semantics of sentential forms

To use sentential forms as a hypothesis space we also require a way of taking
a sentential form a and efficiently checking whether or not some instance
P (t l tn) is a member of ext(a). Recall that by definition, an instance
p (t l , t n) is a member of ext(a) i f fp(t l ,tn) is a member of ext(G :- fl)
for some fl such that a =~* fl; thus checking membership of an instance
p(t l , . . . ,tn) in a clause G : - a can be broken down into two steps:

(1) finding a f l such that a ~* fl,
(2) verifying that p(tl tn) E ext(G :- fl).
There is clearly some work involved in testing these conditions, since we

need to search for the right ft. How can this search be performed efficiently?
One way of performing this search problem is suggested by the observation
that the operation of rewriting a string of g-symbols via a rule A ~ B is much
the same as the operation of resolving a conjunction of literals against the
Horn clause A :- B. Similarly, searching for a f l that can be derived from a is
much like constructing a Horn proof; this suggest that a Horn clause theorem
prover can be adapted to perform this search.

In fact, it is straightforward to enlist a Horn theorem prover to this task.
When the grammar G is read in, we create for each grammar rule A --. B in
G a Horn clause of the form A :- translates(B). These Horn clauses are added
to the clauses which define the feature predicates. The resulting theory we will
denote as The. To continue with our running example, Fig. 3 shows the theory
which would be created by this procedure from the grammar of Fig. 1.

Now, when testing to see if a literal p (t l tn) is a member of ext(a), we
can simply use a Horn theorem prover to test if p (q , . . . , tn) is a member of
ext(G :- translates(a)). The following theorem shows that this procedure is
correct (and incidentally clarifies the close connection between theory special-
ization and grammatically biased learning).

Theorem 2.1. Let G be an antecedent description grammar, let body(G) be the
associated start g-symbol, let a be a sentential form derived from body(G), and
let Th~ be the Horn theory created using the construction above. Then

p (t l , . . . , t~) 6 ext(a) iff p (t l , . . . , t ,) ~ ext(G :- translates(a)).

Proof. See Appendix A. []

314 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

body(illegal(A, B, C, D, E, F)) :- rels(A, B, C, D, E, F).

rels(A,B, C ,D,E,F) :- true.
rels(A,B, C ,D,E,F) :- rel(A, B, C ,D,E,F) /x rels(A,B, C,D,E, F).

reI(A,B,C,D,E,F) :-pred(A,A).
re l (A,B,C,D,E,F) :-pred(A,B).

rel(A, B, C,

pred(X, Y)
pred(X, Y)
pred (X, Y)
pred (X, Y)
pred(X, Y)
pred(X, Y)

D ,E ,F) :-pred(F,F).

: - X = Y .
: - ~ X = Y.
:- adj(X, Y).
:- -mdj (X, Y) .
:- less_than(X, Y) .
:- -~less_than (X, Y).

Fig. 3. Derived theory Th~ for the example grammar.

When reading in the grammar G:
let the Horn theory Th~ initially contain the clauses defining the

feature predicates
macro-expand each rule written "A --, B where P"
for each rule A --, B in G do

add the clause A :- translates (B) to Th~
endfor

To test i f p (t l , . . . , tn) ~ ext(a):
let body(G) be the start e-symbol from which a was derived
if G and p(tl ,tn) have a mgu 0 then

if translates (sO) is provable from Th~ then
return true

return false

A t A ' " A A k , i f a = Al Ag,
where translates (~) - true, if ~ is the empty string.

Fig. 4. Naive theory creation and membership test.

Thus membership in a sentential form can be checked using only a Horn
clause theorem prover, and a small amount of preprocessing. The algorithm is
shown in Fig. 4. In the next section, we will show how this naive membership
test can be improved.

W. IV. Cohen/Artificial Intelligence 68 (1994) 303-366

2. 7. Improving perspicuity and efficiency

315

One cost in allowing the learner to hypothesize sentential forms, rather than
sentences, is that the hypotheses of the learner are more difficult to understand.
In general, the clauses hypothesized by the learner contain g-nonterminals as
well as g-terminals; while terminal g-symbols correspond to predicates that the
user has selected as being meaningful, nonterminal g-symbols do not. As an
example, the following translation of a sentential form

A = C A B = D A r e l s (A , B , C , D , E , F) .

is certainly not as meaningful as the following translation of a sentence

A = C A B = D .

True, for each nonterminal g-symbol there is a predicate defined in the theory
The, which could in principle be used to interpret it; however, even if the
grammar rules are sensible, the corresponding predicate definitions may not be.
In our example grammar, for instance, every predicate corresponding to an g-
nonterminal always succeeds, and thus expresses a vacuous condition. This loss
in perspicuity is paralleled by a loss in efficiency: testing a hypothesis against
the data is slowed by having to repeatedly prove these vacuous predicates.

These problems can be addressed by simplifying the clauses hypothesized
by the learner before they are used. In testing membership of an instance
p(t l Pn) in ext(a), we first construct the clause G :- translates(aO) de-
scribed above, but then simplify the body of the clause before sending it
to the theorem prover. Similarly, when the learning system produces a final
hypothesis

G :- body 1
G :- body 2

G :- body k

each body i is simplified before the hypothesis is presented to the user. Simpli-
fication thus improves both efficiency and perspicuity.

The simplification techniques we use are designed to remove vacuous predi-
cates whenever possible--in particular, to remove those vacuous predicates that
correspond to nonterminal g-symbols of the antecedent description grammar. 7
The simplification technique is sound, but not complete: i.e., it is guaranteed
to perform only simplifications that do not change the meaning of a clause,
but is not guaranteed to perform all such simplifications. The basic idea of the

7 It may seem odd that removing vacuous predicates is the only simplification that we attempt;
however, the experiments of Sections 4 and 5 indicate that this is the crucial optimization for
many types of problems.

316 W.W. Cohen/Artificial Intelligence 68 (I 994) 303-366

simplification procedure is to use static analysis of the theory Th~ to determine
which predicates of Th~ always succeed. These predicates can then be simply
discarded from any conjunctive goal.

In more detail, the static analysis phase proceeds as follows. In the first
phase, we look for predicates that can easily be shown to always succeed.
In the second phase, we propagate this information. Currently, the following
conditions are tested in the first phase to see if A always succeeds.

(1) There is a clause of the form A :- true.
(2) There are a pair of clauses of the form A : - B and A :- -~B that (except

for the sign of B) are substitutional variants.
(3) The predicate is declared by the user to always succeed.
For example, consider the theory of Fig. 3. In phase one, the predicate 8

rels/6 will be marked as "always true" since there is a clause

rels(A,B, C , D , E , F) :- true

in The; also, pred/2 will be marked "always true" since there are a pair of
clauses

pred(X, Y) :- X = Y,

pred(X, Y) :- ~ (X = Y).

In the second phase, this information is propagated to other predicates by
looking for clauses of the form

A :-Bl A . . . A B k

where each Bk has already been marked as always succeeding. Whenever such
a clause is found, A is also marked as always succeeding. The propagation
phase ends when there no such clauses are found.

For example, in the theory of Fig. 3, the predicates rel/6 and body/l will
be marked as "always true" in the first iteration of the propagation procedure;
rel/6 by virtue of the clause

re I (A ,B ,C ,D,E ,F) :-pred(A,A)

since pred/2 is marked as "always true", and body/1 by virtue of the clause

body(illegal(A, B, C, D, E, F)) :- rels(A, B, C, D, E, F)

since rels/6 is marked as "always true". On the second pass, no new predicates
are discovered to be "always true", and h e n c e t h e propagation phase terminates.
Notice that static analysis need be done only once, when the grammar is initially
read in.

s For the purpose of static analysis, a predicate is defined by its principle functor (e.g., rels) and
its arity (i.e., its number of arguments).

w.w. Cohen/Artificial Intelligence 68 (1994) 303-366 317

In general, it is undecidable to determine if a predicate will always succeed;
thus conditions like the ones tested above will always be only sufficient con-
ditions, not necessary and sufficient conditions, for detecting that a predicate
is vacuous. This problem is partially addressed by providing an always_true
declaration, which allows the user to give the appropriate information to the
system. This declaration is not needed for any of the learning problems studied
in this paper; however, it is easy to construct examples where it is necessary.
For example, if pred(X, Y) were defined as

pred (X,
pred (X,
pred (X,

Y) :- less_than(X, Y),
Y) : - X = Y,

Y) :- less_than(Y, X) ,

then pred/2 would not be detected in the first phase as being vacuous, although
it is easy to see that it always succeeds.

Given the results of the static analysis, simplification is trivial; one merely
drops from a conjunction those predicates that are guaranteed to always suc-
ceed. For example, given the static analysis above, the conjunction

A = C A B = D A r e l s (A , B , C , D , E , F)

can be simplified to

A = C A B = D .

It is important, of course, that simplification is inexpensive, since it is per-
formed whenever a hypothesis is tested against the data.

The improved procedures for checking membership in a sentential form
and preprocessing a theory, including the algorithms for static analysis and
simplification of sentential forms, are shown in Fig. 5.

3. Learning using antecedent description grammars

We have now constructed a hypothesis space in which it is easy to navigate,
has an efficient and easy-to-implement membership test, and is reasonably
perspicuous, in the sense that hypotheses from this space (usually) have a clear
meaning. The next step is to develop a learning algorithm for this hypothesis
space.

3.1. The FOIL learning algorithm

The learning algorithm we have developed is an adaptation of the algorithm
used in Quinlan's FOIL system [28]; we will now briefly review the FOIL
algorithm. This review is useful both as background, and also because we will

318 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

When reading in the grammar G:
let the Horn theory Th~ initially contain the clauses defining the

feature predicates
macro-expand each rule written "A -~ B where P"
for each rule A ~ B in G do

add the clause A :- translates (B) to Th~
(perform static analysis on The)
for each clause A :- true do

mark a/n as "always true", for (a, n) =functor_arity(A)
for each pair of clauses AI :- L1 and A2 :- -~L2 so that

A~ :- Ll and A2 :- L2 are substitutional variants do
mark a/n as "always true", for (a, n) =functor_arity(A1)

repeat
if there is a clause A :- B~ A .. . A Bn so that each b i /n i is marked

"always true", for (bi, ni) =functor_arity(Bi) then
mark a/n as "always true", for (a, n) =functor_arity(A)

until nothing was marked in the last iteration

To test i f p (t l , . . . , t n) C ext(~):
let body (G) be the start g-symbol from which a was derived
if G and p (h , . . . , t n) have a mgu 0 then

if simplify(translates (sO)) is provable from Th~ then
return true

return false

where
functor_arity(A) - the pair (a, n) so that A unifies with a (X1,. . . , Xn),

~A1A ' " A A k , i f ~ = A 1 , . . . , A k ,
translates (~) = [true, if ~ is the empty string,

simplify(Al A .. . A Ak)
true,

= ~simplify(A2 IX... A A k) ,

I
I, Al A simplify(A2 A . . . A Ak),

i f k = 0,

if al /n l is "always true", for

(al, nl) = functor_arity(A1)
otherwise.

Fig. 5. Improved theory creation and membership test.

The outer loop of FOIL is the following procedure.
• Let i = 1, P be the complete set of positive examples, and N be the

complete set of negative examples.
• While P is nonempty:

- find a clause Ci that covers some positive examples in P,
- remove the positive examples covered by P from Ci, and then
- increment i.

W. IV. Cohen/Artificial Intelligence 68 (1994) 303-366 319

• Return the theory {C1,. . . , Ci_l} a s the hypothesis.
The more interesting part of the FOIL algorithm is the procedure used to find

each clause Ci. The inner loop of FOIL builds a new clause Ci by starting with
the clause G :- true (where G is the goal formula) and repeatedly specializing
it by adding a new literal L to the antecedent. The inner loop of FOIL is
"greedy" in the sense that once a literal is added to C~, it is never removed.
In determining which literal L to add onto the end of C~, FOIL considers all
possible literals that could be added on, given the fixed set of input relations;
the literal that is chosen is one which maximizes an information-theoretic
measure of clause quality called information gain.

In a bit more detail, the operation of the inner loop is as follows.
• Let Ci be the clause G :- true.
• While Ci covers some negative examples:

- For each literal Lj which shares some variables with the variables of C/,
compute the information gain of the clause G :- B A Lj relative to the
clause G :- B, where B is the body of Ci.

- Replace Ci with the clause G :- B A Lmax, where Lmax is the literal that
results in the largest information gain.

The final critical component of FOIL is the information gain heuristic,
which is a means of evaluating the quality of a clause. Information gain can
be defined as follows. Let X1 , Xk be the variables that occur in the clause
Ci, and let 01 On be the substitutions associated with the various proofs
that p(tt , tt) ~ ext(C~). The n k-tuples

(x~ot XkO~), . . . , (X~O. ,XkO.)

are called the tuples of Ci for p (tl tt). A tuple is a positive tuple of C~ if it is
a tuple of Ci for any positive example; negative tuples are defined analogously.
The information gain of clause Ci+l relative to clause Ci can be defined as

GaintCi+,,Ci) - T/++ x - log2 Ti + + Ti_ + log2 T/++~+ 7"i+,]

where T + (respectively T j) is the number of positive (negative) tuples of
clause Cj, and T ++ is the number of positive tuples in Ci that correspond to
one or more tuples in Ci+ 1. For more discussion of information gain, see [28]. 9

9 Information gain is the primary means by which clauses are evaluated; however, we follow
Quinlan in giving a small bonus to clauses which introduce a new variable. The rationale for this
is that introducing a new variable sometimes paves the way for a subsequent useful specialization.
We also impose a small penalty on clauses Ci+l which cover no positive examples. To see why
this is useful, note that there are two cases in which information gain is zero. If Ci+l covers no
positive examples, then T/+ + = 0, and the information gain is zero. There is clearly no value in
including such a clause, or any specialization of it, in a hypothesis. However, if Ci+l covers exactly
the same tuples as Ci, the information gain is also zero. In contrast to the previous situation,
however, it may be that some specialization of Ci+l is useful. Adding a penalty for covering no
positive examples serves to distinguish between these two cases.

320 W.W. Cohen~Artificial Intelligence 68 (1994) 303-366

It should be noted that we have described here a somewhat simplified
version of Quinlan's actual FOIL program; in particular, we are not considering
important features that prune the search for new literals, deal with noisy data,
postprocess the clauses of the hypothesis, and infer partial orderings among the
clauses so that recursive definitions can be learned. However, this simplified
version is very competent at learning nonrecursive relational concepts in noise-
free conditions, and is adequate as a benchmark against which to compare our
system; furthermore, we believe that most of the extensions mentioned above
can be considered independently of the problem of providing a grammatical
bias.

3.2. Modifying FOIL

3.2.1. The basic algorithm
Consider now the generalization of the FOIL learning algorithm described

in Fig. 6. The outer loop is the same; in the inner loop, rather than starting
with a clause G :- true and repeatedly adding a literal, the algorithm starts by
letting C be some "universal concept" which is always true, and then repeat-
edly specializes C by replacing it with some element of a set of "designated
refinements" of C. As in FOIL, this process terminates when C covers no
negative examples. We will call this generalization EFOIL. EFOIL retains the
basic control structure of the FOIL algorithm, and, like FOIL, returns a set
of concepts C1 Cn that together cover the positive examples; however, it
abstracts away the particular representation used for each Ci.

We will now describe an alternative instantiation of EFOIL, called GREN-
DEL, l0 which uses as concepts sentential forms of an antecedent description
grammar. The universal concept will simply be the start symbol of the grammar.
To measure the information gain of the sentential form a relative to fl, we
simply convert a and fl to the clauses

G :- simplify(translates (a)),

G :- simplify(translates (fl)),

and compute the information gain of these clauses, using the same procedure
used by FOIL. It remains only to describe the set of designated refinements of
a sentential form.

3.2.2. Designated refinements o f a sen ten tial form
An obvious choice would be to let Designated_Refinements(a) return the set

of all sentential forms fl that can be derived by applying a single grammar rule
to a; in other words, to let

Designated_Refinements(a) = {fl: a =~ fl}.

I°For Grammatically REstricted Non DEductive Learner.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 321

function EFOIL(P, N) •
begin

while P is not empty do
find a concept that covers some positive examples
let Ci = Universal_Concept()
while Ci covers some negative examples do

R ,--- Designated__Refinements (Ci)
replace Ci with the C[E 7Z such that

Information_Gain (C[, Ci, P, N) is maximal
endwhile
replace P with P - ext (Ci)
add Ci to the hypothesis H

endwhile
return H

end

where to instantiate EFOIL as FOIL one uses
Universal_Concept () = G :- true,

where G is the goal formula,

Designated__Refinements (G :- B)
= {G :- B A L: literal L shares variables with G or B},

Information_Gain(C~, Ci, P, N) = as defined in the text,

and to instantiate EFOIL as GRENDEL one uses
Universal_Concept() - body(G),

where G is the goal formula,

Designated_Refinements (~)
+ +

-- {fl: a =~lin fl A the rule sequence of ~ ~lin fl is nonlooping,}

Information_Gain (~, fl, P, N)
= information gain of the corresponding clauses.

Fig. 6. The EFOIL algorithm.

However, this choice turns out to present difficulties for the EFOIL algorithm;
the problem is that often there will be two different designated refinements
fll and f12 that have identical extensions, but which lead to different areas of
the search space. In this case, the information gain heuristic will not be able
to make a sensible choice between fll and f12, no matter how large the set of
training examples.

To illustrate this problem, consider the possible refinements of the sentential
form rels(A, B, C,D, E, F) . There are two applicable rules, leading to either
the empty string [] or to the sentential form

rel(A,B, C , D , E , F) , r e l s (A , B , C , D , E , F) .

322 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

However, both of these correspond (after simplification) to the clause

illegal(A, B, C, D, E, F) :- true

and hence EFOIL can make no sensible choice between them. However, they
are radically different, as the second sentential form can be further refined to
many different reasonable hypotheses, while the first cannot.

This problem is solved by allowing the Designated_Refinement function to
return all fl that can be derived from a via a "nonlooping linear sequence" of
rewrites. Intuitively, a "linear sequence" of rewrites is a sequence of rewrites
in which each grammar rule rewrites a symbol that was introduced by the
immediately preceding rule; a nonlooping sequence of rewrites is one in which
no grammar rule is used more than once. By allowing the sequence of rewrites
to be of any length, we force the Designated__Refinements of any a to include
some sentential forms that contain e-terminals; hopefully, the information
gain criterion will be able to make sensible choices among at least these
possible refinements. However, by requiring the sequence of rewrites to be
linear and by not allowing recursive grammar rules to be used more than
once, we reduce the number of possible designated refinements to a reasonable
number; empirically, the branching factor of our learning algorithm (using
this Designated_Refinement routine) is comparable to the branching factor of
FOIL when the antecedent description language induces a comparable bias.

+ More precisely, let us define the relation =~lin as follows.
• I f a ~ f l , t h e n a ~ + ft. lin
• If

a = A1 A i - l ,A i , Ai+l , . . .An,
A i ~ ,

+
=~lin ~t,

and

f l = A1 A i - I , y t , A i + l , . . . , A n

then a ~ + ft. lin +
Finally, if a0 :=~lin an via the series of rewrites a0 ~ a~ =~ ... =~ an and for
each i, 1 ~< i ~< n, the rule A~ ~ fli was used to convert ai-1 to ai, we call the
sequence

A1 ~ f l , A2 ---* r 2 A n ~ Bin

+ the rule sequence of the derivation s0 =~lin an" A rule sequence is nonlooping
if all of the rules in the sequence are distinct.

The actual implementation of the Designated__Refinements subroutine can
now be succinctly described as follows:

Designated_Refinements (a)

- • + + f is nonlooping}. = { fl O~ ::~lin f l /k the rule sequence of a ~ lin

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 323

To return to our example, there are now many possible designated refine-
ments of the g-symbol rels(A, B, C, D, E, F) of our example grammar. Using

+ we see that we can derive the base case of the recursive definition of =~lin
either of the strings

[],
rel(A,B, C,D,E,F),rels(A,B, C,D,E,F).

However, since the derivation can be of any length, the set of designated
refinements of rels(A, B, C, D, E, F) also includes (some) strings formable by
rewriting these g-symbols. For example, the string

tel(A, B, C, D, E, F)

(formed by rewriting rels(A,B,C,D,E,F) to the empty string) is also a
designated refinement of rels (A, B, C, D, E, F). Note however that although

rel(A,B, C,D,E,F),reI(A,B, C,D,E,F),rels(A,B, C,D,E,F)

can also be derived from rel(A,B, C,D,E,F),rels(A,B, C,D,E,F), it is not a
designated refinement, since this derivation requires the rule

rels(A,B, C,D,E,F) -~ reI(A,B, C,D,E,F),rels(A,B, C,D,E,F)

to be used twice. As another example,

pred(A, A), rels(A, B, C, D, E, F)

is a designated refinement of rels(A, B, C, D, E, F), as it can be formed by
rewriting tel(A, B, C, D, E, F), rels(A, B, C, D, E, F) using the rule

reI(A,B,C,D,E,F) ~ pred(A,A).

However, pred(A, A) is not a designated refinement, since the derivation

rels(A, B, C, D, E, F)
=, reI(A,B, C,D,E,F),rels(A,B, C,D,E,F)
=~ rel(A,B,C,D,E,F)
=~ pred(A, A)

violates the linearity condition: in the last step, the g-symbol that was rewritten
was not introduced in the previous step. Fig. 7 lists the entire set of designated
refinements of rels(A, B, C, D, E, F).

3.3. An example

As an example, we will describe the behavior of GRENDEL using the
grammar of Fig. 1 and a particular sample of 100 randomly chosen examples.
(The reader may wish to refer to Fig. 6.) The sample contains 34 board

324 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

[]
reI(A,B, C,D,E,F) ,re ls(A,B, C ,D ,E ,F)
pred(A,A),rels(A,B, C ,D ,E ,F)

A = A, re ls (A,B,C,D,E,F)
-~(A = A),rels(A,B, C ,D ,E ,F)
adj(A, A), rels(A, B, C, D, E, F)
-~adj(A, A), rels(A, B, C, D, E, F)
less_than(A,A),rels(A,B, C ,D ,E ,F)
-~less_than(A, A), rels(A, B, C, D, E, F)

pred(A, B), rels(A, B, C, D, E, F)
A = B, re ls (A,B,C,D,E,F)
-~(A = B) , re l s (A ,B ,C,D,E ,F)

pred(A, C), rels (A, B, C, D, E, F)

pred(F, F), rels(A, B, C, D, E, F)
F = F, re ls (A,B,C,D,E,F)

-~less_than (F, F), rels (A, B, C, D, E, F)
rel(A, B, C, D, E, F)

Fig. 7. Designated refinements of rels(A, B, C, D, E, F).

positions which are illegal, and 66 which are not illegal. The examples are
encoded as labeled ground atoms

+illegal(O, 2,7,4,0, 1), +illegal(l, 1, 1,3, 1 ,0) , . . . % illegal positions

-illegal(O,O, 5,7,4,3), -illegal(O, l, 1 ,0 ,0 ,7) , . . . % legal positions

In the first iteration of the inner loop, GRENDEL begins with the start *-
symbol body(illegal(A, B, C ,D ,E ,F)) , which corresponds to the clause

illegal (A, B, C, D, E, F) :- body (illegal (A, B, C, D, E, F)).

Since body/1 always succeeds, this clause is simplified to

illegal(A,B, C ,D ,E ,F) :- true.

Since this clause covers some negative examples, GRENDEL next enumer-
ates the set of designated refinements of it: this set consists of the *-symbol
re ls (A,B,C,D,E,F) and all the refinements of it shown in Fig. 7. The re-
finement with maximum gain is the result of the following linear nonlooping
derivation:

W. I4. Cohen/Artificial Intelligence 68 (1994) 303-366

body(illegal(A,B, C , D , E , F))
=~ rels(A,B, C , D , E , F)

rel(A,B, C , D , E , F) , r e l s (A , B , C , D , E , F)
pred(C,E) , re l s (A ,B , C , D , E , F)
C = E, r e l s (A , B , C , D , E , F) .

325

This string of g-symbols corresponds (after translation and simplification) to
the clause

illegal(A,B, C , D , E , F) :- C = E

which has an information gain of 21.405. (Notice that the condition corre-
sponding to rels(A, B, C, D, E, F) is dropped, as it is known to always succeed.)
Intuitively, the clause says that a position is illegal if the white rook and the
black king are in the same rank. This is not quite true, since the white king
can be between the two; as it happens, however, there are no examples of this
in the sample. In all, the clause covers 14 positive example and no negative
examples; since it covers no negative examples, the inner while loop termi-
nates, the clause it is added to the hypothesis, and the positive examples that
it covers are removed.

In the second iteration of the outer while loop, GRENDEL again begins with
the start g-symbol body(illegal(A, B, C, D, E, F)) and, since it is not consistent
with the negative data, enumerates the designated refinements of it. The set of
refinements is the same as in the previous iteration; however, since the sample
is different, the information gain of each refinement will be different. On this
iteration, GRENDEL chooses the refinement

D = F, r e l s (A , B , C , D , E , F)

which corresponds to the clause

illegal(A,B, C , D , E , F) :- D = F.

This is a dual of the clause that was previously found; it says that a position is
illegal if the white rook and the black king are on the same file. It covers ten
of the remaining positive examples and one negative example, and has a gain
of 19.251. Since the clause still covers some negative examples, GRENDEL
will refine it further. On the next iteration of the inner while loop, GRENDEL
selects the refinement generated by the following derivation.

D = F, r e l s (A , B , C , D , E , F)
D = F, r e l (A , B , C , D , E , F) , r e l s (A , B , C , D , E , F)
D = F, p r e d (A , B) , r e l s (A , B , C , D , E , F)
D = F,-~A = B, r e l s (A , B , C , D , E , F) .

This qualification to the preceding clause excludes the single negative example
covered by the clause without excluding any of the positive examples. Intu-
itively, it says that a position is illegal if the white rook and black king are on

326 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

the same file, and the white king is not on the main diagonal; this is not a
correct refinement of the previous clause (relative to the target concept) but
it is very hard to tell this from the examples. GRENDEL thus adds the clause
that corresponds to this string of g-symbols to the hypothesis:

i l l e g a l (A , B , C , D , E , F) : - D = F A-~A = B.

24 of the 34 positive examples have now been covered.
Since more positive examples remain to be covered, GRENDEL will con-

tinue. On the next iteration of the outer while loop, GRENDEL will build the
clause

illegal(A, B, C, D, E, F) :- adj(B, F) A adj(A, E).

This clause covers another eight positive examples; it corresponds to the two
kings being next to one another or on the same location. Finally, the clause

i l legal(A,B, C , D , E , F) :- B = D A A = C

is built, which covers the last two positive examples. This clause is true if the
white king and rook are on the same location. Building each of these clauses,
of course, requires two iterations of the inner while loop.

Since there are no positive examples that are uncovered, the outer while loop
will terminate. The final hypothesis GRENDEL generates is the theory:

i l l e g a I (A , B , C , D , E , F) : - C = E.

i l legaI(A,B, C , D , E , F) :- D = F A -~A = B.

i l legal(A,B, C , D , E , F) :- a d j (B , F) A a d j (A , E) .

i l l e g a l (A , B , C , D , E , F) :- B = D A A = C.

These four clauses are certainly not an exactly correct definition of the illegal
predicate. The first clause is too general, the second clause is only approximately
correct, and several cases are missing: for example, a position is also illegal if
the black king and the white rook are on the same location. However, on the
whole the theory is quite accurate; testing the hypothesis on 5000 test cases
gives an error rate of only 1.68%.

We note in passing that our version of FOIL (which is implemented
by simply running the EFOIL procedure with different Universe and
Designated_Refinements procedures) learns almost exactly the same theory:
the only difference is the final conjunct of the final clause, which unfortunately
FOIL incorrectly guesses to be -~less_than (C, A) . 11 As a consequence, FOIL's
error rate on this problem is 5.32%.

11 The conditions ~less_than(C, A) and A = C discriminate equally well on the data. FOIL and
GRENDEL make a different choice simply because, while they both break ties in information
gain by using position in the enumeration of possible refinements, the Designated_Refinements
procedures they use enumerate refinements in different orders.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 327

4. Results for empirical learning problems

In this section, we will use antecedent description grammars to improve
performance on various types of empirical learning (or similarity-based learn-
ing) problems. The following section will use antecedent description grammars
to improve performance on various types of knowledge-based learning tasks.
The main purposes of these two sections are first, to show by example how
antecedent description grammars can be used, and second, to convince the
reader of the generality of our approach.

Most of the experiments we perform will be of the following type. First, we
will describe some type of background knowledge. Then, we will encode this
knowledge in an appropriate grammar, and demonstrate that GRENDEL can
use this knowledge effectively. In most cases, the type of background knowl-
edge that we consider has been previously described in the literature, and some
learning system exists that can use this sort of knowledge; in these cases, our
experiments can be viewed as using GRENDEL to perform a qualitative simu-
lation of the earlier system. (Or course, performing this qualitative simulation
usually means that we must show quantitative improvement as knowledge is
added to the learner.)

In this paper, we will distinguish between "active" and "passive" biases.
Background knowledge which actually restricts the hypothesis space, rather than
simply removing redundancy, is called an active bias. Background knowledge
that simply removes redundancy from a hypothesis space is called a passive
bias. In this section of the paper, we will consider passive biases and some
rather weak types of active bias, notably typing information. The next section
will consider stronger types of active bias, in particular active biases derived
from various sorts of background-knowledge theories.

4.1. Eliminating symmetries and vacuous conditions

One simple type of background knowledge is knowledge about how the argu-
ments to predicates can be instantiated. In particular, for the illegal problem,
there are terminal predicates which can be either vacuously true or vacu-
ously false: for example, less_than(X, X) always fails, and equal(X, X) always
succeeds. Avoiding such vacuous predicates is an example of a passive bias.
Similarly, since equal(X, Y) is logically equivalent to equal(Y, X), only one of
these predicates need be tested.

On the illegal problem, this sort of information can be encoded by first,
replacing the rule

rel(A, B, C, D, E, F) ~ pred(X, Y)
where member(X, [A, B, C, D, E, F]), member(Y, [A, B, C, D, E, F]).

with the rule

328 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

r e l (A , B , C , D , E , F) ~ pred(X, Y)

where subset ([X, Y], [A, B , C, D , E , F]) .

The subset predicate is implemented so that subset(L1, L2) is true if and only
if each element the list L1 appears in L2, and the relative order of the elements
in LI is the same as the relative order of the elements in L2; for example, the
goal subset([X, Y], [A, B, C]) has the three solutions

subset([A, B], [A, B, C]).

subset([A, C], [A,B, C]).

subset([B, C], [A, B, C]).

Thus the rules above ensure that the variables X and Y will be distinct and
in a canonical order in every g-symbol pred(X, Y) generated by the grammar.
Next, the rules for the pred(X, Y) are rewritten as follows:

pred(X, Y) - - , [X = Y].
pred(X, Y) - + [-~X = r] .

pred(X, Y) --+ [adj(X, Y)].

pred(X, Y) --+ [-~adj(X, Y)].
pred(X, Y) --+ [less_than(X, Y)] .

pred(X, Y) ---, [-qess_than(X, Y)] .
pred(X, Y) --+ [less_than(Y, X)].
pred(X, Y) ~ [-~less_than(Y,X)].

Notice that for the symmetric predicates equal and adj, only one order of
the arguments X and Y is allowed, whereas for the nonsymmetric predicate
less_than, either order is allowed. The modified grammar now generates no
feature predicates in which the arguments are the same, and only generates
one possible ordering of the arguments to the adj and equal predicates.

4.2. Predicate combinability constraints

Another way to bias a learner is to constrain how terminal predicates can be
combined; that is, to constrain the classes of predicates that can be conjoined
together. For the illegal problem, many combinations of predicates are either
vacuous or can be simplified to a single predicate. For example

X = Y Aless_ than(X,Y)

always fails, and

-qess_than(X, Y) /x -qess_than(Y, X) = X = Y.

In fact, given this set of feature predicates, it is not hard to see that there are
a very limited number of ways to relate two variables X and Y.

IV. W. Cohen/Artificial Intelligence 68 (1994) 303-366 329

(1) One can relate them by one of the ordering conditions less_than, equal,
or -,less_than.

(2) One can relate them by one of the adjacency conditions adj or -,adj.
(3) One can relate them with a conjunction of an ordering condition and

an adjacency condition.
Any other conjunction of predicates involving X and Y is either vacuous or

can be simplified to a relationship of the types described above.
To enforce this bias, a more substantial revision of the grammar must be

made. First, we will rewrite the first rule of the grammar of Fig. 1 as follows:

body(illegal(A, B, C, D, E, F)) --.
(rels (X, Y) where subset ([X, Y 1, [A, B, C, D, E, F])).

The "where" keyword here indicates another macro-expansion, parallel to the
expansion of rules: the rule above actually expands to a single rule with a very
long right-hand side:

body(illegal(A,B, C , D , E , F)) ---,
rels(A, B), rels(A, C), rels(A, D) , . . . , rels(E, F).

Again, use of the subset condition in the "where" goal means that every e-
symbol rels(X, Y) will have its arguments in a canonical order, and that they
will be distinct. We then rewrite the rules for rels to generate a conjunction of
one ordering condition and one adjacency condition:

rels(X, Y) --. ordering(X, Y) , adjacency(X, Y).

and finally define these new g-nonterminals as follows:

ordering(X, Y) ~ IX = Y].
ordering(X, Y) --. [less_than(X, Y)].
ordering(X, Y) --. [less_than(Y, X)].
ordering(X, Y) ~ [-~less_than(X, Y)].
ordering(X, Y) ~ [-~less_than(Y, X)].

adjacency(X, Y) --. [adj(X, Y)].

adjacency(X, Y) ~ [-~adj(X, Y)] .

Notice that since the predicates for ordering and adjacency always succeed,
either the ordering condition or the adjacency condition (or both) between two
variables X and Y can be effectively dropped by simply retaining that of the
nonterminal g-symbols ordering/2 or adjacency/2; for example, the sentential
forms

ordering(B, F) , adj (B, F)

330 W. W. Cohen~Artificial Intelligence 68 (1994) 303-366

simplify to the clauses

illegal(A, B, C, D, E, F) :- adj(B, F)
illegal(A,B, C , D , E , F) :- A = C

respectively. Thus, while the two rules

ordering(X, Y) ~ []
adjacency (X, Y) ~ []

could be added to the grammar, they are not necessary.

4.3. Typing information

Another form of background knowledge is typing information. In the illegal
problem, for example, the arguments of the predicate illegal(A, B, C, D,E) are
of two types: ranks and files. A natural constraint to impose is to insist that
the predicates equal, less_than and adj are only used between compatible types:
thus if R1 and R2 are variables denoting ranks and F is a variable denoting a
file, the literal R~ = R2 could be used in a hypothesis, but the literal RI = F
could not.

Although it is not obvious, constraining the predicates in this way is actually
an active bias. For example, if we impose the apparently reasonable constraint
that the arguments of equal are of the same type, it is no longer possible to
learn such concepts as

illegaI(A,B, C ,D,E) : - C = D

which represents the condition "the rook is on the main diagonal". However,
we will treat typing along with the other passive biases discussed above for
the following reasons. First, a priori knowledge of the argument types is an
extremely common occurrence in computer science generally. In particular,
it is not hard to believe that typing knowledge would be as or more readily
available than the sorts of knowledge of predicate semantics that enabled
us to impose the passive biases of the previous sections; thus, if one rates
types of background knowledge by how likely they are to be available, typing
information biases are comparable to the passive biases discussed above. The
second reason is methodological: we wish to compare our system to FOIL, and
comparing it to typeless FOIL is unfair in that typing information is not only
easy to add to a FOIL-type learner, but in fact has been added to the most
current version of FOIL [30].

To add typing information in the illegal problem, it is sufficient to replace
the rule

body(illegal(A, B, C, D, E, F))
(rels (X, Y) where subset ([X, Y], [A, B, C, D, E, F])).

I4. W. Cohen/Artificial Intelligence 68 (1994) 303-366 331

goal_formula (illegal(A, B, C, D, E, F)).

body(illegal(A,B, C , D , E , F))
rels(A, C), rels(A, E), rels(C, E), % relations between rank variables
rels (B, D), rels (B, F), rels (D, F). % relations between file variables

rels(X, Y) ~ ordering (X, Y) , adjacency (X, Y).

ordering(X, Y) --. [less_than(X, Y)].
ordering(X, Y) ~ [less_than(Y, X)].
ordering(X, Y) ~ [-~less_than(X, Y)].
ordering(X, Y) ~ [-~less_than(Y, X)].
ordering(X, Y) ~ [X = Y].
ordering(X, Y) ~ [-~X = Y].

adjacency(X, Y) ~ [adj(X, Y)] .
adjacency(X, Y) ~ [-~adj(X, Y) I .

Fig. 8. A second antecedent description grammar for the illegal problem.

with the rule

body(illegal(A,B, C , D , E , F))
(rels(X, Y) where subset([X, Y], [A, C,E])),
(rels(W,Z) where subset([W,Z], [B ,D ,F])).

This macro-expands to the rule

body(illegal (A, B , C, D, E, F))
rels(A, C), rels(A, E), rels(C, E),
rels (B, D) , rels (B, F) , rels (D, F).

Note that A, C and E are the rank variables, and B, D and F are the file
variables. The remainder of the grammar is unchanged; a complete grammar
incorporating all of the constraints discussed in the preceding sections is given
in Fig. 8.

4.4. Experiments with passive bias and typing

To test the value of the passive biases and typing biases described above,
we compared the performance of GRENDEL using the antecedent description
grammar of Fig. 8 to FOIL. The implementation of FOIL we used in these
experiments is an alternative instantiation of the EFOIL algorithm schema;
thus GRENDEL and FOIL share a large amount of code, which facilitates
CPU-time comparison of the two systems. We ran twenty trials: in each trial
100 king-rook-king positions were randomly selected, classified according
to their legality, and then provided as training examples to both FOIL and
GRENDEL. The resulting hypotheses were then tested against an independently

332 W. W. Cohen/Artificial Intelligence 68 (1994.) 303-366

Table 1
Effect of passive biases on illegal problem.

Learner Error (%) Search Time

FOIL 3.094 1347.4 208.5
Typed FOIL 1.986 656.4 127.7
Biased GRENDEL 1.336 314.2 45.7

Biased' GRENDEL 1.336 339.5 56.7
Biased' GRENDEL (2 new vars) 1.772 597.4 134.2
Unbiased GRENDEL 1.937 1408.7 229.8

chosen sample o f 5000 k ing- rook-k ing positions for accuracy. Passively biased
G R E N D E L had an average error o f 1.336%, while FOIL had an average error o f
3.094%; the difference between the two is statistically significant (t = 2.2381,
p > 0.975). 12 G R E N D E L also requires much less time than FOIL, averaging
46 seconds versus 209 (t = 29.2, p > 0.99), and searches a much smaller
space, checking an average o f 314 clauses versus 1347 (t = 16.4, p > 0.99). 13

Compar ing G R E N D E L to a typeless F O I L is somewhat unfair in that typing
informat ion is easy to add to a FOIL-type learner; in fact, typing has been
added to the most current version o f FOIL [30]. We also performed the
same experiment on a version o f FOIL that uses typing information. Typed
F O I L is much faster than F O I L on this problem, but it is still more than
twice as slow as G R E N D E L (with t = 37.6, p > 0.99 for t ime measurements,
and t = 17.5, p > 0.99 for search). In accuracy, typed FOIL also performed
better (t = 20.2, p > 0.99) than typeless FOIL, obtaining an average error
o f 1.986%; however, G R E N D E L still seems to be more accurate, although
the difference in accuracy just misses the 95% confidence level required for
statistical significance (t = 2.027, 0.900 < p < 0.950). 14

Table 1 summarizes these results. For comparison, we also summarize the
performance of G R E N D E L using several weaker biases. The row of the table
labeled "biased' G R E N D E L " indicates the performance of G R E N D E L us-

12Throughout, our measures of significance are based on using a 2-tailed t-test (or z-test, if there
are enough datapoints) on the difference of the two quantities, testing against the null hypothesis
that the average difference is zero. The value given for p is the confidence that the null hypothesis
should be rejected.
13The search space is the number of clauses whose information gain is computed; CPU time is
measured in CPU seconds on a SparcStation 1 +. In our implementation, computing information
gain dominates the time spent learning; however, since information gain of longer clauses is more
difficult to compute, run-time is not always strictly linear in the search space. The substantial
difference in CPU times between our implementation and Quinlan's is probably due largely to the
difference in implementation languages: our implementation is written in Prolog while Quinlan's
is written in C.
14The improved accuracy of GRENDEL over typed FOIL is somewhat surprising, as one would
expect passive biases to reduce the time complexity of learning, but not to improve learning speed.
The likely explanation of the difference is that while typed FOIL can introduce new variables in
the antecedent, GRENDEL (with this antecedent description grammar) cannot; thus GRENDEL
is searching a somewhat smaller space. The relative performance of unbiased GRENDEL and
FOIL (below) also suggests that this difference can affect accuracy.

W.W. Cohen/Artificial Intelh'gence 68 (1994) 303-366 333

ing a grammar that encodes typing constraints and predicate-use constraints,
but not predicate-combinability constraints; the reason for giving this result
separately is that we conjecture that it is easy to automate adding typing
and predicate-use constraints to a grammar, but that automatically adding
predicate-combinability constraints would be difficult. Biased' GRENDEL ob-
tains the same error rates as passively biased GRENDEL, but searches more
clauses (t = 13.9, p > 0.99) and requires more time (t = 19.6, p > 0.99).

The next row describes a still weaker bias, in which the grammar has been
additionally modified to allow one new rank variable G and one new file
variable H to be introduced in the antecedent of a rule; this is done by
replacing the grammar rules

body (illegal (A, B, C, D, E, F)) ~ rels (A, B, C, D, E, F)

re l s (A ,B ,C,D,E ,F) ~ []
re l s (A ,B ,C,D,E ,F) ~ r e l (A , B , C , D , E , F) , r e l s (A , B , C , D , E , F)

rel(A, B, C, D, E, F) ~ pred(X, Y)

where subset([X, Y] , [A, C, E])

rel(A, B, C, D, E, F) ~ pred(X, Y)

where subset([X, Y] , [B , D, F])

with the grammar rules

body(illegal(A,B, C , D , E , F)) ~ rels(A,B, C ,D,E ,F , G,H)

rels(A,B, C ,D,E,F, G,H) ~ []

rels(A,B, C ,D,E,F, G,H)
rel(A,B, C ,D,E,F, G,H),rels(A,B, C ,D,E ,F , G,H)

rel(A, B, C, D, E, F, G, H) ~ pred(X, Y)

where subset([X, Y] , [A, C, E, G])

rel(A,B, C ,D,E ,F , G,H) ---, pred(X, Y)

where subset([X, Y] , [B , D , F, H]).

This version of GRENDEL seems to be somewhat less accurate than biased'
GRENDEL, although the difference is not statistically significant; it also
searches more clauses (t = 16.1, p > 0.99) and requires more time (t =
26.6, p > 0.99). The main reason for considering this bias is that it demon-
strates that a grammatical bias can allow new variables to be introduced in the
antecedents of clauses; this issue will be returned to in Section 4.5.

Finally, the row labeled "unbiased GRENDEL" shows performance using
the weak bias imposed by the grammar of Fig. 1. GRENDEL's performance
with this weak bias is roughly comparable to untyped FOIL's performance:
its accuracy is better (t = 3.05, p > 0.99) and its search and run-time are

334 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

somewhat (about 10%) worse. ~5 The improvement in accuracy is due the fact
that unbiased GRENDEL introduces no new variables in a clause body, while
untyped FOIL may; thus unbiased GRENDEL is actually searching a somewhat
smaller search space. This statistic shows that allowing new variables degrades
accuracy in this domain; also, it is useful in evaluating the performance cost
that is paid in switching from FOIL, a relatively inflexible learning system,
to GRENDEL, a relatively flexible system, on problems where GRENDEL's
additional flexibility is not being used.

4.4.1. Testing generality with a second domain
The experiments reported in Table 1 show that passive biases improve

performance on the illegal problem. As a test of the generality of this technique,
we have applied it to a number of additional learning problems.

Eleusis 1, Eleusis 2, and Eleusis 3 are learning problems from the card game
Eleusis. The object of the card game of Eleusis is to learn a secret rule which
determines when a sequence of cards can be extended. In play, players attempt
to add to the sequence. Each new card is placed to the right of the last card if it
is a legal continuation, and underneath the last card otherwise; these new cards
become positive and negative examples, respectively, of the secret rule. The
three learning problems are based on three "layouts" which arose in human
play, taken from [11]; for these problems, we used the feature predicates that
were used in [28] to solve the same problems using the FOIL system. As it
turns out, similar typing, symmetries, and predicate-combinability constraints
can also be used in this domain.

Since the amount of data is small, we used the "leave one out" technique
[39] to estimate error rates. For a layout with n cards, n runs of each learning
system were made, where in each run, one of the n examples was withheld
during training and used as a test case. The average error rates for these n
runs was used as an estimate of the true error rate of the learning system's
hypothesis. The run-times and search spaces reflect the performance of the
learners given the full set of n examples.

The results of these experiments are shown in Table 2. For these examples,
passively biased GRENDEL shows a slight superiority in accuracy, and requires
substantially less time to learn than either typed or untyped FOIL. Because
the sample sizes are small, these results are not statistically significant.

4.4.2. Testing generality with random problems
Another experiment investigating the effects of passive bias and typing was

designed to test the thesis that the passive bias is indeed passive, and not some
sort of subtle encoding of conditions present in these four specific learning
problems. In this experiment, 50 target theories were generated randomly, 25
of them using the relations from the illegal problem, and 25 of them using

15The difference in run-time is statistically significant (t = 4.7, p > 0.99) but the difference in
search space is not.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

Table 2
Effect of passive biases on Eleusis problems

Problem Learner Error Search Time

Layout 1 FOIL 4/26 1198 59.7
Typed FOIL 4/26 258 14.3
Biased GRENDEL 4/26 167 9.5

Layout 2 FOIL 3/29 958 74.9
Typed FOIL 3/29 206 20.2
Biased GRENDEL 3/29 131 11.8

Layout 3 FOIL 2/29 958 54.3
Typed FOIL 1/29 206 13.4
Biased GRENDEL 1/29 132 9.5

335

Table 3
Effect of passive biases on random learning problems

Average

Learner Error (%) Search Time

Typed FOIL 1.174 390.02 123.87
Biased GRENDEL 1.074 199.02 32.22

the relations from the Eleusis problems. Each theory contained between one
and five clauses, and each clause contained between one and five conjuncts.
The generated theories were nonrecursive and contained no variables in the
antecedents of any clause that were not also in the body of the clause; also
typing constraints were obeyed, and efforts were made to ensure that the
random theories did not contain meaningless conditions. Otherwise, however,
no constraints were placed on the generated theories. Training was done on
a sample of size proportional to the complexity 16 of the target theory, and
hypotheses were tested by testing against an independently chosen sample of
1000 examples.

Table 3 summarizes the results of this experiment. Using the passive bias,
GRENDEL seems to give a slightly better generalizations than typed FOIL,
although this difference is not statistically significant. However, it obtains
these generalizations much more quickly than FOIL does, searching about
half the space in about a quarter of the time. These results are statistically
significant (z = 2.27, p > 0.975), indicating that biased GRENDEL really
does outperform FOIL on problems randomly chosen from this distribution.

4.4.3. A comparison to FOCL's predicate use constraints
The FOCL learning system [25,26] also includes a mechanism for con-

straining FOIL (on which it is based) with information such as typing in-
formation, information about which predicates must have distinct arguments,

16In particular, we followed the methodology of Pagallo and Hassler [24] by generating n/e
examples for a target concept of description length n. For these experiments, e was fixed at 0.3,
and the number of examples generated ranged from 50 to 780.

336 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

Table 4
Comparison of passive biases to FOCL mechanisms
Learner Search

Untyped FOIL (from [26]) 10,366
FOCL (from [26]) 711
Biased GRENDEL 585

and information about which predicates are symmetric. Antecedent description
grammars provide a different means of doing the same thing. Our approach
differs from Pazzani and Kibler's in two ways: first, it can be used to en-
code many other biases as well, and second, it can encode information (like
predicate-combinability information) which FOCL cannot encode.

A final experiment with passive biases compares GRENDEL using typing
and passive biases to FOCL. In order to do this, we will consider the variant of
the illegal problem described in [26]. In this problem, the feature predicates
are equal, adj, and between, where between is defined 17 as

b e t w e e n (X , Y , Z) - (X < Y < Z) x/ (X > Y > Z) .

A grammar for this problem was constructed which enforces predicate-
combinability constraints and recognizes various redundancies of the types
described above. All of the constraints described in [26] were incorporated
into the grammar, as well as some additional constraints, such as the predicate
combinability constraints and the symmetry

b e t w e e n (X , Y, Z) =- b e t w e e n (Z , Y, X)

which cannot be encoded in FOCL. (FOCL has no mechanism for limiting
how predicates can be conjoined, and allows declaration of only a few types
of symmetry.)

When given a random sample of 641 examples, FOCL's constraints reduced
the search space from 10,366 clauses (for a version of untyped FOIL) to
711. GRENDEL's typing constraints and passive biases reduced the search
space by an additional 18%, to 585 clauses, on the same random sample;
these results are summarized in Table 4. Both GRENDEL and FOCL output
100% correct hypotheses. This suggests that GRENDEL with a passive-bias
grammar will search a smaller space than FOCL with typing and predicate-use
constraints (but without a domain theory); this is a direct consequence of
the fact that GRENDEL's grammatical biases allow more types of knowledge
about predicate usage to be used. 18

17 It should also be noted that Pazzani and Kibler use a slightly different definition of adj than
Quinlan does (and hence, different from our previous version of the illegal problem). If ranks
and files are encoded as integers between one and eight, Quinlan's definition of adjacency is
adj(X, Y) - IX - YI ~< 1 whereas Pazzani and Kibler's definition is adj(X, Y) - I X - Y] = 1.
is The author would like to thank Michael Pazzani for providing the data used in this experiment.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 337

4.5. Relational clichbs

Another type of knowledge which may be useful in learning is knowledge
of common programming constructs in the concept description language. For
GRENDEL, the concept description language is a subset of Prolog; hence
knowledge of Prolog's "programming clichrs" may be useful in learning. An
example of such a programming clich6 is the class of conjunctions of the form

P (Xl , Xi Xk) A comparator(Xi, n)

where Xi is a new (previously unbound) variable and n is a numeric constant,
and comparator is some numeric comparison operator, like greater_than or
less_than. A second example of a programming clich6 is the class of conjunc-
tions of the form

r(Xl Xi Xk) A goal(. . . . X i , . . .)

where r is a predicate that brings some argument closer to the base case (e.g.,
r finds the tail of a list, or the predecessor of a natural number) and then
binds the new value to Xi, goal(. . . , Xi) is a recursive call to the predicate
goal, and all of the arguments except Xi in the recursive call to goal are the
same as in the initial call to goal.

An extension to FOIL that takes advantage of programming clichrs such as
these is described in [34]. Silverstein and Pazzani call the first type of clich6
a threshold comparator clichk, and the second type a recursive clichk; several
other types of clichrs are also described in [34]. For reasons discussed in
[34], such clichrs are necessary in learning some types of relational concepts;
Silverstein and Pazzani thus call them relational clichbs.

This type of background information can be encoded in an antecedent
description grammar in a straightforward manner. For instance, to use recursive
clichrs, one first defines a nonterminal e-symbol rels which expands to all
possible strings of conditions that can be placed on the input arguments (an
example of this is the definition of rels used in the grammar of Fig. 1.) One
then defines a nonterminal g-symbol clichb which expands to any of the possible
instantiations of the recursive clichr; finally, one defines the start symbol as

body(goal(X1 Xn)) ~ rels (X1 , Xn), cliche(X1,. . . , Xn).

As an example, Fig. 9 gives the antecedent description grammar for learning
the recursive predicate l ist(X), which is true if X is a null-terminated list.
We follow [28] in insisting that the hypotheses must use only the following
predicates:

• components(A,B, C): B and C are the head and tail of A,
• null(A): A is the empty list.

338 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

goal_ formula (list(X)).

body (list (X)) ~ rel (X) , cliche (X) .
r e l (X) ~ [n u l l (X) l.
r e l (X) ~ [-~nul l (X)].
c l i c h e (X) ~ [c o m p o n e n t s (X , Y, XI), l ist(X1)].
c l i c h e (X) ~ [].

Fig. 9. Antecedent description grammar for learning list.

Table 5
Learning using recursive clich6s
Problem Learner Correct? Search Time

List Typed FOIL yes 21 1.03
GRENDEL yes 11 0.47

Member Typed FOIL yes 49 2.77
GRENDEL yes 17 1.03

Also, recursive invocat ions of the goal predicate are allowed. 19 In this simple
problem, there are only two relations that can be t e s t ed - -X can be either
null or nonnu l l - - and only one possible recursive clich6.20 To investigate
the utility of the recursive clich6, as def ined by Silverstein and Pazzani, we
a t tempted to duplicate Quinlan 's experiments in learning recursive concepts
using FOIL [28]. Only two o f the four predicates, list and member , can
be represented by Silverstein and Pazzani 's recursive clich6; this suggests,
perhaps, that this defini t ion o f recursive clich6 is overly specific. The data
for the list learning task consists o f all the possible sublists o f the structure
[b, [a] , d] as positive examples, and [e l f] as the sole negative example;
the data for the m e m b e r task consists o f all membership relationships over
the list [a,b , [c]] and its subcomponents . The results are summar ized in
Table 5. Both FOIL and G R E N D E L were always able to learn the correct
concepts f rom this data; however, G R E N D E L learned them somewhat more
quickly.

The threshold compara tor clich6 is perhaps a more interesting extension, as
it allows G R E N D E L to learn a class o f concepts which FOIL cannot learn
at all: concepts which require threshold tests. FOIL is unable to learn such
concepts for two reasons. First, threshold tests are not encoded in function-
free Horn clauses (as numerical constants are actually 0-ary funct ion symbols) .

19One problem in allowing recursive copies of the goal predicate is that theorem proving cannot
be used to determine if this recursive call will succeed, since of course the definition of the goal
predicate is unknown. Following Quinlan's FOIL system, we use the examples to determine if
the goal predicate succeeds; the predicate goal(Xl,. . . , Xn) is considered to succeed if and only if
there is a positive example goal(Xl Xn).
2o We are assuming the following type declarations: n ull (list Type), components (list Type, object Type,
listType), list(listType), and member(objectType, listType). FOIL was given the same type decla-
rations in the experiments.

Iv. w. Cohen/Artificial Intelligence 68 (1994) 303-366 339

goal_ form ula (variety (I r i s)) .

varie ty(Ir is) ~ cl iches(Ir is) .

c l iches(Ir is) ~ [] .
cl iches(Ir is) ~ c l iche(Ir is) , c l iches(Ir is) .

c l iche(Iris) ~ [sepal__length (Iris, X) , X < Th]
c l iche(Ir is) ~ [sepal_length (Iris, X) , X > Th]
c l iche(Ir is) --, [sepal__width(Iris, X) , X < Th]
cl iche(Iris) ---, [sepal_width(Ir is , X) , X > Th]
c l iche(Ir is) ~ [petal_length(Iris , X) , X < Th]
cl iche(Iris) ~ [petal_length(Iris , X) , X > Th]
c l iche(Ir is) ~ [petal_width(Ir is , X) , X < Th]
c l iche(Ir is) ~ [petal_width(Ir is , X) , X > Th]

where m e m b e r (T h , [20 44]).
where m e m b e r (T h , [20, . . . , 44]).

where m e m b e r (T h , [43 ,79]).
where m e m b e r (T h , [43 ,79]).
where m e m b e r (T h , [1 , . . . , 25]).
where m e m b e r (T h , [1 ,25]).
where m e m b e r (T h , [11 ,67]).
where m e m b e r (T h , [11, . . . , 67]).

Fig. 10. Antecedent description grammar for the iris problem.

More importantly, neither of the two predicates in the threshold clich6 has
any information gain taken individually; this means that FOIL's greedy search
strategy will not be able to construct such a conjunction. It is only when the
predicates are considered in pairs that the information gain metric can be used
to make a sensible choice between them.

To verify that threshold clich6s actually do enable GRENDEL to learn
threshold concepts, we applied GRENDEL to the classic problem of learning
to distinguish between various types of irises [14]. The grammar for this
experiment, which is shown in Fig. 10, allows each rule to be a string of
threshold tests on the four attributes sepal length, sepal width, petal length,
and petal width. The possible threshold values listed in the grammar are
all of the numeric values that actually appeared for that value in the train-
ing data. The dataset consists of 150 examples classified into one of three
classes. A random sample of 44 examples was extracted to use as test data,
and the remainder was used as training data. Since GRENDEL learns bi-
nary predicates, we used GRENDEL to learn each of the three classes in
turn.

As FOIL cannot learn concepts that include numerical threshold tests, we
compared GRENDEL's to Quinlan's C4.5 program [29] on the same partition.
Although C4.5 can learn multiclass concepts, for the purpose of comparison,
we used it in the same manner that GRENDEL was used: a definition for
each class was learned in turn, using nonmembers of that class as negative
examples.

The results of the experiment are summarized in Table 6. Using the threshold
comparator clich6, GRENDEL does quite well in generating accurate hypothe-
ses; this is somewhat surprising, given that GRENDEL has no mechanism for
coping with noise. However, GRENDEL is orders of magnitude slower than
C4.5. Some of this difference is due to differences in implementation language:

340 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

Table 6
Learning using threshold comparator clichrs

Problem Learner Error Search Time

C4.5 0/44 - - 0.1
Setosa C4.5 (pruning) 0/44 - - 0.1

GRENDEL 0/44 214 152.8

C4.5 4/44 - - 0.1
Versicolor C4.5 (pruning) 3/44 - - 0.1

GRENDEL 3/44 1665 603.1

C4.5 4/44 - - 0.1
Viginica C4.5 (pruning) 3/44 - - 0.1

GRENDEL 3/44 1873 623.3

C4.5 is written in C, while GRENDEL is written in Prolog. However, some of
the difference is probably due to the overhead of using tuple-based measures of
hypothesis quality rather than the simpler example-based measures of quality
employed by C4.5.

We also note that many other learning techniques show good performance
on this dataset [39, pp. 152-153]. As another aside, the experiments with the
iris data are also interesting because they are a real-world dataset, whereas
most of the experiments described in this paper deal with artificial learning
problems.

To summarize the results of this section, although we have not compared
GRENDEL's performance to the extension of FOIL which makes use of clichrs,
GRENDEL appears to be quite competent at making use of programming
clich6 knowledge. This competence has been demonstrated on three problems
using two different types of clichrs. GRENDEL's main advantage is that this
knowledge is made use of by a uniform mechanism rather than a special-
purpose one. However, there are some advantages to be gained by applying a
special-purpose mechanism to this task; for example, Silverstein and Pazzani's
system caches those instantiations of a clich6 that were actually used in a
learning problem, which may improve performance on later, similar, learning
problems.

5. Results for learning from theory and data

The types of background knowledge discussed in the previous section are
in one sense unusual; most recent research on using background knowledge
in learning has focused on background knowledge that is represented as a
logical theory [2, Part VII]. In this section, we will demonstrate that an-
tecedent description grammars can be used to capture these types of back-
ground knowledge as well; in particular, we will show how several well-known
algorithms that learn from theory and data can be emulated by GREN-
DEL.

w. Iv. Cohen/Artificial Intelligence 68 (1994) 303-366 341

drinking_vessel (X) ~ stable (X), liftable (X) , open _vessel (X).
s table(X) ,-- bot tom(X, B) , f l a t (B) .
open_vessel(X) ,-- concavity (X, C), upward_poin ring (C) .
liftable(X) ~ graspable(X) , l ight(X) .
graspable(X) ,--- handle(X, H).
graspable(X) ,-- smal l_width(X) , insulating(X).

5.1. Emulat ing IOU

Fig. 11. Theory for "drinking vessel".

The first knowledge-based learning system that we will use GRENDEL
to emulate is Induction Over the Unexplained (IOU) [22]. The idea that
underlies IOU is that sometimes we are interested in learning concepts such
that some aspects of concept membership can be explained, but some aspects
are conventional. For example, a shot glass has some features that are easy
to explain (such as a fiat bottom so that it is stable) and some that are
conventional and difficult to explain (such as the fact that it holds 1.5 fluid
ounces). IOU uses an overgeneral theory to learn such concepts; in this case,
it might use a theory defining "drinking vessel" to learn various types of
drinking vessels, such as a shot glass: such a theory, taken from [22], is shown
in Fig. 11.

The IOU algorithm works as follows. First, negative examples that are
not accepted by the theory are discarded (in this case, examples that are not
drinking vessels). Second, features of the remaining examples that were used in
the theory are discarded: in this example, all features except for color, volume,
and shape are discarded. Finally, a standard inductive learning algorithm is
invoked on the remaining examples, as described by the remaining features.

We will illustrate our emulation of IOU with the same example used to
illustrate IOU. To encode the problem of learning "cup" from "drinking vessel",
a very simple antecedent description grammar can be used. First, we constrain
hypotheses to contain only conditions concerning the unexplained features
color, volume, and shape, as well as the feature of being a drinking vessel.

body(cup (X))

[drinking_vessel (X)], color_cond (X), volume_cond (X), shape_cond (X) .

Next, we define the new g-nonterminals. For example, a volume_cond can
expand to any of the possible volumes, or to the empty string.

volume_cond(X) ~ [smal l (X)].
volume_cond (X) --. [t iny(X)].
volume_cond(X) --. [large(X)].
volume_cond(X) ---, [] .

The g-symbols color_cond and shape_cond are defined analogously.

342 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

Consider the operation of GRENDEL using the antecedent description lan-
guage. Since drinking_vessel(X) must appear in every clause of the hypothesis,
examples that are not accepted by the drinking_vessel theory can never be in-
cluded; thus, they are effectively discarded. Notice that IOU also discards these
examples. The features used to separate the remaining positive examples from
the remaining negative examples are precisely the features that IOU would use.
Thus, this is a very close emulation of IOU. The only difference is that a differ-
ent similarity-based learning algorithm is used for the final inductive learning
step; we use a FOIL-like algorithm while Mooney and Ourston use ID3.

The hypothesis that GRENDEL finds using this grammar and the training
data of [22] is

cup(A) :- drinking_vessel(A), small(A).
This is the same as the simplest description generated by IOU. For this small
example, GRENDEL tests 13 clauses in 0.4 CPU seconds.

One difference between GRENDEL and IOU is that GRENDEL's grammar
explicitly states the relation between the background theory for drinking_vessel
and the target theory. IOU requires no such explicit statement; instead, the
relationship between background theory and target theory is assumed by the
algorithm.

Although we have not done so, it seems likely that the procedure for gen-
erating the antecedent description grammar for IOU-type theories can be
automated for fairly broad classes of background theories. The difficult part
of such a procedure would be analyzing the theory to see which features are
"unexplained"; if nothing else, this could be done empirically, as in [22], by
actually explaining the training examples with the theory.

5.2. Emulating A-EBL

A-EBL [9,6] is another knowledge-based learning system that uses an over-
general theory: that is, a theory defining a concept that is a superset of the target
concept. The intuition behind A-EBL is that sometimes we have background
knowledge that is sufficient to allow us to generate "plausible explanations" as
to why an object is a member of the target concept, but that is not sufficient to
tell us which of the explanations are actually correct. A-EBL takes as input a
theory expressing this sort of background knowledge and a set of training data,
and tries to come up with a set of "good" explanations; these explanations are
generalized using explanation-based generalization (EBG) [10,20] to form a
generalization of the examples.

As an example of a problem to which A-EBL is suited, suppose that we have
the following background knowledge about the task of bidding in the game of
contract bridge, z~

21 Contract bridge is a card game played by two partnerships of two persons each. Bridge play is
preceded by dealing a hand of 13 cards to each player and then conducting an auction in which
partnerships compete for the fight to name the t rump suit; each bid in the auction is a number and a
suit name. For the purposes of this example, the number can be assumed to always be equal to one.

W. IV. Cohen/Artificial Intelligence 68 (1994) 303-366 343

• A suit is biddable if the hand contains 4 or 5 cards in that suit.
• If a hand contains two biddable suits, then there are two rules for choosing

between them. In some circumstances, one chooses the longer suit of the
hand, where the length of a suit is the number of cards of that suit the
hand contains; in other circumstances, one chooses the higher suit of the
hand, where higher refers to the following ordering: clubs (low), diamonds,
hearts, spades (high).

With this background knowledge, it may be that given an example of the
concept correct_bid one can construct several explanations justifying the cor-
rectness of the bid. For instance, given the positive example

+ correct_bid(&KQ984q~3~AJ546KJ6, spade)

one can construct two explanations for why the bid is correct.

Explanation 1. Spades are biddable because there are five spades, diamonds
are biddable because there are four diamonds, and spades is preferred because
it is the higher suit.

Explanation 2. Spades are biddable because there are five spades, diamonds
are biddable because there are four diamonds, and spades is preferred because
it is the longer suit.

From the theory and this single example, there is no way of telling which of
these explanations is the correct one. However, further examples can help in
differentiating these explanations; for instance, the negative example

-correct_bid(6KQ84¢)3~ AJ9546KJ6, diamond)

suggests that Explanation 2 was incorrect, since Explanation 2 could also be
used to justify this incorrect bid. Additional positive examples might also
give information, as they might give additional support to one of the two
explanations.

The A-EBL algorithm works as follows. First, one constructs all possible
explanations for the positive examples using the background theory, and gen-
eralizes these explanations using EBG. The result of this step is a (possibly
large) set of candidate rules; for example, if the background knowledge above
is codified into the theory for plausible_bid shown in Fig. 12, the example set

+ correct_bid(6KQ984¢)3<> AJ 54&KJ6, spade)
-correct_bid(6KQ84¢) 3(k AJ9546KJ6, diamond)

would generate the two candidate rules

plausible_bid(Hand, Suit1) :-
five_cards (Suit 1)/x four_cards (Suit2) A higher (Suit 1, Suit2).

plausible_bid(Hand, Suit1) :-
five_cards(Suit1) A four_cards(Suit2) A longer(Suit1, Suit2).

344 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

Overgeneral theory:

plausible_bid(Hand, Suit) :-
biddable(Hand, Suit l) A biddable(Hand, Suit2) A
prefer(Hand, Suit l, Suit2).

biddable(Hand, Suit l) :-four_cards (Hand, Suit).
biddable (Hand, Suit I) :- five_cards (Hand, Suit).

prefer(Hand, Suit l, Suit2) :- longer(Hand, Suit l, Suit2).
prefer(Hand, Suit l, Suit2) :- higher(Hand, Suit l, Suit2).

The predicates four_cards, five_cards, longer, and higher are "operational"

Antecedent description grammar:

body(correct_bid(Hand, Suit)) ~ plausible_bid(Hand, Suit).

plausible_bid(Hand, Suit) --,
biddable (Hand, Su it I), biddable (Ha nd, Suit2), prefer (Hand, Su it I, Suit2).

biddable(Hand, Suit l) ~ [four_cards(Hand, Suit)].
biddable(Hand, Suit l) --+ [five_cards(Hand, Suit)].

prefer(Hand, Suit l, Suit2) ~ [longer(Hand, Suit l, Suit2)].
prefer(Hand, Suitl, Suit2) ~ [higher(Hand, Suitl, Suit2)].

Fig. 12. Theory and antecedent description grammar for a simple bridge problem.

A-EBL then filters this set of rules by testing them against the negative data;
in this example, the second rule would be discarded. The final step is to use
set cover techniques to come up with a relatively small set of the surviving
rules that covers all the positive data; in this example, this consists of simply
choosing the first rule. These rules are used as the definition of the target
concept (in this case correct_bid); thus in this example, A-EBL would return
the hypothesis

correct_bid(Hand, Suit l) :-
five_cards(Suit1) A four_cards(Suit2)/x higher(Hand, Suit1, Suit2).

In the introduction, we stated that there is a close connection between gram-
matically biased learning and the type of theory specialization performed by
A-EBL; by virtue of this connection, antecedent description grammars can very
easily encode A-EBL's hypothesis space. Like GRENDEL, A-EBL's hypothesis
is a set of Horn clauses. For this theory, each such clause consists of three
conditions: a "biddability condition" justifying the biddability of the first suit,
which can be either a four_cards or a five_cards predicate; an analogous condi-
tion justifying the biddability of the second suit; and a "preference condition",
which is expanded to either a higher or a longer predicate. An appropriate
grammar is shown in Fig. 12; to emphasize the similarity between it and the

w.w. Cohen/Artificial Intelligence 68 (1994) 303-366 345

theory used by A-EBL, I have introduced a terminal called plausible_bid that
expands to all of the partial operationalizations of the plausible_bid predicate,
and I have used the name biddable for the / -nontermina l that expands to a
"biddability condition" and prefer for the /-nonterminal that expands to a
"preference condition".

The relationship between A-EBL's overgeneral theory and the GRENDEL
grammar is thus extremely close: in fact, except for simple syntactic changes,
they are identical. In fact, the A-EBL theory is precisely the theory Thg
which defines the semantics of the nonterminal symbols of the grammar
G. This correspondence is no accident; it is a result of the correspondence
between grammar-rule rewrites and Horn clause theorem proving discussed in
Section 2.6. In particular, this correspondence means that a sentential form
of a grammar G is identical to a partial operationalization o f The, and that a
sentence o f G is identical to a rule formable from Th~ by applying EBG to an
example. This observation leads to the following approach to emulating A-EBL
with GRENDEL: given an A-EBL learning problem with a background theory
To, construct a grammar Go such that Th% = To, and use this grammar as the
input to GRENDEL.

One of the problems to which A-EBL has been applied is a more realistic
version of the bridge bidding problem described in the example above [6].
The background knowledge for this problem is a medium-sized (124-clause)
theory defining the concept "plausible bid" which was manually extracted from
a textbook on playing contract bridge [33]; the goal of learning is to specialize
this theory to a definition of the concept "correct bid". The training data
consists of 45 sample hands, also presented in the textbook, from which were
taken 46 correct and 16 incorrect bids. The test data consists of 16 hands
taken from a self-test in the same book. As in [6], a hypothesis was judged
to be correct on a test problem if it did not suggest any incorrect bids, and
suggested at least one correct bid.

A-EBL applied to this problem returns, in 105.4 CPU seconds, a hypothesis
that is correct on 14 of the 16 test cases. ANA-EBL [6], a variant of A-EBL
that tests some nonoperational clauses as well, can improve the accuracy to 15
of 16 test cases; in doing so run-time is degraded to 229 CPU seconds, with
the k parameter set to k = 1, or to 949.8 CPU seconds, with the k parameter
set to k = 2. Given the same inputs, GRENDEL returns a hypothesis that is
perfect (16 of 16 correct) on the test cases; however, GRENDEL requires more
time than any of the variants of A-EBL in finding this hypothesis, testing 1365
clauses in 3193.2 CPU seconds. GRENDEL's longer run-time results from the
fact that GRENDEL searches a larger hypothesis space than A-EBL: GREN-
DEL's hypotheses also include partial operationalizations of the initial theory
as well as full operationalizations. Testing these partial operationalizations is
also more expensive than testing fully-operationalized rules (as A-EBL does)
or rules that are almost fully operationalized (as ANA-EBL does).

As a further test of GRENDEL's ability to emulate A-EBL, we also measured
GRENDEL's performance on randomly generated examples of the correct_bid

346 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

T a b l e 7
C o m p a r i s o n o f G R E N D E L a n d A - E B L

P r o b l e m L e a r n e r E r r o r Sea rch T i m e

A - E B L 2 / 1 6 - - 105.4

f ixed A N A - E B L (k = 1) 1 / 1 6 - - 229 .0

d a t a s e t A N A - E B L (k = 2) 1 / 1 6 - - 949 .8
G R E N D E L 0 / 1 6 1365 3193.2

A - E B L 14.3 - - - -

60 r a n d o m A N A - E B L (k = 1) 9.3 - - - -
G R E N D E L 12.6 434 .4 925 .0

A - E B L 8.9 - - - -

120 r a n d o m A N A - E B L (k = 1) 6.4 - - - -
G R E N D E L 9.6 757 .0 2654 .5

concept. We used the example generator described in [5] to generate random
training sets of 60 and 120 examples, and then tested the accuracy of the
hypotheses that GRENDEL produced against an independently generated set of
1000 test cases. These experiments were repeated 10 times and the results were
averaged. The results of these experiments are shown in Table 7. They show that
GRENDEL may not actually generalize more rapidly than A-EBL, as the fixed
data suggests; on the random data, its accuracy is statistically indistinguishable
from A-EBL, and statistically significantly worse (with t = 2.3, p > 0.95 for
the 60-example case and t = 2.7163, p > 0.95 for the 120-example case) than
ANA-EBL with the k parameter set to 1. (Raising the k parameter of ANA-
EBL to k = 2 yields a slight but statistically significant improvement relative
to k = 1 for this dataset [6].) These results are summarized in Table 7.

To summarize, GRENDEL can be used to emulate A-EBL, and constructing a
grammar for the emulation can be done automatically, using a simple syntactic
transformation of the domain theory; this simple transformation has in fact
been automated. Using the grammar, GRENDEL searches a strictly larger space
than A-EBL or any of its variants. One advantage of GRENDEL over A-EBL
is that it does not explicitly enumerate all of the proofs for an example; hence
GRENDEL, unlike A-EBL, does not require that the number of proofs for a
example be bounded. (For example, A-EBL could not be used to specialize
the theory of Fig. 3.) An advantage of A-EBL is that there are mathematical
guarantees of its performance [9]; the experiments indicate that it is also more
efficient in time and sample complexity than GRENDEL.

The similarities between GRENDEL and A-EBL are perhaps more interesting
than the differences: although the learning algorithms themselves are quite
different, A-EBL's brand of theory specialization is, in an important sense,
equivalent to the grammatically biased learning performed by GRENDEL. A
grammatical bias is thus revealed to be simply a new metaphor for the old idea
of theory specialization. This issue will be raised later in Section 6.4, when
we discuss the relative advantages of the two metaphors; from a practical
point of view, however, the question of which metaphor is more appropriate

w. IV. Cohen/Artificial Intelligence 68 (1994) 303-366 347

1) illegal(A,B, C ,D,E ,F) :- same_location(A,B, C,D).
2) illegal(A,B, C ,D,E ,F) :- same_location(A,B,E,F).
3) illegal(A, B, C, D, E, F) :- same_location (C, D, E, F).
4) illegal(A, B, C, D, E, F) :- king_attacks_.king(A, B, E, F).
5) illegal(A, B, C, D, E, F) :- rook_attacks_king(A, B, C, D, E, F).

6) same_location (W, X, Y, Z) :- W = Y A X = Z.
7) king_attacks_king(A, B, E, F) :- adj(A, E)/x adj(B, F).

8) rook_.attacks_king(A,B, C ,D,E,F) :-
C = E A king_not_between_file(A, B, C, D, E, F).

9) rook_attacks_king(A, B, C, D, E, F) :-
D = F/x king_not_between_rank(A, B, C, D, E, F).

10) king_not_between_file(A, B, C, D, E, F) :- -~A = C.
1 1) king_not_between_file(A, B, C, D, E, F) :- A = C/x -~between(D, B, F).

12) king_not_between_rank(A, B, C, D, E, F) :- -~B = D.
13) Icing_not_between_rank(A, B, C, D, E, F) :- B = D/x -,between (C, A, E).

14) between(X, Y, Z) :- less_than(X, Y) A less_than(Y, Z).
15) between(X, Y, Z) :- less_than(Z, Y)/x less_than(Y, X).

Fig. 13. A complete theory for the illegal problem.

can be avoided by allowing the user to make use of either. In the current
implementation of GRENDEL clauses of the form A :- B are automatically
converted to grammar rules A ~ B if they are declared by the user to be
part of the "domain theory". Thus GRENDEL supports either a clause-like or
grammar-rule like syntax for its background knowledge, or a mix of clauses
and grammar rules; for example, GRENDEL would accept either of the two
formats shown in Fig. 12.

5.3. Learning from an incomplete theory

Both A-EBL and IOU work by specializing theories that are overgeneral: that
is, theories that define supersets of the target concept. We turn our attention
now to a second type of theory: a theory that contains some, but not all of the
clauses of the target theory. Such a theory will be called an incomplete theory.

For example, consider the theory of Fig. 13. This theory is a complete and
correct definition of the illegal predicate used in previous examples; if we
remove any of the clauses of this theory, the result will be an incomplete
theory for the goal concept illegal. The motivation for studying this problem
is that there may be situations in which some subconcepts used in a defining
a concept are either unknown or imperfectly known.

We will consider two ways for a theory to be incomplete: it can be missing
predicates "from the top" or "from the bottom". An example of the first type

348 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

of theory would the theory of Fig. 13 with clauses t-5 deleted: such a theory
contains complete definitions of some of the predicates that are part of the
goal predicate, but does not actually contain a definition of the goal predicate.
An example of a theory that is incomplete "at the bottom" is obtained by
deleting clauses 10-15 of the theory of Fig. 13: such a theory contains a
correct definition of illegal in terms of lower-level predicates, but does not
include definitions of all of the lower-level predicates.

Learning using an incomplete theory that is missing predicates "from the
top" is actually no different from the learning task attacked by FOIL: in both
cases, one is attempting to construct a definition of the goal predicate using
a fixed set of feature predicates. Thus this knowledge-based learning problem
can be solved by applying standard inductive learning techniques to a larger
set of feature predicates. 22

The more interesting case is an incomplete theory that is missing predicates
"from the bottom". How can GRENDEL make use of such an incomplete
theory? As in constructing the emulation of A-EBL, we will consider an in-
complete theory, determine the constraints that incomplete theory places on
the clauses of the target theory, and finally express these constraints in an
antecedent description grammar.

The incomplete theory that we will consider as an example is the theory that
contains clauses 1-9 of the theory of Fig. 13. The first four clauses of this
theory contain only completely-defined predicates; thus these clauses should be
included in GRENDEL's hypothesis. One way to encourage 23 GRENDEL to
do this is to include the following rules in the antecedent description grammar:

body(illegal(A, B, C, D, E, F)) ~ [same_location(A, B, C, D)].
body(illegal(A, B, C, D, E, F)) ~ [same_location(A, B, E, F)].
body(illegal(A, B, C, D, E, F)) ~ [same_location(C, D, E, F)].
body(illegal(A, B, C, D, E, F)) ~ [king_attacks_king(A, B, E, F)].

Since same_location and king_attacks_king are now g-terminals, clauses 6 and 7
of the incomplete theory are treated in the same way as the clauses defining
the other feature predicates like less_than and adj; they are included in the
theory The, but otherwise have no impact on the grammar.

Clause 5 is the more interesting case. We cannot simply introduce the
grammar rule

body(illegal(A, B, C, D, E, F)) ~ [rook_attacks_king(A, B, C, D, E, F)].

22Quinlan's implementation of FOIL imposes special restrictions on the feature predicates, which
make it impractical to make predicates such as rook_attacks_king available in learning. These
restrictions can, however, be dropped, albeit at some cost in efficiency; our implementation places
no restrictions on the feature predicates.
23 Notice that GRENDEL is encouraged to include these clauses, but is not forced; if there are no
examples for which these clauses are useful, they will not he included in the final hypothesis.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 349

because the definition of rook__attacks_king is unknown. Instead, however,
we can introduce a new nonterminal e-symbol rook__attacks_king, which will
expand to all possible definitions of rook_attacks_king, and add the following
grammar rule to the theory:

body(illegal(A, B, C, D, E, F)) ~ rook_.attacks_king(A, B, C, D, E, F).

We now need to construct rules so that the £-nonterminal rook_attacks__king
behaves appropriately; that is, so it expands to all possible definitions of
the predicate rook__attacks_king. Clauses 8 and 9 give rise to the following
two grammar rules, which describe two ways in which the rook_attacks_king
nonterminal can be expanded.

rook._attacks_king(A, B, C, D, E, F)
[C = E], king_not_between_file(A, B, C, D, E, F).

rook_attacks_king(A, B, C, D, E, F)
[D = F], king_not_between_rank(A, B, C, D, E, F).

Again, king_not_between_file and king_not_between_rank are new nontermi-
nals, which will expand into all possible definitions of these predicates. In
this case, however, the definitions of these predicates are completely unknown:
thus we will use a series of relatively weak grammar rules to describe the
possible definitions of these predicates. For example, we can make use of the
techniques described in Section 4 to define these ~-nonterminals as follows:

king_not_between_file(A, B, C, D, E, F)
(rels(X, Y) where subset([X, Y], [A, C, E])),
(rels (HI, Z) where subset ([HI, Z], [B, D, F])).

king_not_between_rank(A, B, C, D, E, F)
(rels (X, Y) where subset ([X, Y], [A, C, E])),
(rels (W, Z) where subset ([W, Z], [B, D, F])).

The expansions of rels(X, Y) can then be defined using the appropriate gram-
mar rules from Fig. 8. The complete grammar for this incomplete theory is
shown in Fig. 14.

To evaluate the ability of GRENDEL to learn using an incomplete the-
ory, we deleted each of the predicates same_location, king_attacks_king, and
rook._attacks_king from the complete theory. Grammars for each of these in-
complete theories were then constructed, and we ran GRENDEL, using these
grammars, on twenty different samples containing 100 examples each. The
results of these experiments are shown in Table 8. For comparison, we also
give again the performance of typed FOIL and GRENDEL with a passive bias
on this same problem; from the table it can be seen that incomplete theories
improve both the accuracy of GRENDEL's hypotheses and GRENDEL's run-
time. All of the differences are statistically significant except for the differences

350 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

body(illegal(A, B, C, D, E, F)) ~ [same_location(A, B, C, D)].
body(illegal(A, B, C, D, E, F)) ~ [same_location (A, B, E, F)].
body(illegal(A, B, C, D, E, F)) ~ [same_location(C, D, E, F)].
body(illegal(A, B, C, D, E, F)) ~ [king_attacks_king(A, B, E, F)].
body(illegal(A, B, C, D, E, F)) ~ rook_attacks_king(A, B, C, D, E, F).

rook__attacks_king(A, B, C, D, E, F)
[C = E], king_not_between_file(A, B, C, D, E, F).

rook_attacks_king(A, B, C, D, E, F)
[D = F], king_not_between_rank(A, B, C, D, E, F).

king_not_between_file(A, B, C, D, E, F)
(rels(X, Y) where subset(IX, Y], [A, C,E])),
(rels(W,Z) where subset([W,Z], [B ,D,F])).

king_not_between_rank(A, B, C, D, E, F)
(rels (X, Y) where subset ([X, Y], [A, C, E])),
(rels(W, Z)wheresubset([W, Z], [B, D, F])).

rels(A, B) ~ ordering(A, B) , adjacency(A, B).
ordering(X, Y) ~ [less_than(X, Y)].
ordering(X, Y)
ordering(X, Y)
ordering(X, Y)
ordering(X, Y)
ordering(X, Y)
adjacency (X, Y
adjacency (X, Y

[less_than(Y, X) I.
[-~less_than (X, Y) 1.
[~less_than(Y, X)] .

-- [X = Y].
-~ [~ x = Y].
) -- [adj(X, Y)].
) --~ [-,adj(X, Y)].

Fig. 14. Antecedent description grammar derived from clauses 1-9.

Table 8
Effect of incomplete theories on the illegal problem

Deleted predicate Error (%) Search Time

same_location 0.650 180.7 35.4
king._attacks__king 0.265 216.6 39.4
rook__attacks._king 1.046 253.3 46.4

Biased GRENDEL 1.336 314.2 45.7
Typed FOIL 1.986 656.4 127.7

in error rates between row 3 (the theory with rook_attacks_king deleted) and
row 4 (biased GRENDEL).

It is beyond the scope of this paper to provide a comprehensive survey of
the large body of research in learning from incomplete theories. Much of the
work in logically-grounded abduction [27,31] can be viewed as completing an
incomplete theory; additionally, there has been a great deal of work in machine
learning on this problem--[13,17,37,40] are some examples. GRENDEL's
main contribution to this area is perhaps the use of the information gain

I4". W. Cohen/Artificial Intelligence 68 (1994) 303-366 351

heuristic to guide the search for an appropriate completion. The FOCL system
[25], which will be described in the next section, also uses this heuristic, but in
a rather different way: in computing the heuristic, FOCL counts the number of
examples that fall into a known completion of a theory, while GRENDEL (used
in the manner described in this section) counts the number of examples that
fall into any possible completion of the theory. Further research is necessary
to determine how these two different approaches compare.

5.4. Learning from a syntactically approximate theory

A final class of background theories that we will consider are theories that
are syntactically close to the target theory: in other words, theories that can be
transformed to the target theory with a small number of syntactic changes such
as adding a clause, deleting a clause, adding conditions to the antecedent of an
existing clause, or deleting a condition from the antecedent of an existing clause.
In this paper, such theories will be called syntactically approximate theories.
An example of a theory that is syntactically approximate is shown in Fig. 15,
along with the theory that it approximates. 24 This syntactically approximate
theory was derived from the correct theory by making the following syntactic
changes.

• The extraneous condition adj(B, F) was added to the antecedent of clause
I.

• The condition adj(B, F) was deleted from the antecedent of clause 2.
• The clause king_attacks__king(A, B, E, F) :- knight_move(A, B, E, F) was

added.
• Clause 9 was deleted.

The modified portions of the theory are underlined in the figure.
This section will concentrate on comparing GRENDEL to Pazzani and

Kibler's FOCL system, which is one of several systems which learns from
syntactically approximate theories [23,16,26]; FOCL is the most appropriate
comparison because like GRENDEL, it can also learn relational concepts. The
example of this section is taken from [26].

5.4.1. How FOCL works
FOCL is another system derived from FOIL. FOCL is "almost equivalent"

to another instantiation of EFOIL, in which a clause may be refined in one of
the following ways.

• The clause Goal :- true can be refined to Goal :- bodyi, if Goal :- body i is
a clause in the syntactically approximate theory.

• The clause

24Notice that the correct theory is a little different from the theory of Fig. 13; in particular, we
are using Pazzani's set of operational predicates rather than Quinlan's (see Section 4.4.3). Also,
to avoid confusion, we have changed the name of the main concept defined by the approximate
theory from illegal to illegall.

352 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

1) illegal(A,B, C , D , E , F)
2) i l legal(A,B,C,D,E,F)
3) i l legal(A,B,C,D,E,F)
4) illegal(A,B, C , D , E , F)
5) illegal(A,B, C , D , E , F)
6) king_attacks_king(A, B,
7) king_attacks_king(A, B,
8) king_attacks_king(A, B,
9)

Correct Theory

:- same_location(A,B, C,D).
:- same_location (A, B, E, F).
:- same_location (C, D, E, F).
:- king__attacks_king(A, B, E, F).
:- rook_attacks_king(A, B, C, D, E, F).
E ,F) : -adj(A,E) Aadj(B,F) .
E ,F) : -adj(A,E) A B = F.
E , F) : -A = E Aadj(B,F) .

rook_attacks_king(A, B, C, D, E, F) :-
C = E A king_not_between_file(A, B, C, D, E, F).

10) rook__attacks_king(A, B, C, D, E, F) :-
D = F A king_not_between_rank(A, B, C, D, E, F).

11) king_not_between_file(A, B, C, D, E, F) :- -~A = C.
12) king_not_between_file (A, B, C, D, E, F) :- A = C A ~between (D, B, F).
13) king_not_between_rank(A, B, C, D, E, F) :- -~B = D.
14) king_not_between_rank(A, B, C, D, E, F) :- B = D A -~between(C, A, E).

Syntactically Approximate Theory

1) i l legal l (A,B,C,D,E,F) :-
same_location (A, B, C, D)Aadj(B, F). % condition added

2) illegall (A, B, C, D, E, F) :- same_location (A, B, E, F).
3) illegall (A, B, C, D, E, F) :- same_location (C, D, E, F).
4) illegall (A, B, C, D, E, F) :- king_attacks_king(A, B, E, F).
5) illegall (A, B, C, D, E, F) :- rook_attacks_king(A, B, C, D, E, F).
6) king_attacks_king(A, B, E, F) :- adj(A, E) A adj(B, F).
7) king_attacks_king(A,B,E,F) :- adj(A,E) A B = F.
8) king_attacks_king(A, B, E, F) :- A = E. % condition adj(B, F) deleted

king__attacks_king(A, B, E, F) :- knight_move(A, B, E, F). % clause added
9) %rook_attacks_king(A, B, C, D, E, F) :- C = E A... ---clause deleted

10) rook_attacks_king(A, B, C, D, E, F) :-
D = F A king_not_between_rank(A, B, C, D, E, F).

11) king_not_between_file(A,B, C , D , E , F) :- ~A = C.
12) king_not_between_file(A, B, C, D, E, F) :- A .= C A ~between (D, B, F).
i ~) king_not_between_rank(A, B, C, D, E, F) :- -~B = D.
14) king_not_between_rank(A, B, C, D, E, F) :- B = D A -~between (C, A, E).

Fig. 15. A syntactically approximate theory for the illegal problem.

Goal:-A~ A--- A Ai_I A A i A A i + l A. . - AAk

can be refined to

Goal :- A1 A ... A Ai- I A bodyj A Ai+l A . . . A Ak

if A/:- body i is a clause in the syntactically approximate theory.

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 353

• The clause Goal :- body i can be refined to Goal :- body i A Lk, where Lk
is a feature predicate or a predicate from the syntactically approximate
theory. This is the same refinement operation used by FOIL.

There are two reasons that FOCL is only "almost equivalent", and not actually
equivalent, to this instantiation of EFOIL. First, FOCL will continue to refine a
consistent clause even if it contains nonoperational predicates (i.e., predicates
other than feature predicates) while in EFOIL, a clause is refined only until
it is consistent. 25 Second, FOCL does not refine clauses in the same way
that EFOIL would; clauses are constructed using a procedure that shows a
preference to the first and second types of refinements over the third type.

The effect of this is that FOCL forms as a hypothesis a Horn theory that
contains clauses formed in one of the following three ways. First, FOCL forms
clauses by operationalizing the initial theory. For example, the approximate
theory for illegall can be operationalized as follows, using first clause 5, then
clause 10, and finally clause 14:

illegal l (A, B, C, D, E, F) :- rook_attacks_king(A, B, C, D, E, F).
i l l e g a l l (A , B , C , D , E , F) :-

D = F A king_not_between_rank(A, B, C, D, E, F).

i l legall(A,B, C , D , E , F) :- D = F A B = D A -~between(C,A,E).

Notice that even though the theory for illegal1 is incorrect (relative to the
correct definition of illegal), the final operationalized clause is correct, since
it is derived by chaining together only rules that are correct.

Second, FOCL forms clauses by adding literals to a rule that is an operational-
ization of the initial theory, using FOIL's heuristics for choosing these literals.
To illustrate the benefits of doing this, notice that one can also operationalize
illegall as follows, using clause 4 and then clause 8:

illegal1 (A, B, C, D, E, F) :- king_attacks_king(A, B, E, F).
i lIegall(A,B, C , D , E , F) :- A = E.

Since clause 8 is missing the condition ad j (B ,F) , the operationalized rule is
also missing this condition. However, the resulting operationalized rule can be
corrected by adding a single additional condition; this correction can be found
using FOIL.

Finally, FOCL forms rules by building rules from scratch using the FOIL
algorithm. For example, given a large enough sample, FOCL might reconstruct
the deleted clause (clause 9) using this approach. The final type of bug in the
approximate theory, the added clause, can be corrected because FOCL includes
in its hypothesis only some operationalizations of the initial approximate
theory.

We emphasize that FOCL's search process is guided only partially by Quin-
lan's information gain heuristic; partially, the search is guided by predetermined

25 I.e., covers no negative examples.

354 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

preferences between the three subspaces described above. In particular, FOCL
prefers using an operationalization of the initial theory to using an operational-
ization that needs to be corrected by appending one or more additional literals,
and FOCL prefers using a corrected operationalization to building a rule from
scratch. For more details, see [26].

This description of FOCL is actually incomplete, as FOCL has been im-
proved since these experiments were begun [25]. The most recent version
of FOCL can also drop a condition from a rule which has been constructed
by partially operationalizing the initial theory. The reordering of the searched
space imposed by the addition of this operator will not be discussed in this
section, nor will it be addressed the next section, which describes an emulation
of Pazzani and Kibler's original implementation of FOCL.

5.4.2. Emulating FOCL with GRENDEL
To describe how to emulate FOCL using GRENDEL, we will again apply the

methodology of considering the space of clauses searched by FOCL, and then
constructing a grammar that generates only the clauses from that space. The
first type of clause FOCL can generate are clauses that are operationalizations
of the approximate theory. We saw in Section 5.2 how, given a Horn clause
theory T (such as the theory for illegall) one can automatically construct
a grammar that generates only clauses that are partial operationalizations of
theory. Thus, the first part of FOCL's search space can be easily captured with
the grammar rule

body(illegal(A, B, C, D, E, F)) ~ illegall (A, B, C, D, E, F)

where illegall is a e-nonterminal that expands to the possible operationaliza-
tions of the syntactically approximate theory for illegall. The third part of
the search space--the space of all clauses built from scratch using FOIL-like
means--is also quite easy to encode; Fig. 8, also an earlier example, shows
a grammar which generates all meaningful conjunctions of predicates for this
domain. 26 Letting rels(A,B, C ,D ,E ,F) be a g-nonterminal that expands to
all strings in such a grammar, we can encode the third part of the search space
bias as follows.

body(illegal(A, B, C, D, E, F)) --, rels(A, B, C, D, E, F).

Finally, the second part of the search space--the space of all clauses formed
by constructing an operationalization of illegall and then appending a series
of additional conditions--can be encoded using the following rule.

body(illegal(A, B, C, D, E, F))
illegall (A, B, C, D, E, F), rels(A, B, C, D, E, F).

26Again, however, we will use a grammar that is a little different from the grammar of Fig. 8,
since for the purpose of comparison we are using Pazzani's set of feature predicates rather than
Quinlan's (see Section 4.4.3).

w.w. Cohen/Artificial Intelligence 68 (1994) 303-366 355

body(illegal(A, B, C, D, E, F))
illegall(A,B, C ,D,E ,F) , re l s (A ,B , C , D , E , F) .

body(illegal(A, B, C, D, E, F)) ~ rels(A, B, C, D, E, F).

% rels(A, B, C, D, E, F) expands to all meaningful conjunctions of predicates
in this domain

rels(A,B, C , D , E , F)
rels(A, C), rels(A, E), rels(C, E), rels(A, C, E),
rels(B, D), rels(B, F), rels(D, F), rels(B, D, F).

rels (X, Y, Z) --, [between (T, U, V)] where select (U, [X, Y, Z], [T, V]).
rels (X, Y, Z) ~ [-~ between (T, U, V)] where select (U, [X, Y, Z], [T, V]).
rels(X, Y) ~ [X = Y].
rels(X, Y) ~ [-~X = Y].
rels(X, Y) ---, [adj(X, Y)].
rels(X, Y) ~ [-,adj(X, Y) I.

% grammar for the syntactically approximate theory of Fig. 15
illegal l (A, B, C, D, E, F) ~ [same_location (A, B, C, D), adj (B, F)].
illegal l (A, B, C, D, E, F) --, [same_location (A, B, E, F)].
illegall(A,B, C , D , E , F) --, [same_location(C,D,E,F)].
illegal l (A, B, C, D, E, F) --, king_attacks_king(A, B, E, F).
illegal1 (A, B, C, D, E, F) --. rook_attacks_king(A, B, C, D, E, F).
king_attacks_king(A, B, E, F) ~ [adj(A, E), adj(B, F)].
king_attacks_king(A, B, E, F) --, [adj(A, E), B = F].
king_attacks_king(A, B, E, F) ~ [A = E].
king_attacks_king(A, B, E, F) ~ [knight_move(A, B, E, F)].
rook__attacks__king(A, B, C, D, E, F)

[D = F], king_not_between_rank(A, B, C, D, E, F).
king_not_between_file(A, B, C, D, E, F) ~ [--,A = C].
king_not_between_file(A, B, C, D, E, F) ~ [A = C, -~between (D, B, F)].
king_not_between_rank(A, B, C, D, E, F) ~ [-~B = D].
king_not_between_rank (A, B, C, D, E, F) ~ [B = D, -~between (C, A, E)].

Fig. 16. Antecedent description grammar for emulating FOCL.

Notice that since rels(A,B, C , D , E , F) can be expanded to the empty string,
this grammar rule also generates all of the clauses generated by the rule

body(illegal(A,B, C , D , E , F)) ~ illegal1(A,B, C , D , E , F) .

Since this rule is now redundant, it can be dropped.
A complete grammar encoding FOCL's hypothesis space for this learning

problem is shown in Fig. 16. The rules giving the expansion of the illegal1 £-
nonterminal are derived from the syntactically approximate theory for illegall;
the rules giving the expansion of the rels £-nonterminal are an encoding of
typing constraints and passive biases for this domain, and are taken from the
grammar used in Section 4.4.3.

356 W. W. Cohen/Artificial Intelligence 68 (1994) 303-366

Table 9
Using GRENDEL with a syntactically approximate theory

Grammatical Bias Error (%) Search Time

FOCL bias 5.08 637.8 141.4
FOCL bias + control 1.83 264.9 36.5
Passive bias 2.82 345.0 50.0

5.4.3. Grammatical bias is not enough
Unfortunately, GRENDEL's performance using this grammar is markedly

inferior to its performance using simply a passive bias; in other words, GREN-
DEL does not make good use of the approximate theory. In 20 trials using
100 randomly selected board positions, GRENDEL with the FOCL-emulation
grammar of Fig. 16 took an average of almost three times as long to search
almost twice the space, and generated hypotheses that are only half as accurate
as GRENDEL using a simple passive bias; the results of this experiment are
shown in Table 9. This happens even though the space searched by GREN-
DEL, using its FOCL-emulation grammar, is almost exactly the same as the
space searched by FOCL.

Closer analysis suggests two reasons why this grammatical bias degrades
rather than improves performance. One reason more time is spent in learning
is that the search space defined by the FOCL-emulation grammar is extremely
redundant. For example, every operational clause generated by the rule

body(illegal(A, B, C, D, E, F))
illegal1 (A, B, C, D, E, F), rels(A, B, C, D, E, F)

is also generated by the rule

body(illegal(A, B, C, D, E, F)) ~ rels(A, B, C, D, E, F).

Another problem is that the search space is unordered. Intuitively, clauses that
are formed by operationalizing the illegal1 theory are more likely to be accurate
than clauses built up from scratch by expanding the rels g-nonterminal, and
hence should be preferred in constructing the hypothesis. However, GRENDEL
imposes no such preference. In contrast, FOCL imposes a strong preference for
clauses that are formed by operationalizing the approximate theory. One would
expect that adding such a preference would lead to more accurate hypotheses;
it might also improve learning time, as the parts of the search space most likely
to contain useful clauses are searched first.

The remarks above suggest that grammatical bias is not enough: in order
to make effective use of a syntactically approximate theory, it is necessary to
impose some preferential ordering on the clauses considered by the learner, so
that the learner is encouraged to use clauses which are syntactically close to
clauses implied by the theory. This ordering is a second type of background
knowledge. Notice that it cannot be expressed as an antecedent description
grammar, since an antecedent description grammar by its very nature imposes

W. I4I. Cohen/Artificial Intelligence 68 (1994) 303-366 357

a rigid constraint on the hypothesis space, rather than an ordering of the
hypothesis space.

5.4.4. Adding control knowledge to GRENDEL
Of course, use of a grammatical bias does not preclude the possibility of

using a preferential bias as well; in fact, it is often relatively straightforward
to extended a learning system to obey an ordering constraint. It is reasonable
to hypothesize that such an extension to GRENDEL would allow it to make
use of a syntactically correct domain theory.

To test this hypothesis, we added a simple preference mechanism to GREN-
DEL, in the form of a control directive. If A is a nonterminal g-symbol that has
N arguments, the user can give GRENDEL the directive avoid_expanding A/N.
Given this directive, GRENDEL will apply the following procedure when se-
lecting a refinement of a clause. First, the information gains of those des-
ignated refinements that were derived without expanding any g-nonterminal
which should be avoided are computed. If the best clause in this set has a
positive information gain, it will be selected; otherwise, the information gains
of the remaining clauses are computed, and the clause with the largest overall
information gain is selected.

A control directive means that clauses derived by expanding the avoided
g-nonterminal will be considered by GRENDEL only if all other clauses have
negative (or zero) information gain; thus a strong preference will be shown to
clauses which do not contain expansions of the avoided g-nonterminal. Control
directives impose a preferential ordering similar to that imposed by FOCL;
one important difference is that while FOCL's hypothesis space is implicitly
ordered by its learning algorithm, GRENDEL's hypothesis space is explicitly
ordered by the control directives.

When GRENDEL is given the control directive "avoid_expanding rels/6",
and is used with the grammar of Fig. 16, the error rate of the average hypothesis
improves to 1.8%; this error rate represents a statistically significant (t = 2.38,
p > 0.975) improvement from the 2.8% error rate obtained using the passive
bias grammar. This indicates that this simple extension is sufficient to allow
GRENDEL to make effective use of a syntactically approximate theory and
improve the accuracy of its hypotheses. Using the control directive also leads
to a statistically significant reduction in time (t = 5.88, p > 0.99) and search
space (t = 4.04, p > 0.99).

5.4.5. Comparison to FOCL
To summarize, a grammatical bias alone proved to be inadequate to al-

low learning from a syntactically approximate theory. However, by extending
GRENDEL to accept control directives from the user, we are able to emulate
the technique used in FOCL for learning from a syntactically approximate
domain theory. The results we obtain are qualitatively the same as those ob-
tained by FOCL: addition of a syntactically approximate theory causes an
improvement in both learning time and in the accuracy of hypotheses. How-

358 IV. W. Cohen/Artificial Intelligence 68 (1994) 303-366

ever, GRENDEL's emulation of FOCL differs from FOCL itself in several
ways. 27

FOCL and GRENDEL's emulation of FOCL both use a mix of empirical and
analytic learning methods; however, GRENDEL's empirical method, learning
from a passively-biased grammar, was shown in Section 4.4.3 be superior to
typed FOIL, the empirical learning method used by FOCL. Another difference
is that, unlike FOCL, GRENDEL may output a hypothesis that contains partial
operationalizations of the approximate domain theory, as well as complete
operationalizations.

Again, we emphasize that the major difference between FOCL and GREN-
DEL is that FOCL is less adaptable, in that it will always consider a fixed
class of corrections to the theory. In contrast, GRENDEL can be directed to
consider a smaller class of corrections, as our emulations of A-EBL and IOU
illustrate. This could lead to improved performance in situations in which in-
formation is given about the kinds of errors present in the background theory.
A consequence of greater generality is that GRENDEL's knowledge must be
represented in a more explicit manner. In particular, GRENDEL's antecedent
description grammar makes explicit the class of errors that can be corrected,
and the control directives make explicit the preferential ordering of clauses.
However, as in the emulations of IOU and A-EBL, it seems likely that the
task of constructing a grammar (and control directives) for emulating FOCL
on a problem could be automated, given a grammar encoding a passive bias
for that problem and a syntactically approximate theory.

6. Related work

6.1. Previous work in grammatically biased learning

The previous sections have explored a number of possible applications of
grammatically biased learning. While the applications are new, the general
idea of guiding induction by making some portion of the concept description
language explicit is not new. This idea was perhaps most deafly articulated in
Mitchell's LEX system [21], in which a version space approach was used to
construct hypotheses that were sentential forms in a given grammar.

Our high-level aims are much the same as Mitchell's; however the ap-
proach taken in GRENDEL incorporates several technical innovations that
greatly extend the range of uses of grammatical bias. First, antecedent descrip-
tion grammars are computationally much more powerful than the context-free
grammars used in LEX. This additional power not only makes it possible
to learn relational concepts, but also makes it possible to use grammatical
constraints to encode nonpropositional background theories and constraints on

27 Because of these differences, a more direct comparison of FOCL to GRENDEL's emulation of
FOCL is difficult; this may be the subject of future work.

w.w. Cohen/Artificial Intelligence 68 (1994) 303-366 359

variable use (such as typing constraints.) Second, Mitchell's learning technique
imposes several additional restrictions on the grammar which are not imposed
by the EFOIL algorithm. For example, in order to prevent the size of the S
boundary set from growing too large, the number of possible parses of any
single example must be constrained. Thus in LEX every example has a unique
parse; in contrast, the grammar of Fig. 1 allows an infinite number of parses of
any example. The additional power of our grammars and the relaxation of the
constraints imposed by the version-space learning method are crucial in being
able to unify the several different knowledge-based learning problems discussed
in this paper. Finally, while Mitchell's technique requires a recognizer to be
built for each nonterminal symbol, our approach does not.

6.2. Quinlan's FOIL system

GRENDEL's learning algorithm is derived from Quinlan's FOIL algorithm
[28]. The main difference between GRENDEL and FOIL is that while FOIL
uses a fixed procedure for generating clauses, GRENDEL's generation of clauses
is guided by a grammar, which can be modified. Much of Section 4 is devoted
to comparing a knowledge-free GRENDEL to an implementation of FOIL;
the experiments in this section indicate that cases exist in which GRENDEL's
performance is superior to FOIL's, even if little domain knowledge is avail-
able. Quinlan's implementation of FOIL, however, is far more efficient than
GRENDEL, and includes several useful extensions which are not included in
the current implementation of GRENDEL, including features that prune the
search for new literals, deal with noisy data, postprocess the clauses of the
hypothesis, and infer partial orderings among the clauses so that recursive def-
initions can be learned. Another advantage of FOIL over GRENDEL is that
we have found it difficult to write grammars that introduce new variables in a
clause, except in constrained ways. GRENDEL is thus limited in its ability to
learn important classes of concepts such as recursive predicates.

6.3. FOCL and other work in theory refinement

A second system which is quite similar to GRENDEL is FOCL [26,25].
FOCL's learning algorithm is also based on FOIL's learning algorithm, and
FOCL also can make use of many kinds of background knowledge. In partic-
ular, FOCL and GRENDEL both use typing information, information about
predicate symmetries, relational clichds, and syntactically approximate theo-
ries; since the class of syntactically approximate theories subsumes the class of
overgeneral theories and incomplete theories, FOCL can make use of essen-
tiaUy all of the types of background knowledge discussed in this paper. The
main difference is that in FOCL, each of these types of background knowledge
are handled by different mechanisms, while in GRENDEL they are all handled
by grammatical bias. (There are also some more specific differences in how

360 W. 14I. Cohen/Artificial Intelligence 68 (1994) 303-366

GRENDEL and FOCL handle these types of background knowledge, which
were discussed in the body of the paper.)

A major advantage of the FOCL approach is that it seems to lead to
simpler and more declarative ways of presenting many types of background
knowledge: for example, typing information is declaratively stated in FOCL,
but not in GRENDEL. However, GRENDEL's approach also has several
advantages. Grammatical bias can be used to encode some sorts of knowledge
that FOCL cannot incorporate, such as predicate-combinability constraints.
GRENDEL also allows the bias of the learning system to be controlled more
precisely by the user; for example, GRENDEL can perform precisely the theory
corrections performed by IOU and no others. While FOCL could be used
with an IOU-type theory, it will consider a large space of theory corrections,
and (presumably) would require more examples to attain the same degree
of accuracy. Another advantage of GRENDEL's approach is that using a
uniform learning mechanism holds the potential for closer integration of the
various learning techniques. Finally, we would claim that a final advantage
of GRENDEL's approach is the elegance of having a uniform technique for
making use of background knowledge. This, however, is a rather subjective
claim, and even if it is accepted, the benefits are hard to quantify.

Several other learning systems exist that, like FOCL, address the problem
of learning from syntactically approximate theories. Most of these systems
[16,23,36] are restricted to propositional theories only, and hence are con-
cerned with only some of the types of background knowledge discussed in
this paper; for example, none of these systems considers typing information
or constraints on predicate usage. Some systems that can learn Horn clause
theories are described in [1,32,41]. Like FOCL, the biases of these systems
cannot be controlled to the degree that GRENDEL's can; they are specifically
intended to learn from syntactically approximate theories. We have not yet
systematically compared these systems to GRENDEL.

6.4. A-EBL and other work in theory specialization

6.4.1. Theory specialization versus grammatical bias
In the introduction, we stated that there was a very close relationship between

the types of overgeneral theories used as background knowledge by A-EBL [9]
and antecedent description grammars; that relationship was later clarified, and
illustrated by an extended example, in Section 5.2. In fact, it is fair to say
that theory specialization and grammatically biased learning are simply two
different computational metaphors for the same basic task.

It can reasonably be argued that the metaphor of grammatically biased learn-
ing is in itself a technical advance, although this point is hard to establish in
any quantitative way. One problem with the metaphor of theory specialization
is that while many learning tasks can be recast as theory specialization prob-
lems [8] the theories which must be constructed are extremely artificial, when
viewed as theories. For instance, consider trying to understand the theory of

w.w. Cohen/Artificial Intelligence 68 (1994} 303-366 361

Fig. 3 by considering only its semantics as a theory. While the corresponding
grammar has a natural interpretation--it describes roughly the set of clauses
which can be produced by FOIL---in the theory, every predicate can easily be
shown to be always true. In fact, most of the grammars presented in this paper
would be similarly vacuous, or would at least have vacuous portions, if they
were converted to theories.

The problem is that the appropriateness or inappropriateness of a theory for
theory specialization has little to do with its declarative meaning, and very
much to do with its syntactic form; however, the theory metaphor strongly
encourages one to focus on the declarative meaning of the theory. The grammar
metaphor, on the other hand, encourages one to begin thinking in terms of
derivable strings and derivations, which are precisely the properties which
are important for guiding learning. Thus the grammar corresponding to an
overgeneral theory tends to be more comprehensible to a user.

Perhaps the most telling argument in favor of the grammatical metaphor is
the fact that many of the encodings described in this paper became evident to
us only after the notion of grammatically biased learning had been established.
In contrast, although theory specialization algorithms of almost equivalent
power have been available for some time, the full range of applications of
these techniques has not been explored.

6.4.2. Other differences
GRENDEL also differs from A-EBL and its variants in several more concrete

ways. A-EBL requires that all proofs of each positive example be enumerable,
and hence is not able to specialize theories such as the one of Fig. 3, which
generates an infinite number of proofs for each goal. Several of the other exam-
ple grammars in this paper correspond to theories which generate an extremely
large number of proofs for each example; while A-EBL could in principle be
used on such problems, in practice it would be inefficient. Also, all of the
variants of A-EBL search only a part of the space of partial operationalizations
of the initial theory, while GRENDEL searches the entire space. GRENDEL's
search is also asymptotically more efficient than the search used by A-EBL
(however, the experiments of Section 5.2 suggest that this may not always
result in an improvement in practice.) Also, unlike A-EBL, GRENDEL is able
to accept some control knowledge, as described in Section 5.4.4. This ability
is crucial in using grammatical bias to learn from a syntactically approximate
theory.

In performing theory specialization, GRENDEL's learning technique is actu-
ally more similar to FOCL's operation when it is given a theory that is strictly
overgeneral. In particular, both GRENDEL and FOCL base their search on
information gain, and both search in a general-to-specific order. The major
difference is that GRENDEL uses a larger set of "designated refinements"
in conducting its search; roughly speaking, FOCL uses the set of designated
refinements

362 W.W. Cohen/Artificial Intelligence 68 (1994) 303-366

Designated__Refinements(s) =-- (fl: a ~/~}

introduced as a strawman in Section 3.2.2, while GRENDEL uses a much
larger set. Thus, for the reasons discussed in that section, FOCL would be
unable to correctly specialize theories like the one of Fig. 3. This is a fairly
simple extension, but one which greatly expands the range of applicability of
the learning technique: without it, most of the grammatically biased learning
tasks described in this paper cannot be performed. GRENDEL is also not
required to fully operationalize the theory, as FOCL does, although it may do
so if the examples require it.

Finally, GRENDEL's technique of simplifying rules leads to an notable
improvement in efficiency on many of learning problems described in this
paper. This technique is not used in either A-EBL and its variants or in FOCL.

7. Conclusion

To summarize, this paper has described a learning system that makes a large
part of the concept description language an explicit input to the learner. In
particular, we have described GRENDEL, an extension of FOIL which learns
a set of Horn clauses, each of which is generated by an antecedent description
language provided by the user. In the paper, we have argued (by example)
that many types of background knowledge which until now could be used only
by special-purpose techniques can be naturally encoded as grammatical biases.
In particular, we have shown that grammatically biased learning can encode
the following sorts of knowledge in a way useful to a learner:

• Passive biases, such as typing constraints, constraints on predicate use, and
predicate combinability constraints. This knowledge has been previously
used in the FOCL system [26].

• Programming clichrs, in particular the recursive clichrs and the numerical
threshold clichrs described in [34].

• Two varieties of overgeneral theories: the kind required by the A-EBL
algorithm [6] and the kind required by the IOU algorithm [22].

• Incomplete theories, which contain some but not all of the clauses of the
target theory. Theories such as these are assumed by many systems, for
example [13,17,37,40].

• Syntactically approximate theories, such as are used by theory revision
systems like those described in [16,23,25,26,36].

The major advantage of GRENDEL's grammatically-biased learning techniques
over the special-purpose techniques is their generality: all of the types of
knowledge listed above can used by a single mechanism.

We view these results as promising for several reasons. First, they suggest
that many of the problems studied in the field of knowledge-based learning
can be unified under the general problem of grammatically-biased learning.
This unification may lead to transfer of methods for one subproblem to

IV. W. Cohen/Artificial Intelligence 68 (1994) 303-366 363

another, and to more direct integration of existing techniques. It also provides a
readily formalizable model for these problems, which may facilitate theoretical
analysis; the existence of several formal results on the closely related problem
of theory specialization [5] is encouraging.

The algorithm embedded in the GRENDEL program does, however, have
several major limitations. Foremost among these limitations is the fact that
GRENDEL has no mechanisms for dealing with noisy data; relaxing this
limitation is essential for dealing with real-world learning problems. Recent
results in extending FOIL-like learners to learn from noisy data [4,12] may be
useful in this regard.

Another disadvantage of GRENDEL is that in many cases, the information
present in an antecedent description grammar can be represented in a simpler
and more declarative manner: typing information is a good example of this.
This problem could perhaps be addressed by the development of methods for
automatically compiling declarative constraints (like typing constraints) into
an antecedent description grammar. The examples of Sections 4 and 5 suggest
that many interesting classes of background knowledge can be quite easily
compiled into grammars; however, some of the constraints described in this
paper, such as predicate-combinability constraints, seem to be quite difficult
to incorporate automatically.

Yet another difficulty with the current implementation is that the grammars
needed for certain problems are quite large. From a user's point of view, this is
not problematic, given the macro-expansion facilities that we have developed;
however, the current approach may well be extremely memory-intensive for
some problems. In particular, when GRENDEL is used with a FOIL-like bias,
its grammar is exponential in the arity of the feature predicates. 28 This problem
can perhaps be addressed by allowing dynamic rather than static expansion of
macro-rules.

While the algorithm used in GRENDEL seems to be successful on a wide
variety of problems, it is quite difficult to analyze formally; upper bounds
on GRENDEL's sample complexity would help to increase our confidence in
its performance. However, this is probably a difficult task, as it is likely that
GRENDEL only works on a limited class of distributions; obtaining this result
would require (at least) characterizing the class of distributions on which
GRENDEL is competent.

Finally, as Quinlan has pointed out in [28], the concept description language
of Horn clause logic is perhaps unnecessarily restrictive; it may be possible
to extend the power of the language somewhat without giving up the two
advantages of efficiency and perspicuity. The learning techniques described in
[7,38] for extensions of decision trees may be useful in this regard.

2s Of course, FOIL's run-time is exponential in the arity of the feature predicates, so the asymptotic
complexity of the two algorithms is the same. However, it is often more practical to use an
algorithm which has long run-time than one which both has long run-time and requires very large
data structures; memory limitations usually impose a less flexible constraint.

364 IV. W. Cohen/Artificial Intelligence 68 (1994) 303-366

Appendix A. Proofs of theorems

Theorem 2.1. Let G be a clause description grammar, let body(G) be the asso-
ciated start g-symboL let a be a sentential form derived from body(G), and let
Thq be the Horn theory created using the construction above. Then

p(t l tn) E ext(a) iff p(t l tn) E ext(G :- translates(a)).

Proof. We want to show that A E ext(a) i f fA E ext(G ~ a'). In the proof, we
will use a' to denote the translation of a to a conjunction, The. for the part of
Th~ that contains definitions of the terminal-symbol predicates, and ThN for
the constructed part of The. For the purpose of this proof the definition of
the true predicate is considered to be in Thr; thus no complete proofs can be
constructed in ThN.

For the "only if" direction, consider

A E ext(a)

.~ ;. A E U ext(G ~ fl') (A.1)
,OEL(ct)

3fl:/~ E L (a) A A E (G ~ /~ ') . (A.2)

However, because of the isomorphism between resolution and grammar rule
rewrites

fl E L (a) ~ there is an SLD resolution o f a ' to fl' in ThN. (A.3)

Also, by definition

AE (G ~ f l ') < ;. t h e m g u 0 o f A a n d G e x i s t s AThT~-~'0. (A.4)

Note that (A.3) implies that a '0 can be reduced to fl'O in Thu, by the rule of
substitution; thus (A.3) and (A.4) together imply that (a) an mgu 0 of A and
G exists, (b) inference rules from Thu reduce a '0 to/~'0, and (c) that p '0 is
provable using rules in ThT; thus A E ext(G ~ fl').

To show the "if" direction, assume that A E ext(G ~ a'). Then by definition,
both of the following hold:

A and G have an mgu 0. (A.5)

Thu u ThT- I- a'O. (A.6)

Because the nonterminal and terminal symbols of the grammar are disjoint,
the proof of a '0 can be reordered so that all of the resolutions using rules from
Thu occur first; since, however, no complete resolution proofs can be made
using only rules from ThN, some rules from Thr must be used. To summarize,
the proof of a'O must consist of an initial reduction of a'O to some conjunction
7 using rules from ThN, and then a proof of 7 using rules from ThT.

Now, consider applying the same inference rules used to reduce a '0 to 7
to the goal a'. Certainly this is possible; further, by the isomorphism between
rewriting and resolution, we will derive some goal p' to that/~ ~ L(a) .

W.W. Cohen/Artificial Intelligence 68 (1994) 303-366 365

Our final claim is that 7 = frO; is this is true, then we have established that
there is a f l so that (a) fl E L (a) (from the argument above) (b) there is an
mgu of A and G (from (A.5)) and (c) that fl'O = 7 is provable in The ; note
that (b) and (c) imply that A E ex t (G ,--- frO) and hence (a), (b), and (c)
imply (A.2), which is equivalent to our desired result.

So it remains to establish that 7 = frO. A relatively simple intuitive justifi-
cation is to note that fl' and 7 are both substitutional instances of some more
general conjunction, call it ~. In particular, let tr represent the substitutions
imposed by rules used in the SLD derivation from a' to fl', then

#' = &r.
y = ~(tr u 0) .

(If desired this argument can be made rigorous by using induction on the length
of the SLD derivation.) It follows trivially from this that fl'O = ~aO = 7. []

References

[1] F. Bergadano and A. Giordana, Guiding induction with domain theories, in: R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, eds., Machine Learning: An Artificial Intelligence Approach
3 (Morgan Kaufmann, San Mateo, CA, 1990) chapter 17, pages 474-492.

[2] L. Birnbaum and G. Collins, Machine Learning: Proceedings of the Eighth International
Workshop (Morgan Kaufmann, San Mateo, CA, 1991).

[3] I. Bratko, S. Muggleton, and A. Varsek, Learning qualitative models of dynamic systems,
in: Proceedings Eighth International Workshop on Machine Learning, Ithaca, NY (1991).

[4] C. Brunk and M. Pazzani, Noise-tolerant relational concept learning algorithms, in:
Proceedings Eighth International Workshop on Machine Learning, Ithaca, NY (1991).

[5] W.W. Cohen, Concept learning using explanation based generalization as an abstraction
mechanism, Ph.D. Thesis, Tech. Report DCS-TR-27 l, Rutgers University, New Brunswick,
NJ (1990).

[6] W.W. Cohen, Learning from textbook knowledge: a case study, in: Proceedings AAAI-90,
Boston, MA (1990).

[7] W.W. Cohen, A decision tree approach to theory specialization, Internal Technical
Memorandum, AT&T Bell Laboratories (1991). Available from the author on request.

[8] W.W. Cohen, The generality ofovergenerality, in: Proceedings Eighth International Workshop
on Machine Learning, Ithaca, NY (1991).

[9] W.W. Cohen, Abductive explanation based learning: a solution to the multiple inconsistent
explanation problem, Mach. Learn. 8 (2) (1992).

[10] G.F. DeJong and R. Mooney, Explanation-based learning: an alternative view, Mach. Learn.
1 (2) (1986).

[11] T.G. Dietterich and R.S. Michalski, Learning to predict sequences, in: R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, eds., Machine Learning: An Artificial Intelligence Approach
2 (Morgan Kaufmann, San Mateo, CA, 1986).

[12] S. D~eroski and N. Lavrac, Learning relations from noisy examples, in: Proceedings Eighth
International Workshop on Machine Learning, Ithaca, NY (1991).

[13] T. Fawcett, Learning from plausible explanations, in: Proceedings Sixth International
Workshop on Machine Learning, Ithaca, NY (1989).

[14] R.A. Fisher, The use of multiple measurements in taxonomic problems, Annual Eugenics 7
(1936) 179-188; also in: Contributions to Mathematical Statistics (Wiley, New York, 1950).

[15] N. Flann and T.G. Dietterich, A study of explanation-based methods for inductive learning,
Mach. Learn. 4 (2) (1989).

366 W. W Cohen/Artificial Intelligence 68 (1994) 303-366

[16] A. Ginsberg, Theory reduction, theory revision, and retranslation, in: Proceedings AAAI-90,
Boston, MA (1990).

[17] R.V. Hall, Learning by failing to explain: using partial explanation to learn in incomplete or
intractible domains, Mach. Learn. 3 (1) (1988).

[18] R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, The multipurpose incremental learning
system AQ15 and its application to three medical domains, in: Proceedings AAAI-86,
Philadelphia, PA (1986).

[19] T.M. Mitchell, Generalization as search, in: Readings in Artificial Intelligence (Morgan
Kaufmann, San Mateo, CA); also: Artif Intell. 18 (1982) 203-226.

[20] T.M. Mitchell, R.M. Keller, and S. Kedar-Cabelli, Explanation-based generalization: a
unifying view, Mach. Learn. 1 (1) (1986).

[21] T.M. Mitchell, P. Utgoff and R. Banerji, Learning by experimentation: acquiring and
refining problem-solving heuristics, in: R.S. Michalski, J.G. Carbonell and T.M. Mitchell,
eds., Machine Learning: An Artificial Intelligence Approach (Morgan Kaufmann, San Mateo,
CA, 1983).

[22] R.J. Mooney and D. Ourston, Induction over the unexplained, in: Proceedings Sixth
International Workshop on Machine Learning, Ithaca, NY (1989).

[23] D. Ourston and R.J. Mooney, Changing the rules: a comprehensive approach to theory
refinement, in: Proceedings AAAI-90, Boston, MA (1990).

[24] G. Pagallo and D. Hassler, Boolean feature discovery in empirical learning, Mach. Learn. 5
(1) (1990).

[25] M. Pazzani, C. Brunk and G. Silverstein, A knowledge-intensive approach to learning
relational concepts, in: Proceedings Eighth International Workshop on Machine Learning,
Ithaca, NY (1991).

[26] M. Pazzani and D. Kibler, The utility of knowledge in inductive learning, Mach. Learn. 9
(I) (1992).

[27] D. Poole, A logical framework for default reasoning, Artif Intell. 36 (1988) 27-47.
[28] J.R. Quinlan, Learning logical definitions from relations, Mach. Learn. 5 (3) (1990).
[29] J.R. Quinlan, Probabilistic decision trees, in: R.S. Michalski, J.G. Carbonell and

T.M. Mitchell, eds., Machine Learning: An Artificial Intelligence Approach 3 (Morgan
Kaufmann, San Mateo, CA, 1990) chapter 17, pages 140-152.

[30] J.R. Quinlan, Personal communication (1991).
[31] R. Reiter, A theory of diagnosis from first principles, Artif Intell. 32 (1987) 57-95.
[32] B. Richards and R.J. Mooney, First-order theory revision, in: Proceedings Eighth

International Workshop on Machine Learning, Ithaca, NY (1991).
[33] A. Sheinwold, 5 Weeks to Winning Bridge (Simon and Schuster, New York, 1964).
[34] G. Silverstein and M. Pazzani, Relational clichrs: constraining constructive induction during

relational learning, in: Proceedings Eighth International Workshop on Machine Learning,
Ithaca, NY (1991).

[35] L. Sterling and E. Shapiro, The Art of Prolog: Advanced Programming Techniques (MIT
Press, Cambridge, MA, 1986).

[36] G. Towell, J. Shavlik and M. Noordewier, Refinement of approximate domain theories by
knowledge-based artificial neural networks, in: Proceedings AAAI-90, Boston, MA (1990).

[37] K. VanLehn, Learning one subprocedure per lesson, Artifi Intell. 31 (1987) 1-40.
[38] L. Watanabe and L. Rendell, Learning structural decision trees from examples, in:

Proceedings Eighth International Workshop on Machine Learning, Ithaca, NY (1991).
[39] S. Weiss and C. Kulikowski, Computer Systems that Learn (Morgan Kaufmann, San Mateo,

CA, 1990).
[40] B. Whitehall and S.C.-Y. Lu, A study of how domain knowledge improves knowledge-based

learning systems, in: Proceedings Eighth International Workshop on Machine Learning,
Ithaca, NY (1991).

[41] J. Wogulis, Revising relational domain theories, in: Proceedings Eighth International
Workshop on Machine Learning, Ithaca, NY (1991).

